def test_fit_to_mesh_w_georef(self):
        """Simple check that georef works at the fit_to_mesh level
        """

        from anuga.coordinate_transforms.geo_reference import Geo_reference

        #Mesh
        vertex_coordinates = [[0.76, 0.76], [0.76, 5.76], [5.76, 0.76]]
        triangles = [[0, 2, 1]]

        mesh_geo = Geo_reference(56, -0.76, -0.76)
        #print "mesh_geo.get_absolute(vertex_coordinates)", \
        #     mesh_geo.get_absolute(vertex_coordinates)

        #Data
        data_points = [[201.0, 401.0], [201.0, 403.0], [203.0, 401.0]]

        z = [2, 4, 4]

        data_geo = Geo_reference(56, -200, -400)

        #print "data_geo.get_absolute(data_points)", \
        #      data_geo.get_absolute(data_points)

        #Fit
        zz = fit_to_mesh(data_points,
                         vertex_coordinates=vertex_coordinates,
                         triangles=triangles,
                         point_attributes=z,
                         data_origin=data_geo.get_origin(),
                         mesh_origin=mesh_geo.get_origin(),
                         alpha=0)
        assert num.allclose(zz, [0, 5, 5])
Beispiel #2
0
    def concept_create_mesh_from_regions_with_ungenerate(self):
        x = 0
        y = 0
        mesh_geo = geo_reference = Geo_reference(56, x, y)

        # These are the absolute values
        polygon_absolute = [[0, 0], [100, 0], [100, 100], [0, 100]]
        x_p = -10
        y_p = -40
        geo_ref_poly = Geo_reference(56, x_p, y_p)
        polygon = geo_ref_poly.change_points_geo_ref(polygon_absolute)

        boundary_tags = {'walls': [0, 1], 'bom': [2]}

        inner1_polygon_absolute = [[10, 10], [20, 10], [20, 20], [10, 20]]
        inner1_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner1_polygon_absolute)

        inner2_polygon_absolute = [[30, 30], [40, 30], [40, 40], [30, 40]]
        inner2_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner2_polygon_absolute)

        max_area = 10000000
        interior_regions = [(inner1_polygon, 5), (inner2_polygon, 10)]
        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     max_area,
                                     interior_regions=interior_regions,
                                     poly_geo_reference=geo_ref_poly,
                                     mesh_geo_reference=mesh_geo)

        m.export_mesh_file('a_test_mesh_iknterface.tsh')

        fileName = tempfile.mktemp('.txt')
        file = open(fileName, 'w')
        file.write('         1       ??      ??\n\
       90.0       90.0\n\
       81.0       90.0\n\
       81.0       81.0\n\
       90.0       81.0\n\
       90.0       90.0\n\
END\n\
         2      ?? ??\n\
       10.0       80.0\n\
       10.0       90.0\n\
       20.0       90.0\n\
       10.0       80.0\n\
END\n\
END\n')
        file.close()

        m.import_ungenerate_file(fileName, tag='wall')
        os.remove(fileName)
        m.generate_mesh(maximum_triangle_area=max_area, verbose=False)
        m.export_mesh_file('b_test_mesh_iknterface.tsh')
Beispiel #3
0
    def test_triangulation_2_geo_refs(self):
        #
        #

        filename = tempfile.mktemp("_data_manager.sww")
        outfile = NetCDFFile(filename, netcdf_mode_w)
        points_utm = num.array([[0., 0.], [1., 1.], [0., 1.]])
        volumes = [[0, 1, 2]]
        elevation = [0, 1, 2]
        new_origin = Geo_reference(56, 1, 1)
        points_georeference = Geo_reference(56, 0, 0)
        points_utm = points_georeference.change_points_geo_ref(points_utm)
        times = [0, 10]
        number_of_volumes = len(volumes)
        number_of_points = len(points_utm)
        sww = Write_sww(['elevation'], ['stage', 'xmomentum', 'ymomentum'])
        sww.store_header(outfile,
                         times,
                         number_of_volumes,
                         number_of_points,
                         description='fully sick testing',
                         verbose=self.verbose,
                         sww_precision=netcdf_float)
        sww.store_triangulation(outfile,
                                points_utm,
                                volumes,
                                elevation,
                                new_origin=new_origin,
                                points_georeference=points_georeference,
                                verbose=self.verbose)
        outfile.close()
        fid = NetCDFFile(filename)

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]
        results_georef = Geo_reference()
        results_georef.read_NetCDF(fid)
        assert results_georef == new_origin
        fid.close()

        absolute = Geo_reference(56, 0, 0)
        assert num.allclose(
            num.array(
                absolute.change_points_geo_ref(map(None, x, y), new_origin)),
            points_utm)
        os.remove(filename)
Beispiel #4
0
def convert_from_latlon_to_utm(points=None,
                               latitudes=None,
                               longitudes=None,
                               false_easting=None,
                               false_northing=None):
    """Convert latitude and longitude data to UTM as a list of coordinates.


    Input

    points: list of points given in decimal degrees (latitude, longitude) or
    latitudes: list of latitudes   and
    longitudes: list of longitudes 
    false_easting (optional)
    false_northing (optional)

    Output

    points: List of converted points
    zone:   Common UTM zone for converted points


    Notes

    Assume the false_easting and false_northing are the same for each list.
    If points end up in different UTM zones, an ANUGAerror is thrown.    
    """

    old_geo = Geo_reference()
    utm_points = []
    if points is None:
        assert len(latitudes) == len(longitudes)
        points = list(zip(latitudes, longitudes))

    for point in points:

        zone, easting, northing = redfearn(float(point[0]),
                                           float(point[1]),
                                           false_easting=false_easting,
                                           false_northing=false_northing)
        new_geo = Geo_reference(zone)
        old_geo.reconcile_zones(new_geo)
        utm_points.append([easting, northing])

    return utm_points, old_geo.get_zone()
Beispiel #5
0
    def test_triangulationII(self):
        #
        #

        filename = tempfile.mktemp("_data_manager.sww")
        outfile = NetCDFFile(filename, netcdf_mode_w)
        points_utm = num.array([[0., 0.], [1., 1.], [0., 1.]])
        volumes = [[0, 1, 2]]
        elevation = [0, 1, 2]
        new_origin = None
        #new_origin = Geo_reference(56, 0, 0)
        times = [0, 10]
        number_of_volumes = len(volumes)
        number_of_points = len(points_utm)
        sww = Write_sww(['elevation'], ['stage', 'xmomentum', 'ymomentum'])
        sww.store_header(outfile,
                         times,
                         number_of_volumes,
                         number_of_points,
                         description='fully sick testing',
                         verbose=self.verbose,
                         sww_precision=netcdf_float)
        sww.store_triangulation(outfile,
                                points_utm,
                                volumes,
                                new_origin=new_origin,
                                verbose=self.verbose)
        sww.store_static_quantities(outfile, elevation=elevation)

        outfile.close()
        fid = NetCDFFile(filename)

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]
        results_georef = Geo_reference()
        results_georef.read_NetCDF(fid)

        assert results_georef == Geo_reference(zone=None,
                                               xllcorner=0,
                                               yllcorner=0)
        fid.close()

        assert num.allclose(num.array(list(zip(x, y))), points_utm)
        os.remove(filename)
def points_needed(seg, ll_lat, ll_long, grid_spacing, lat_amount, long_amount,
                  zone, isSouthHemisphere):
    """
    seg is two points, in UTM
    return a list of the points, in lats and longs that are needed to
    interpolate any point on the segment.
    """

    from math import sqrt

    geo_reference = Geo_reference(zone=zone)
    geo = Geospatial_data(seg, geo_reference=geo_reference)
    seg_lat_long = geo.get_data_points(as_lat_long=True,
                                       isSouthHemisphere=isSouthHemisphere)

    # 1.415 = 2^0.5, rounded up....
    sqrt_2_rounded_up = 1.415
    buffer = sqrt_2_rounded_up * grid_spacing

    max_lat = max(seg_lat_long[0][0], seg_lat_long[1][0]) + buffer
    max_long = max(seg_lat_long[0][1], seg_lat_long[1][1]) + buffer
    min_lat = min(seg_lat_long[0][0], seg_lat_long[1][0]) - buffer
    min_long = min(seg_lat_long[0][1], seg_lat_long[1][1]) - buffer

    first_row = old_div((min_long - ll_long), grid_spacing)

    # To round up
    first_row_long = int(round(first_row + 0.5))

    last_row = old_div((max_long - ll_long), grid_spacing)  # round down
    last_row_long = int(round(last_row))

    first_row = old_div((min_lat - ll_lat), grid_spacing)
    # To round up
    first_row_lat = int(round(first_row + 0.5))

    last_row = old_div((max_lat - ll_lat), grid_spacing)  # round down
    last_row_lat = int(round(last_row))

    max_distance = 157147.4112 * grid_spacing
    points_lat_long = []

    # Create a list of the lat long points to include.
    for index_lat in range(first_row_lat, last_row_lat + 1):
        for index_long in range(first_row_long, last_row_long + 1):

            lat = ll_lat + index_lat * grid_spacing
            long = ll_long + index_long * grid_spacing

            #filter here to keep good points
            if keep_point(lat, long, seg, max_distance):
                points_lat_long.append((lat, long))  #must be hashable

    # Now that we have these points, lets throw ones out that are too far away

    return points_lat_long
Beispiel #7
0
    def test_fit_to_mesh_file3(self):
        from anuga.load_mesh.loadASCII import import_mesh_file, \
             export_mesh_file
        import tempfile
        import os

        # create a .tsh file, no user outline
        mesh_dic = {}
        mesh_dic['vertices'] = [[0.76, 0.76],
                                          [0.76, 5.76],
                                          [5.76, 0.76]]
        mesh_dic['triangles'] =  [[0, 2, 1]]
        mesh_dic['segments'] = [[0, 1], [2, 0], [1, 2]]
        mesh_dic['triangle_tags'] = ['']
        mesh_dic['vertex_attributes'] = [[], [], []]
        mesh_dic['vertiex_attribute_titles'] = []
        mesh_dic['triangle_neighbors'] = [[-1, -1, -1]]
        mesh_dic['segment_tags'] = ['external',
                                                  'external',
                                                  'external']
        mesh_dic['geo_reference'] = Geo_reference(56,-0.76,-0.76)
        mesh_file = tempfile.mktemp(".tsh")
        export_mesh_file(mesh_file,mesh_dic)

        # create a points .csv file
        point_file = tempfile.mktemp(".csv")
        fd = open(point_file,'w')
        fd.write("x,y, elevation, stage \n\
        1.0, 1.0,2.,4 \n\
        1.0, 3.0,4,8 \n\
        3.0,1.0,4.,8 \n")
        fd.close()

        mesh_output_file = tempfile.mktemp(".tsh")
        fit_to_mesh_file(mesh_file,
                         point_file,
                         mesh_output_file,
                         alpha = 0.0)
        # load in the .tsh file we just wrote
        mesh_dic = import_mesh_file(mesh_output_file)
        #print "mesh_dic",mesh_dic
        ans =[[0.0, 0.0],
              [5.0, 10.0],
              [5.0,10.0]]
        assert num.allclose(mesh_dic['vertex_attributes'],ans)

        self.assertTrue(mesh_dic['vertex_attribute_titles']  ==
                        ['elevation','stage'],
                        'test_fit_to_mesh_file failed')

        #clean up
        os.remove(mesh_file)
        os.remove(point_file)
        os.remove(mesh_output_file)
Beispiel #8
0
    def test_get_vertex_coordinates_with_geo_ref(self):
        x0 = 314036.58727982
        y0 = 6224951.2960092
        geo = Geo_reference(56, x0, y0)

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]
        nodes = num.array([a, b, c, d, e, f])

        nodes_absolute = geo.get_absolute(nodes)

        #                        bac,     bce,     ecf,     dbe
        triangles = num.array([[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]],
                              num.int)

        domain = General_mesh(nodes, triangles, geo_reference=geo)

        verts = domain.get_vertex_coordinates(triangle_id=0)  # bac
        msg = ("num.array([b,a,c])=\n%s\nshould be close to 'verts'=\n%s" %
               (str(num.array([b, a, c])), str(verts)))
        self.assertTrue(num.allclose(num.array([b, a, c]), verts), msg)

        verts = domain.get_vertex_coordinates(triangle_id=0)
        msg = ("num.array([b,a,c])=\n%s\nshould be close to 'verts'=\n%s" %
               (str(num.array([b, a, c])), str(verts)))
        self.assertTrue(num.allclose(num.array([b, a, c]), verts), msg)

        verts = domain.get_vertex_coordinates(triangle_id=0, absolute=True)
        msg = ("num.array([...])=\n%s\nshould be close to 'verts'=\n%s" % (str(
            num.array([
                nodes_absolute[1], nodes_absolute[0], nodes_absolute[2]
            ])), str(verts)))
        self.assertTrue(
            num.allclose(
                num.array(
                    [nodes_absolute[1], nodes_absolute[0], nodes_absolute[2]]),
                verts), msg)

        verts = domain.get_vertex_coordinates(triangle_id=0, absolute=True)
        msg = ("num.array([...])=\n%s\nshould be close to 'verts'=\n%s" % (str(
            num.array([
                nodes_absolute[1], nodes_absolute[0], nodes_absolute[2]
            ])), str(verts)))
        self.assertTrue(
            num.allclose(
                num.array(
                    [nodes_absolute[1], nodes_absolute[0], nodes_absolute[2]]),
                verts), msg)
    def test_fit_and_interpolation_with_different_origins(self):
        """Fit a surface to one set of points. Then interpolate that surface
        using another set of points.
        This test tests situtaion where points and mesh belong to a different
        coordinate system as defined by origin.
        """

        #Setup mesh used to represent fitted function
        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #bac, bce, ecf, dbe, daf, dae
        triangles = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        #Datapoints to fit from
        data_points1 = [[0.66666667, 0.66666667], [1.33333333, 1.33333333],
                        [2.66666667, 0.66666667], [0.66666667, 2.66666667],
                        [0.0, 1.0], [0.0, 3.0], [1.0, 0.0], [1.0, 1.0],
                        [1.0, 2.0], [1.0, 3.0], [2.0, 1.0], [3.0, 0.0],
                        [3.0, 1.0]]

        #First check that things are OK when using same origin
        mesh_origin = (56, 290000, 618000)  #zone, easting, northing
        data_origin = (56, 290000, 618000)  #zone, easting, northing

        #Fit surface to mesh
        interp = Fit(points, triangles, alpha=0.0, mesh_origin=mesh_origin)

        data_geo_spatial = Geospatial_data(data_points1,
                                           geo_reference=Geo_reference(
                                               56, 290000, 618000))
        z = linear_function(data_points1)  #Example z-values
        f = interp.fit(data_geo_spatial, z)  #Fitted values at vertices

        #Shift datapoints according to new origins
        for k in range(len(data_points1)):
            data_points1[k][0] += mesh_origin[1] - data_origin[1]
            data_points1[k][1] += mesh_origin[2] - data_origin[2]

        #Fit surface to mesh
        interp = Fit(points, triangles, alpha=0.0)
        #Fitted values at vertices (using same z as before)
        f1 = interp.fit(data_points1, z)

        assert num.allclose(f, f1), 'Fit should have been unaltered'
Beispiel #10
0
    def test_assert_index_in_nodes(self):
        """test_assert_index_in_nodes -

        Test that node indices in triangles are within nodes array.

        """

        x0 = 314036.58727982
        y0 = 6224951.2960092
        geo = Geo_reference(56, x0, y0)

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        nodes = num.array([a, b, c, d, e, f])

        nodes_absolute = geo.get_absolute(nodes)

        # max index is 5, use 5, expect success
        triangles = num.array([[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]])
        General_mesh(nodes, triangles, geo_reference=geo)

        # should fail with negative area
        triangles = num.array([[0, 1, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]])
        self.assertRaises(AssertionError,
                          General_mesh,
                          nodes,
                          triangles,
                          geo_reference=geo)

        # max index is 5, use 6, expect assert failure
        triangles = num.array([[1, 6, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]])
        self.assertRaises(AssertionError,
                          General_mesh,
                          nodes,
                          triangles,
                          geo_reference=geo)

        # max index is 5, use 10, expect assert failure
        triangles = num.array([[1, 10, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]])
        self.assertRaises(AssertionError,
                          General_mesh,
                          nodes,
                          triangles,
                          geo_reference=geo)
Beispiel #11
0
    def test_get_node(self):
        """test_get_triangles_and_vertices_per_node -

        Test that tuples of triangle, vertex can be extracted
        from inverted triangles structure

        """

        x0 = 314036.58727982
        y0 = 6224951.2960092
        geo = Geo_reference(56, x0, y0)

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        nodes = num.array([a, b, c, d, e, f])

        nodes_absolute = geo.get_absolute(nodes)

        #                        bac,     bce,     ecf,     dbe
        triangles = num.array([[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]])

        domain = General_mesh(nodes, triangles, geo_reference=geo)
        node = domain.get_node(2)
        msg = ('\nc=%s\nnode=%s' % (str(c), str(node)))
        self.assertTrue(num.alltrue(c == node), msg)

        # repeat get_node(), see if result same
        node = domain.get_node(2)
        msg = ('\nc=%s\nnode=%s' % (str(c), str(node)))
        self.assertTrue(num.alltrue(c == node), msg)

        node = domain.get_node(2, absolute=True)
        msg = ('\nnodes_absolute[2]=%s\nnode=%s' %
               (str(nodes_absolute[2]), str(node)))
        self.assertTrue(num.alltrue(nodes_absolute[2] == node), msg)

        # repeat get_node(2, absolute=True), see if result same
        node = domain.get_node(2, absolute=True)
        msg = ('\nnodes_absolute[2]=%s\nnode=%s' %
               (str(nodes_absolute[2]), str(node)))
        self.assertTrue(num.alltrue(nodes_absolute[2] == node), msg)
Beispiel #12
0
    def __init__(self, regions, default=0.0, geo_reference=None):
        """Create instance of a polygon function.

        regions A list of (x,y) tuples defining a polygon.
        default Value or function returning value for points outside poly.
        geo_reference ??
        """

        try:
            len(regions)
        except:
            msg = ('Polygon_function takes a list of pairs (polygon, value).'
                   'Got %s' % str(regions))
            raise_(Exception, msg)

        first_region = regions[0]

        if isinstance(first_region, basestring):
            msg = ('You passed in a list of text values into polygon_function '
                   'instead of a list of pairs (polygon, value): "%s"' %
                   str(first_region))
            raise_(Exception, msg)

        try:
            num_region_components = len(first_region)
        except:
            msg = ('Polygon_function takes a list of pairs (polygon, value). '
                   'Got %s' % str(num_region_components))
            raise_(Exception, msg)

        msg = ('Each entry in regions have two components: (polygon, value). '
               'I got %s' % str(num_region_components))
        assert num_region_components == 2, msg

        if geo_reference is None:
            from anuga.coordinate_transforms.geo_reference import Geo_reference
            geo_reference = Geo_reference()

        self.default = default

        # Make points in polygons relative to geo_reference
        self.regions = []
        for polygon, value in regions:
            georeffed_poly = geo_reference.change_points_geo_ref(polygon)
            self.regions.append((georeffed_poly, value))
Beispiel #13
0
    def test_get_edge_midpoint_coordinates_with_geo_ref(self):
        x0 = 314036.58727982
        y0 = 6224951.2960092
        geo = Geo_reference(56, x0, y0)

        a = num.array([0.0, 0.0])
        b = num.array([0.0, 2.0])
        c = num.array([2.0, 0.0])
        d = num.array([0.0, 4.0])
        e = num.array([2.0, 2.0])
        f = num.array([4.0, 0.0])
        nodes = num.array([a, b, c, d, e, f])

        nodes_absolute = geo.get_absolute(nodes)

        #                        bac,     bce,     ecf,     dbe
        triangles = num.array([[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]],
                              num.int)

        domain = General_mesh(nodes, triangles, geo_reference=geo)

        verts = domain.get_edge_midpoint_coordinates(triangle_id=0)  # bac
        msg = (
            "num.array(1/2[a+c,b+c,a+b])=\n%s\nshould be close to 'verts'=\n%s"
            % (str(num.array([0.5 * (a + c), 0.5 * (b + c), 0.5 *
                              (a + b)])), str(verts)))
        self.assertTrue(
            num.allclose(
                num.array([0.5 * (a + c), 0.5 * (b + c), 0.5 * (a + b)]),
                verts), msg)

        verts = domain.get_edge_midpoint_coordinates(triangle_id=0,
                                                     absolute=True)
        msg = ("num.array([...])=\n%s\nshould be close to 'verts'=\n%s" %
               (str(0.5 * num.array([
                   nodes_absolute[0] + nodes_absolute[2], nodes_absolute[1] +
                   nodes_absolute[2], nodes_absolute[1] + nodes_absolute[0]
               ])), str(verts)))
        self.assertTrue(
            num.allclose(
                0.5 * num.array([
                    nodes_absolute[0] + nodes_absolute[2], nodes_absolute[1] +
                    nodes_absolute[2], nodes_absolute[1] + nodes_absolute[0]
                ]), verts), msg)
    def test_urs_ungridded2sww_mint_maxtII(self):

        #Zone:   50
        #Easting:  240992.578  Northing: 7620442.472
        #Latitude:   -21  30 ' 0.00000 ''  Longitude: 114  30 ' 0.00000 ''
        lat_long = [[-21.5, 114.5], [-21, 114.5], [-21, 115]]
        time_step_count = 6
        time_step = 100
        tide = 9000000
        base_name, files = self.write_mux(lat_long, time_step_count, time_step)
        urs_ungridded2sww(base_name,
                          mean_stage=tide,
                          origin=(50, 23432, 4343),
                          mint=0,
                          maxt=100000)

        # now I want to check the sww file ...
        sww_file = base_name + '.sww'

        #Let's interigate the sww file
        # Note, the sww info is not gridded.  It is point data.
        fid = NetCDFFile(sww_file)

        # Make x and y absolute
        geo_reference = Geo_reference(NetCDFObject=fid)
        points = geo_reference.get_absolute(
            list(zip(fid.variables['x'][:], fid.variables['y'][:])))
        points = ensure_numeric(points)
        x = points[:, 0]

        #Check the time vector
        times = fid.variables['time'][:]

        times_actual = [0, 100, 200, 300, 400, 500]
        assert num.allclose(ensure_numeric(times),
                            ensure_numeric(times_actual))

        #Check first value
        stage = fid.variables['stage'][:]
        assert num.allclose(stage[0], x + tide)

        fid.close()
        self.delete_mux(files)
        os.remove(sww_file)
Beispiel #15
0
    def test_create_mesh_from_regions2(self):
        # These are the absolute values
        min_x = -10
        min_y = -88
        polygon_absolute = [[min_x, min_y], [1000, 100], [1000, 1000],
                            [100, 1000]]

        x_p = -10
        y_p = -40
        zone = 808
        geo_ref_poly = Geo_reference(zone, x_p, y_p)
        polygon = geo_ref_poly.change_points_geo_ref(polygon_absolute)

        boundary_tags = {'walls': [0, 1], 'bom': [2, 3]}

        inner1_polygon_absolute = [[10, 10], [20, 10], [20, 20], [10, 20]]
        inner1_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner1_polygon_absolute)

        inner2_polygon_absolute = [[30, 30], [40, 30], [40, 40], [30, 40]]
        inner2_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner2_polygon_absolute)

        interior_regions = [(inner1_polygon, 5), (inner2_polygon, 10)]
        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     10000000,
                                     interior_regions=interior_regions,
                                     poly_geo_reference=geo_ref_poly)

        # Test the mesh instance
        self.assertTrue(len(m.regions) == 3, 'FAILED!')
        segs = m.getUserSegments()
        self.assertTrue(len(segs) == 12, 'FAILED!')
        self.assertTrue(len(m.userVertices) == 12, 'FAILED!')
        self.assertTrue(segs[0].tag == 'walls', 'FAILED!')
        self.assertTrue(segs[1].tag == 'walls', 'FAILED!')
        self.assertTrue(segs[2].tag == 'bom', 'FAILED!')
        self.assertTrue(segs[3].tag == 'bom', 'FAILED!')
        self.assertTrue(m.geo_reference.get_zone() == zone, 'FAILED!')
        self.assertTrue(m.geo_reference.get_xllcorner() == min_x, 'FAILED!')
        self.assertTrue(m.geo_reference.get_yllcorner() == min_y, 'FAILED!')
Beispiel #16
0
    def test_create_mesh_from_regions_with_duplicate_verts(self):
        # These are the absolute values
        polygon_absolute = [[0.0, 0.0], [0, 4.0], [4.0, 4.0], [4.0, 0.0],
                            [4.0, 0.0]]
        x_p = -10
        y_p = -40
        zone = 808
        geo_ref_poly = Geo_reference(zone, x_p, y_p)
        polygon = geo_ref_poly.change_points_geo_ref(polygon_absolute)
        boundary_tags = {
            '50': [0],
            '40': [1],
            '30': [2],
            'no where seg': [3],
            '20': [4]
        }
        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     10000000,
                                     poly_geo_reference=geo_ref_poly,
                                     verbose=False)

        fileName = 'badmesh.tsh'
Beispiel #17
0
def _create_mesh_from_regions(bounding_polygon,
                              boundary_tags,
                              maximum_triangle_area=None,
                              filename=None,
                              interior_regions=None,
                              interior_holes=None,
                              hole_tags=None,
                              poly_geo_reference=None,
                              mesh_geo_reference=None,
                              minimum_triangle_angle=28.0,
                              fail_if_polygons_outside=True,
                              breaklines=None,
                              verbose=True,
                              regionPtArea=None):
    """_create_mesh_from_regions - internal function.

    See create_mesh_from_regions for documentation.
    """

    # check the segment indexes - throw an error if they are out of bounds
    if boundary_tags is not None:
        max_points = len(bounding_polygon)
        for key in boundary_tags.keys():
            if len([x for x in boundary_tags[key] if x > max_points - 1]) >= 1:
                msg = 'Boundary tag %s has segment out of bounds. '\
                      %(str(key))
                msg += 'Number of points in bounding polygon = %d' % max_points
                raise SegmentError(msg)

        for i in range(max_points):
            found = False
            for tag in boundary_tags:
                if i in boundary_tags[tag]:
                    found = True
            if found is False:
                msg = 'Segment %d was not assigned a boundary_tag.' % i
                msg += 'Default tag "exterior" will be assigned to missing segment'
                #raise Exception(msg)
                # Fixme: Use proper Python warning
                if verbose: log.critical('WARNING: %s' % msg)

    #In addition I reckon the polygons could be of class Geospatial_data
    #(DSG) If polygons were classes caching would break in places.

    # Simple check
    bounding_polygon = ensure_numeric(bounding_polygon, num.float)
    msg = 'Bounding polygon must be a list of points or an Nx2 array'
    assert len(bounding_polygon.shape) == 2, msg
    assert bounding_polygon.shape[1] == 2, msg

    #
    if interior_regions is not None:

        # Test that all the interior polygons are inside the
        # bounding_poly and throw out those that aren't fully
        # included.  #Note, Both poly's have the same geo_ref,
        # therefore don't take into account # geo_ref

        polygons_inside_boundary = []
        for interior_polygon, res in interior_regions:
            indices = inside_polygon(interior_polygon,
                                     bounding_polygon,
                                     closed=True,
                                     verbose=False)

            if len(indices) <> len(interior_polygon):
                msg = 'Interior polygon %s is not fully inside'\
                      %(str(interior_polygon))
                msg += ' bounding polygon: %s.' % (str(bounding_polygon))

                if fail_if_polygons_outside is True:
                    raise PolygonError(msg)
                else:
                    msg += ' I will ignore it.'
                    log.critical(msg)

            else:
                polygons_inside_boundary.append([interior_polygon, res])

        # Record only those that were fully contained
        interior_regions = polygons_inside_boundary

# the following segment of code could be used to Test that all the
# interior polygons are inside the bounding_poly... however it might need
# to be change a bit
#
#count = 0
#for i in range(len(interior_regions)):
#    region = interior_regions[i]
#    interior_polygon = region[0]
#    if len(inside_polygon(interior_polygon, bounding_polygon,
#                   closed = True, verbose = False)) <> len(interior_polygon):
#        print 'WARNING: interior polygon %d is outside bounding polygon' %(i)
#        count += 1

#if count == 0:
#    print 'interior regions OK'
#else:
#    print 'check out your interior polygons'
#    print 'check %s in production directory' %figname
#    import sys; sys.exit()

    if interior_holes is not None:
        # Test that all the interior polygons are inside the bounding_poly
        for interior_polygon in interior_holes:

            # Test that we have a polygon
            if len(num.array(interior_polygon).flat) < 6:
                msg = 'Interior hole polygon %s has too few (<3) points.\n' \
                    %(str(interior_polygon))
                msg = msg + '(Insure that you have specified a LIST of interior hole polygons)'
                raise PolygonError(msg)

            indices = inside_polygon(interior_polygon,
                                     bounding_polygon,
                                     closed=True,
                                     verbose=False)

            if len(indices) <> len(interior_polygon):
                msg = 'Interior polygon %s is outside bounding polygon: %s'\
                      %(str(interior_polygon), str(bounding_polygon))
                raise PolygonError(msg)

    # Resolve geo referencing
    if mesh_geo_reference is None:
        xllcorner = min(bounding_polygon[:, 0])
        yllcorner = min(bounding_polygon[:, 1])
        #
        if poly_geo_reference is None:
            zone = DEFAULT_ZONE
        else:
            zone = poly_geo_reference.get_zone()
            [(xllcorner,yllcorner)] = poly_geo_reference.get_absolute( \
            [(xllcorner,yllcorner)])
        # create a geo_ref, based on the llc of the bounding_polygon
        mesh_geo_reference = Geo_reference(xllcorner=xllcorner,
                                           yllcorner=yllcorner,
                                           zone=zone)

    m = Mesh(geo_reference=mesh_geo_reference)

    # build a list of discrete segments from the breakline polygons
    if breaklines is not None:
        points, verts = polylist2points_verts(breaklines)
        m.add_points_and_segments(points, verts)

    # Do bounding polygon
    m.add_region_from_polygon(bounding_polygon,
                              segment_tags=boundary_tags,
                              geo_reference=poly_geo_reference)

    # Find one point inside region automatically
    if interior_regions is not None:
        excluded_polygons = []
        for polygon, res in interior_regions:
            excluded_polygons.append(polygon)
    else:
        excluded_polygons = None

    # Convert bounding poly to absolute values
    # this sort of thing can be fixed with the geo_points class
    if poly_geo_reference is not None:
        bounding_polygon_absolute = \
            poly_geo_reference.get_absolute(bounding_polygon)
    else:
        bounding_polygon_absolute = bounding_polygon

    inner_point = point_in_polygon(bounding_polygon_absolute)
    inner = m.add_region(inner_point[0], inner_point[1])
    inner.setMaxArea(maximum_triangle_area)

    # Do interior regions
    #    if interior_regions is not None:
    #        for polygon, res in interior_regions:
    #            m.add_region_from_polygon(polygon,
    #                                      geo_reference=poly_geo_reference)
    #            # convert bounding poly to absolute values
    #            if poly_geo_reference is not None:
    #                polygon_absolute = \
    #                    poly_geo_reference.get_absolute(polygon)
    #            else:
    #                polygon_absolute = polygon
    #            inner_point = point_in_polygon(polygon_absolute)
    #            region = m.add_region(inner_point[0], inner_point[1])
    #            region.setMaxArea(res)

    if interior_regions is not None:
        for polygon, res in interior_regions:
            m.add_region_from_polygon(polygon,
                                      max_triangle_area=res,
                                      geo_reference=poly_geo_reference)

    # Do interior holes
    if interior_holes is not None:
        for n, polygon in enumerate(interior_holes):
            try:
                tags = hole_tags[n]
            except:
                tags = {}
            m.add_hole_from_polygon(polygon,
                                    segment_tags=tags,
                                    geo_reference=poly_geo_reference)

    # 22/04/2014
    # Add user-specified point-based regions with max area
    if (regionPtArea is not None):
        for i in range(len(regionPtArea)):
            inner = m.add_region(regionPtArea[i][0], regionPtArea[i][1])
            inner.setMaxArea(regionPtArea[i][2])

    # NOTE (Ole): This was moved here as it is annoying if mesh is always
    # stored irrespective of whether the computation
    # was cached or not. This caused Domain to
    # recompute as it has meshfile as a dependency

    # Decide whether to store this mesh or return it

    if filename is None:
        return m
    else:
        if verbose: log.critical("Generating mesh to file '%s'" % filename)

        m.generate_mesh(minimum_triangle_angle=minimum_triangle_angle,
                        verbose=verbose)
        m.export_mesh_file(filename)

        return m
Beispiel #18
0
def get_maximum_inundation_data(filename,
                                polygon=None,
                                time_interval=None,
                                use_centroid_values=True,
                                return_time=False,
                                verbose=False):
    """Compute maximum run up height from sww file.

    filename             path to SWW file to read
    polygon              if specified resrict to points inside this polygon
                         assumed absolute coordinates and in same zone as
                         domain
    time_interval        if specified resrict to within the period specified
    use_centroid_values 
    verbose              True if this function is to be verbose

    Returns (maximal_runup, maximal_runup_location).

    Usage:
    runup, location = get_maximum_inundation_data(filename,
                                                  polygon=None,
                                                  time_interval=None,
                                                  verbose=False)

    Algorithm is as in get_maximum_inundation_elevation from
    shallow_water_domain except that this function works with the SWW file and
    computes the maximal runup height over multiple timesteps.

    If no inundation is found within polygon and time_interval the return value
    is None signifying "No Runup" or "Everything is dry".
    """

    # We are using nodal values here as that is what is stored in sww files.

    # Water depth below which it is considered to be 0 in the model
    # FIXME (Ole): Allow this to be specified as a keyword argument as well

    from anuga.geometry.polygon import inside_polygon
    from anuga.config import minimum_allowed_height
    from anuga.file.netcdf import NetCDFFile

    # Just find max inundation over one file
    dir, base = os.path.split(filename)
    #iterate_over = get_all_swwfiles(dir, base)
    iterate_over = [filename[:-4]]
    if verbose:
        print iterate_over

    # Read sww file
    if verbose: log.critical('Reading from %s' % filename)
    # FIXME: Use general swwstats (when done)

    maximal_runup = None
    maximal_runup_location = None
    maximal_time = None

    for _, swwfile in enumerate(iterate_over):
        # Read sww file
        filename = os.path.join(dir, swwfile + '.sww')

        if verbose: log.critical('Reading from %s' % filename)
        # FIXME: Use general swwstats (when done)

        fid = NetCDFFile(filename)

        # Get geo_reference
        # sww files don't have to have a geo_ref
        try:
            geo_reference = Geo_reference(NetCDFObject=fid)
        except AttributeError:
            geo_reference = Geo_reference()  # Default georef object

        xllcorner = geo_reference.get_xllcorner()
        yllcorner = geo_reference.get_yllcorner()

        # Get extent
        volumes = fid.variables['volumes'][:]
        x = fid.variables['x'][:] + xllcorner
        y = fid.variables['y'][:] + yllcorner

        # Get the relevant quantities (Convert from single precison)
        try:
            elevation = num.array(fid.variables['elevation_c'][:], num.float)
            stage = num.array(fid.variables['stage_c'][:], num.float)
            found_c_values = True
        except:
            elevation = num.array(fid.variables['elevation'][:], num.float)
            stage = num.array(fid.variables['stage'][:], num.float)
            found_c_values = False

        if verbose:
            print 'found c values ', found_c_values
            print 'stage.shape ', stage.shape
            print 'elevation.shape ', elevation.shape

        # Here's where one could convert nodal information to centroid
        # information but is probably something we need to write in C.
        # Here's a Python thought which is NOT finished!!!
        if use_centroid_values is True:
            vols0 = volumes[:, 0]
            vols1 = volumes[:, 1]
            vols2 = volumes[:, 2]
            # Then use these to compute centroid location
            x = (x[vols0] + x[vols1] + x[vols2]) / 3.0
            y = (y[vols0] + y[vols1] + y[vols2]) / 3.0

            if found_c_values:
                # don't have to do anything as found in sww file
                pass
            else:
                elevation = (elevation[vols0] + elevation[vols1] +
                             elevation[vols2]) / 3.0
                stage = (stage[:, vols0] + stage[:, vols1] +
                         stage[:, vols2]) / 3.0

        # Spatial restriction
        if polygon is not None:
            msg = 'polygon must be a sequence of points.'
            assert len(polygon[0]) == 2, msg
            # FIXME (Ole): Make a generic polygon input check in polygon.py
            # and call it here
            points = num.ascontiguousarray(
                num.concatenate((x[:, num.newaxis], y[:, num.newaxis]),
                                axis=1))
            point_indices = inside_polygon(points, polygon)

            # Restrict quantities to polygon
            elevation = num.take(elevation, point_indices, axis=0)
            stage = num.take(stage, point_indices, axis=1)

            # Get info for location of maximal runup
            points_in_polygon = num.take(points, point_indices, axis=0)
            x = points_in_polygon[:, 0]
            y = points_in_polygon[:, 1]
        else:
            # Take all points
            point_indices = num.arange(len(x))

        # Temporal restriction
        time = fid.variables['time'][:]
        if verbose:
            print time
        all_timeindices = num.arange(len(time))

        if time_interval is not None:
            msg = 'time_interval must be a sequence of length 2.'
            assert len(time_interval) == 2, msg
            msg = 'time_interval %s must not be decreasing.' % time_interval
            assert time_interval[1] >= time_interval[0], msg
            msg = 'Specified time interval [%.8f:%.8f] ' % tuple(time_interval)
            msg += 'must does not match model time interval: [%.8f, %.8f]\n' \
                   % (time[0], time[-1])
            if time_interval[1] < time[0]:
                fid.close()
                raise ValueError(msg)
            if time_interval[0] > time[-1]:
                fid.close()
                raise ValueError(msg)

            # Take time indices corresponding to interval (& is bitwise AND)
            timesteps = num.compress((time_interval[0] <= time) \
                                     & (time <= time_interval[1]),
                                     all_timeindices)

            msg = 'time_interval %s did not include any model timesteps.' \
                  % time_interval
            assert not num.alltrue(timesteps == 0), msg
        else:
            # Take them all
            timesteps = all_timeindices

        #print timesteps

        fid.close()

        # Compute maximal runup for each timestep
        #maximal_runup = None
        #maximal_runup_location = None
        #maximal_runups = [None]
        #maximal_runup_locations = [None]

        for i in timesteps:
            ## if use_centroid_values is True:
            ##     stage_i  = stage[i,:]
            ## else:
            ##     stage_i = stage[i,:]

            stage_i = stage[i, :]
            depth = stage_i - elevation

            if verbose:
                print '++++++++'
            # Get wet nodes i.e. nodes with depth>0 within given region
            # and timesteps
            wet_nodes = num.where(depth > 0.0)[0]

            if verbose:
                print stage_i.shape
                print num.max(stage_i)
                #print max(wet_elevation)

            if num.alltrue(wet_nodes == 0):
                runup = None
            else:
                # Find maximum elevation among wet nodes
                wet_elevation = num.take(elevation, wet_nodes, axis=0)

                if verbose:
                    pass
                    #print wet_elevation

                runup_index = num.argmax(wet_elevation)
                runup = max(wet_elevation)
                if verbose:
                    print 'max(wet_elevation) ', max(wet_elevation)
                assert wet_elevation[runup_index] == runup  # Must be True

            if runup > maximal_runup:
                maximal_runup = runup  # works even if maximal_runup is None
                maximal_time = time[i]

                # Record location
                wet_x = num.take(x, wet_nodes, axis=0)
                wet_y = num.take(y, wet_nodes, axis=0)
                maximal_runup_location =    [wet_x[runup_index], \
                                            wet_y[runup_index]]
            if verbose:
                print i, runup

    if return_time:
        return maximal_runup, maximal_runup_location, maximal_time
    else:
        return maximal_runup, maximal_runup_location
Beispiel #19
0
    def test_create_mesh_from_regions_with_caching(self):
        x = -500
        y = -1000
        mesh_geo = geo_reference = Geo_reference(56, x, y)

        # These are the absolute values
        polygon_absolute = [[0, 0], [100, 0], [100, 100], [0, 100]]

        x_p = -10
        y_p = -40
        geo_ref_poly = Geo_reference(56, x_p, y_p)
        polygon = geo_ref_poly.change_points_geo_ref(polygon_absolute)

        boundary_tags = {'walls': [0, 1], 'bom': [2, 3]}

        inner1_polygon_absolute = [[10, 10], [20, 10], [20, 20], [10, 20]]
        inner1_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner1_polygon_absolute)

        inner2_polygon_absolute = [[30, 30], [40, 30], [40, 40], [30, 40]]
        inner2_polygon = geo_ref_poly.\
                             change_points_geo_ref(inner2_polygon_absolute)

        interior_regions = [(inner1_polygon, 5), (inner2_polygon, 10)]

        interior_holes = None

        # Clear cache first
        from anuga.caching import cache

        cache(_create_mesh_from_regions, (polygon, boundary_tags), {
            'minimum_triangle_angle': 28.0,
            'maximum_triangle_area': 10000000,
            'interior_regions': interior_regions,
            'interior_holes': interior_holes,
            'poly_geo_reference': geo_ref_poly,
            'mesh_geo_reference': mesh_geo,
            'verbose': False
        },
              verbose=False,
              clear=1)

        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     maximum_triangle_area=10000000,
                                     interior_regions=interior_regions,
                                     poly_geo_reference=geo_ref_poly,
                                     mesh_geo_reference=mesh_geo,
                                     verbose=False,
                                     use_cache=True)

        # Test the mesh instance
        self.assertTrue(len(m.regions) == 3, 'FAILED!')
        segs = m.getUserSegments()
        self.assertTrue(len(segs) == 12, 'FAILED!')
        self.assertTrue(len(m.userVertices) == 12, 'FAILED!')
        self.assertTrue(segs[0].tag == 'walls', 'FAILED!')
        self.assertTrue(segs[1].tag == 'walls', 'FAILED!')
        self.assertTrue(segs[2].tag == 'bom', 'FAILED!')
        self.assertTrue(segs[3].tag == 'bom', 'FAILED!')

        # Assuming the order of the region points is known.
        # (This isn't true, if you consider create_mesh_from_regions
        # a black box)
        poly_point = m.getRegions()[0]

        # poly_point values are relative to the mesh geo-ref
        # make them absolute
        self.assertTrue(
            is_inside_polygon([poly_point.x + x, poly_point.y + y],
                              polygon_absolute,
                              closed=False), 'FAILED!')

        # Assuming the order of the region points is known.
        # (This isn't true, if you consider create_mesh_from_regions
        # a black box)
        poly_point = m.getRegions()[1]

        # poly_point values are relative to the mesh geo-ref
        # make them absolute
        self.assertTrue(
            is_inside_polygon([poly_point.x + x, poly_point.y + y],
                              inner1_polygon_absolute,
                              closed=False), 'FAILED!')

        # Assuming the order of the region points is known.
        # (This isn't true, if you consider create_mesh_from_regions
        # a black box)
        poly_point = m.getRegions()[2]

        # poly_point values are relative to the mesh geo-ref
        # make them absolute
        self.assertTrue(
            is_inside_polygon([poly_point.x + x, poly_point.y + y],
                              inner2_polygon_absolute,
                              closed=False), 'FAILED!')

        # Now create m using cached values
        m_cache = create_mesh_from_regions(polygon,
                                           boundary_tags,
                                           10000000,
                                           interior_regions=interior_regions,
                                           poly_geo_reference=geo_ref_poly,
                                           mesh_geo_reference=mesh_geo,
                                           verbose=False,
                                           use_cache=True)
Beispiel #20
0
def _read_msh_file(file_name):
    """ Read in an msh file."""

    #Check contents.  Get NetCDF
    fd = open(file_name, 'r')
    fd.close()

    # throws prints to screen if file not present
    fid = NetCDFFile(file_name, netcdf_mode_r)
    mesh = {}

    # Get the variables - the triangulation
    try:
        mesh['vertices'] = fid.variables['vertices'][:]
    except KeyError:
        mesh['vertices'] = num.array([], num.int)  #array default#

    try:
        mesh['vertex_attributes'] = fid.variables['vertex_attributes'][:]
    except KeyError:
        mesh['vertex_attributes'] = None

    mesh['vertex_attribute_titles'] = []
    try:
        titles = fid.variables['vertex_attribute_titles'][:]
        mesh['vertex_attribute_titles'] = [
            x.tostring().strip() for x in titles
        ]
    except KeyError:
        pass

    try:
        mesh['segments'] = fid.variables['segments'][:]
    except KeyError:
        mesh['segments'] = num.array([], num.int)  #array default#

    mesh['segment_tags'] = []
    try:
        tags = fid.variables['segment_tags'][:]
        mesh['segment_tags'] = [x.tostring().strip() for x in tags]
    except KeyError:
        for ob in mesh['segments']:
            mesh['segment_tags'].append('')

    try:
        mesh['triangles'] = fid.variables['triangles'][:]
        mesh['triangle_neighbors'] = fid.variables['triangle_neighbors'][:]
    except KeyError:
        mesh['triangles'] = num.array([], num.int)  #array default#
        mesh['triangle_neighbors'] = num.array([], num.int)  #array default#

    mesh['triangle_tags'] = []
    try:
        tags = fid.variables['triangle_tags'][:]
        mesh['triangle_tags'] = [x.tostring().strip() for x in tags]
    except KeyError:
        for ob in mesh['triangles']:
            mesh['triangle_tags'].append('')

    #the outline
    try:
        mesh['points'] = fid.variables['points'][:]
    except KeyError:
        mesh['points'] = []

    try:
        mesh['point_attributes'] = fid.variables['point_attributes'][:]
    except KeyError:
        mesh['point_attributes'] = []
        for point in mesh['points']:
            mesh['point_attributes'].append([])

    try:
        mesh['outline_segments'] = fid.variables['outline_segments'][:]
    except KeyError:
        mesh['outline_segments'] = num.array([], num.int)  #array default#

    mesh['outline_segment_tags'] = []
    try:
        tags = fid.variables['outline_segment_tags'][:]
        for i, tag in enumerate(tags):
            mesh['outline_segment_tags'].append(tags[i].tostring().strip())
    except KeyError:
        for ob in mesh['outline_segments']:
            mesh['outline_segment_tags'].append('')

    try:
        mesh['holes'] = fid.variables['holes'][:]
    except KeyError:
        mesh['holes'] = num.array([], num.int)  #array default#

    try:
        mesh['regions'] = fid.variables['regions'][:]
    except KeyError:
        mesh['regions'] = num.array([], num.int)  #array default#

    mesh['region_tags'] = []
    try:
        tags = fid.variables['region_tags'][:]
        for i, tag in enumerate(tags):
            mesh['region_tags'].append(tags[i].tostring().strip())
    except KeyError:
        for ob in mesh['regions']:
            mesh['region_tags'].append('')

    try:
        mesh['region_max_areas'] = fid.variables['region_max_areas'][:]
    except KeyError:
        mesh['region_max_areas'] = num.array([], num.int)  #array default#

    try:
        geo_reference = Geo_reference(NetCDFObject=fid)
        mesh['geo_reference'] = geo_reference
    except AttributeError, e:
        #geo_ref not compulsory
        mesh['geo_reference'] = None
Beispiel #21
0
    def test_get_flow_through_cross_section_with_geo(self):
        """test_get_flow_through_cross_section(self):

        Test that the total flow through a cross section can be
        correctly obtained at run-time from the ANUGA domain.

        This test creates a flat bed with a known flow through it and tests
        that the function correctly returns the expected flow.

        The specifics are
        e = -1 m
        u = 2 m/s
        h = 2 m
        w = 3 m (width of channel)

        q = u*h*w = 12 m^3/s

        This run tries it with georeferencing and with elevation = -1
        """

        # Create basic mesh (20m x 3m)
        width = 3
        length = 20
        t_end = 1
        points, vertices, boundary = rectangular(length, width, length, width)

        # Create shallow water domain
        domain = Domain(points,
                        vertices,
                        boundary,
                        geo_reference=Geo_reference(56, 308500, 6189000))

        domain.default_order = 2
        domain.set_quantities_to_be_stored(None)

        e = -1.0
        w = 1.0
        h = w - e
        u = 2.0
        uh = u * h

        Br = Reflective_boundary(domain)  # Side walls
        Bd = Dirichlet_boundary([w, uh, 0])  # 2 m/s across the 3 m inlet:

        # Initial conditions
        domain.set_quantity('elevation', e)
        domain.set_quantity('stage', w)
        domain.set_quantity('xmomentum', uh)
        domain.set_boundary({'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})

        # Interpolation points down the middle
        I = [[0, width / 2.], [length / 2., width / 2.], [length, width / 2.]]
        interpolation_points = domain.geo_reference.get_absolute(I)

        for t in domain.evolve(yieldstep=0.1, finaltime=0.5):
            # Shortcuts to quantites
            stage = domain.get_quantity('stage')
            xmomentum = domain.get_quantity('xmomentum')
            ymomentum = domain.get_quantity('ymomentum')

            # Check that quantities are they should be in the interior
            w_t = stage.get_values(interpolation_points)
            uh_t = xmomentum.get_values(interpolation_points)
            vh_t = ymomentum.get_values(interpolation_points)

            assert num.allclose(w_t, w)
            assert num.allclose(uh_t, uh)
            assert num.allclose(vh_t, 0.0, atol=1.0e-6)

            # Check flows through the middle
            for i in range(5):
                x = length / 2. + i * 0.23674563  # Arbitrary
                cross_section = [[x, 0], [x, width]]

                cross_section = domain.geo_reference.get_absolute(
                    cross_section)
                Q = domain.get_flow_through_cross_section(cross_section,
                                                          verbose=False)

                assert num.allclose(Q, uh * width)

        import cPickle
        cPickle.dump(domain, open('domain_pickle.pickle', 'w'))
        domain_restored = cPickle.load(open('domain_pickle.pickle'))

        for t in domain_restored.evolve(yieldstep=0.1, finaltime=1.0):
            # Shortcuts to quantites
            stage = domain_restored.get_quantity('stage')
            xmomentum = domain_restored.get_quantity('xmomentum')
            ymomentum = domain_restored.get_quantity('ymomentum')

            # Check that quantities are they should be in the interior
            w_t = stage.get_values(interpolation_points)
            uh_t = xmomentum.get_values(interpolation_points)
            vh_t = ymomentum.get_values(interpolation_points)

            assert num.allclose(w_t, w)
            assert num.allclose(uh_t, uh)
            assert num.allclose(vh_t, 0.0, atol=1.0e-6)

            # Check flows through the middle
            for i in range(5):
                x = length / 2. + i * 0.23674563  # Arbitrary
                cross_section = [[x, 0], [x, width]]

                cross_section = domain_restored.geo_reference.get_absolute(
                    cross_section)
                Q = domain_restored.get_flow_through_cross_section(
                    cross_section, verbose=False)

                assert num.allclose(Q, uh * width)
Beispiel #22
0
    line = fd.readline()
    for index in range(int(numOfRegions)):  # Read in the Max area info
        line = fd.readline()
        fragments = line.split()
        # The try is here for format compatibility
        try:
            fragments.pop(0)  # pop off the index
            if len(fragments) == 0:  # no max area
                regionmaxareas.append(None)
            else:
                regionmaxareas.append(float(fragments[0]))
        except (ValueError, IndexError), e:
            regionmaxareas.append(None)

    try:
        geo_reference = Geo_reference(ASCIIFile=fd)
    except:
        #geo_ref not compulsory
        geo_reference = None

    meshDict = {}
    meshDict['points'] = points
    meshDict['point_attributes'] = pointattributes
    meshDict['outline_segments'] = segments
    meshDict['outline_segment_tags'] = segmenttags
    meshDict['holes'] = holes
    meshDict['regions'] = regions
    meshDict['region_tags'] = regionattributes
    meshDict['region_max_areas'] = regionmaxareas
    meshDict['geo_reference'] = geo_reference
Beispiel #23
0
    def test_get_energy_through_cross_section(self):
        """test_get_energy_through_cross_section(self):

        Test that the specific and total energy through a cross section can be
        correctly obtained from an sww file.
        
        This test creates a flat bed with a known flow through it and tests
        that the function correctly returns the expected energies.

        The specifics are
        u = 2 m/s
        h = 1 m
        w = 3 m (width of channel)

        q = u*h*w = 6 m^3/s
        Es = h + 0.5*v*v/g  # Specific energy head [m]
        Et = w + 0.5*v*v/g  # Total energy head [m]        


        This test uses georeferencing
        
        """

        import time, os
        from anuga.file.netcdf import NetCDFFile

        # Setup
        #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular

        # Create basic mesh (20m x 3m)
        width = 3
        length = 20
        t_end = 1
        points, vertices, boundary = rectangular(length, width, length, width)

        # Create shallow water domain
        domain = Domain(points,
                        vertices,
                        boundary,
                        geo_reference=Geo_reference(56, 308500, 6189000))

        domain.default_order = 2
        domain.set_minimum_storable_height(0.01)

        domain.set_name('flowtest')
        swwfile = domain.get_name() + '.sww'

        domain.set_datadir('.')
        domain.format = 'sww'
        domain.smooth = True

        e = -1.0
        w = 1.0
        h = w - e
        u = 2.0
        uh = u * h

        Br = Reflective_boundary(domain)  # Side walls
        Bd = Dirichlet_boundary([w, uh, 0])  # 2 m/s across the 3 m inlet:

        domain.set_quantity('elevation', e)
        domain.set_quantity('stage', w)
        domain.set_quantity('xmomentum', uh)
        domain.set_boundary({'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})

        for t in domain.evolve(yieldstep=1, finaltime=t_end):
            pass

        # Check that momentum is as it should be in the interior

        I = [[0, width / 2.], [length / 2., width / 2.], [length, width / 2.]]

        I = domain.geo_reference.get_absolute(I)
        f = file_function(swwfile,
                          quantities=['stage', 'xmomentum', 'ymomentum'],
                          interpolation_points=I,
                          verbose=False)

        for t in range(t_end + 1):
            for i in range(3):
                #print i, t, f(t, i)
                assert num.allclose(f(t, i), [w, uh, 0], atol=1.0e-6)

        # Check energies through the middle
        for i in range(5):
            x = length / 2. + i * 0.23674563  # Arbitrary
            cross_section = [[x, 0], [x, width]]

            cross_section = domain.geo_reference.get_absolute(cross_section)

            time, Es = get_energy_through_cross_section(swwfile,
                                                        cross_section,
                                                        kind='specific',
                                                        verbose=False)
            assert num.allclose(Es, h + 0.5 * u * u / g)

            time, Et = get_energy_through_cross_section(swwfile,
                                                        cross_section,
                                                        kind='total',
                                                        verbose=False)
            assert num.allclose(Et, w + 0.5 * u * u / g)
Beispiel #24
0
def sww2dem(
        name_in,
        name_out,
        quantity=None,  # defaults to elevation
        reduction=None,
        cellsize=10,
        number_of_decimal_places=None,
        NODATA_value=-9999.0,
        easting_min=None,
        easting_max=None,
        northing_min=None,
        northing_max=None,
        verbose=False,
        origin=None,
        datum='WGS84',
        block_size=None):
    """Read SWW file and convert to Digitial Elevation model format
    (.asc or .ers)

    Example (ASC):
    ncols         3121
    nrows         1800
    xllcorner     722000
    yllcorner     5893000
    cellsize      25
    NODATA_value  -9999
    138.3698 137.4194 136.5062 135.5558 ..........

    The number of decimal places can be specified by the user to save
    on disk space requirements by specifying in the call to sww2dem.

    Also write accompanying file with same basename_in but extension .prj
    used to fix the UTM zone, datum, false northings and eastings.

    The prj format is assumed to be as

    Projection    UTM
    Zone          56
    Datum         WGS84
    Zunits        NO
    Units         METERS
    Spheroid      WGS84
    Xshift        0.0000000000
    Yshift        10000000.0000000000
    Parameters

    The parameter quantity must be the name of an existing quantity or
    an expression involving existing quantities. The default is
    'elevation'. Quantity is not a list of quantities.

    If reduction is given and it's an index, sww2dem will output the quantity at that time-step. 
    If reduction is given and it's a built in function (eg max, min, mean), then that 
    function is used to reduce the quantity over all time-steps. If reduction is not given, 
    reduction is set to "max" by default.

    datum

    format can be either 'asc' or 'ers'
    block_size - sets the number of slices along the non-time axis to
                 process in one block.
    """

    import sys
    import types

    from anuga.geometry.polygon import inside_polygon, outside_polygon
    from anuga.abstract_2d_finite_volumes.util import \
         apply_expression_to_dictionary

    basename_in, in_ext = os.path.splitext(name_in)
    basename_out, out_ext = os.path.splitext(name_out)
    out_ext = out_ext.lower()

    if in_ext != '.sww':
        raise IOError('Input format for %s must be .sww' % name_in)

    if out_ext not in ['.asc', '.ers']:
        raise IOError('Format for %s must be either asc or ers.' % name_out)

    false_easting = 500000
    false_northing = 10000000

    if quantity is None:
        quantity = 'elevation'

    if reduction is None:
        reduction = max

    if quantity_formula.has_key(quantity):
        quantity = quantity_formula[quantity]

    if number_of_decimal_places is None:
        number_of_decimal_places = 3

    if block_size is None:
        block_size = DEFAULT_BLOCK_SIZE

    assert (isinstance(block_size, (int, long, float)))

    # Read sww file
    if verbose:
        log.critical('Reading from %s' % name_in)
        log.critical('Output directory is %s' % name_out)

    from anuga.file.netcdf import NetCDFFile
    fid = NetCDFFile(name_in)

    #Get extent and reference
    x = num.array(fid.variables['x'][:], num.float)
    y = num.array(fid.variables['y'][:], num.float)
    volumes = num.array(fid.variables['volumes'][:], num.int)
    if type(reduction) is not types.BuiltinFunctionType:
        times = fid.variables['time'][reduction]
    else:
        times = fid.variables['time'][:]

    try:  # works with netcdf4
        number_of_timesteps = len(fid.dimensions['number_of_timesteps'])
        number_of_points = len(fid.dimensions['number_of_points'])
    except:  #works with scientific.io.netcdf
        number_of_timesteps = fid.dimensions['number_of_timesteps']
        number_of_points = fid.dimensions['number_of_points']

    if origin is None:
        # Get geo_reference
        # sww files don't have to have a geo_ref
        try:
            geo_reference = Geo_reference(NetCDFObject=fid)
        except AttributeError, e:
            geo_reference = Geo_reference()  # Default georef object

        xllcorner = geo_reference.get_xllcorner()
        yllcorner = geo_reference.get_yllcorner()
        zone = geo_reference.get_zone()
Beispiel #25
0
    def test_create_mesh_from_regions(self):
        x = -500
        y = -1000
        mesh_geo = geo_reference = Geo_reference(56, x, y)

        # These are the absolute values
        polygon_absolute = [[0, 0], [100, 0], [100, 100], [0, 100]]

        x_p = -10
        y_p = -40
        geo_ref_poly = Geo_reference(56, x_p, y_p)
        polygon = geo_ref_poly.change_points_geo_ref(polygon_absolute)

        boundary_tags = {'walls': [0, 1], 'bom': [2, 3]}

        inner1_polygon_absolute = [[10, 10], [20, 10], [20, 20], [10, 20]]
        inner1_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner1_polygon_absolute)

        inner2_polygon_absolute = [[30, 30], [40, 30], [40, 40], [30, 40]]
        inner2_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner2_polygon_absolute)

        interior_regions = [(inner1_polygon, 5), (inner2_polygon, 10)]

        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     10000000,
                                     interior_regions=interior_regions,
                                     poly_geo_reference=geo_ref_poly,
                                     mesh_geo_reference=mesh_geo)

        # Test the mesh instance
        self.assertTrue(len(m.regions) == 3, 'FAILED!')
        segs = m.getUserSegments()
        self.assertTrue(len(segs) == 12, 'FAILED!')
        self.assertTrue(len(m.userVertices) == 12, 'FAILED!')
        self.assertTrue(segs[0].tag == 'walls', 'FAILED!')
        self.assertTrue(segs[1].tag == 'walls', 'FAILED!')
        self.assertTrue(segs[2].tag == 'bom', 'FAILED!')
        self.assertTrue(segs[3].tag == 'bom', 'FAILED!')

        # Assuming the order of the region points is known.
        # (This isn't true, if you consider create_mesh_from_regions
        # a black box)
        poly_point = m.getRegions()[0]

        # poly_point values are relative to the mesh geo-ref
        # make them absolute
        msg = ('Expected point (%s,%s) to be inside polygon %s' %
               (str(poly_point.x + x), str(poly_point.y + y),
                str(polygon_absolute)))
        self.assertTrue(
            is_inside_polygon([poly_point.x + x, poly_point.y + y],
                              polygon_absolute,
                              closed=False), msg)

        # Assuming the order of the region points is known.
        # (This isn't true, if you consider create_mesh_from_regions
        # a black box)
        poly_point = m.getRegions()[1]

        # poly_point values are relative to the mesh geo-ref
        # make them absolute
        self.assertTrue(
            is_inside_polygon([poly_point.x + x, poly_point.y + y],
                              inner1_polygon_absolute,
                              closed=False), 'FAILED!')

        # Assuming the order of the region points is known.
        # (This isn't true, if you consider create_mesh_from_regions
        # a black box)
        poly_point = m.getRegions()[2]

        # poly_point values are relative to the mesh geo-ref
        # make them absolute
        self.assertTrue(
            is_inside_polygon([poly_point.x + x, poly_point.y + y],
                              inner2_polygon_absolute,
                              closed=False), 'FAILED!')
Beispiel #26
0
def sww2array(
        name_in,
        quantity=None,  # defaults to elevation
        reduction=None,
        cellsize=10,
        number_of_decimal_places=None,
        NODATA_value=-9999.0,
        easting_min=None,
        easting_max=None,
        northing_min=None,
        northing_max=None,
        verbose=False,
        origin=None,
        datum='WGS84',
        block_size=None):
    """Read SWW file and convert to a numpy array (can be stored to a png file later)


    The parameter quantity must be the name of an existing quantity or
    an expression involving existing quantities. The default is
    'elevation'. Quantity is not a list of quantities.

    If reduction is given and it's an index, sww2array will output the quantity at that time-step.
    If reduction is given and it's a built in function (eg max, min, mean), then that 
    function is used to reduce the quantity over all time-steps. If reduction is not given, 
    reduction is set to "max" by default.

    datum


    block_size - sets the number of slices along the non-time axis to
                 process in one block.
    """

    import sys
    import types

    from anuga.geometry.polygon import inside_polygon, outside_polygon
    from anuga.abstract_2d_finite_volumes.util import \
         apply_expression_to_dictionary

    basename_in, in_ext = os.path.splitext(name_in)

    if in_ext != '.sww':
        raise IOError('Input format for %s must be .sww' % name_in)

    false_easting = 500000
    false_northing = 10000000

    if quantity is None:
        quantity = 'elevation'

    if reduction is None:
        reduction = max

    if quantity_formula.has_key(quantity):
        quantity = quantity_formula[quantity]

    if number_of_decimal_places is None:
        number_of_decimal_places = 3

    if block_size is None:
        block_size = DEFAULT_BLOCK_SIZE

    assert (isinstance(block_size, (int, long, float)))

    # Read sww file
    if verbose:
        log.critical('Reading from %s' % name_in)

    from anuga.file.netcdf import NetCDFFile
    fid = NetCDFFile(name_in)

    #Get extent and reference
    x = num.array(fid.variables['x'], num.float)
    y = num.array(fid.variables['y'], num.float)
    volumes = num.array(fid.variables['volumes'], num.int)
    if type(reduction) is not types.BuiltinFunctionType:
        times = fid.variables['time'][reduction]
    else:
        times = fid.variables['time'][:]

    number_of_timesteps = fid.dimensions['number_of_timesteps']
    number_of_points = fid.dimensions['number_of_points']

    if origin is None:
        # Get geo_reference
        # sww files don't have to have a geo_ref
        try:
            geo_reference = Geo_reference(NetCDFObject=fid)
        except AttributeError, e:
            geo_reference = Geo_reference()  # Default georef object

        xllcorner = geo_reference.get_xllcorner()
        yllcorner = geo_reference.get_yllcorner()
        zone = geo_reference.get_zone()
Beispiel #27
0
    def test_sww2pts_centroids_de0(self):
        """Test that sww information can be converted correctly to pts data at specified coordinates
        - in this case, the centroids.
        """

        import time, os
        from anuga.file.netcdf import NetCDFFile
        # Used for points that lie outside mesh
        NODATA_value = 1758323

        # Setup
        from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular

        # Create shallow water domain
        domain = Domain(*rectangular(2, 2))

        B = Transmissive_boundary(domain)
        domain.set_boundary({'left': B, 'right': B, 'top': B, 'bottom': B})

        domain.set_name('datatest_de0')

        ptsfile = domain.get_name() + '_elevation.pts'
        swwfile = domain.get_name() + '.sww'

        domain.set_datadir('.')
        domain.format = 'sww'
        domain.set_quantity('elevation', lambda x, y: -x - y)

        domain.geo_reference = Geo_reference(56, 308500, 6189000)

        sww = SWW_file(domain)
        sww.store_connectivity()
        sww.store_timestep()

        #self.domain.tight_slope_limiters = 1
        domain.evolve_to_end(finaltime=0.01)
        sww.store_timestep()

        # Check contents in NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r)

        # Get the variables
        x = fid.variables['x'][:]
        y = fid.variables['y'][:]
        elevation = fid.variables['elevation'][:]
        time = fid.variables['time'][:]
        stage = fid.variables['stage'][:]

        volumes = fid.variables['volumes'][:]

        # Invoke interpolation for vertex points
        points = num.concatenate((x[:, num.newaxis], y[:, num.newaxis]),
                                 axis=1)
        points = num.ascontiguousarray(points)
        sww2pts(domain.get_name() + '.sww',
                quantity='elevation',
                data_points=points,
                NODATA_value=NODATA_value)
        ref_point_values = elevation
        point_values = Geospatial_data(ptsfile).get_attributes()
        #print 'P', point_values
        #print 'Ref', ref_point_values
        assert num.allclose(point_values, ref_point_values)

        # Invoke interpolation for centroids
        points = domain.get_centroid_coordinates()
        #print points
        sww2pts(domain.get_name() + '.sww',
                quantity='elevation',
                data_points=points,
                NODATA_value=NODATA_value)
        #ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5]   #At centroids

        ref_point_values = [
            -0.77777777, -0.77777777, -0.99999998, -0.99999998, -0.99999998,
            -0.99999998, -1.22222221, -1.22222221
        ]
        point_values = Geospatial_data(ptsfile).get_attributes()
        #print 'P', point_values
        #print 'Ref', ref_point_values
        assert num.allclose(point_values, ref_point_values)

        fid.close()

        #Cleanup
        os.remove(sww.filename)
        os.remove(ptsfile)
Beispiel #28
0
    def setUp(self):
        self.dict = {}
        self.dict['outline_segments'] = [(0, 1), (1, 2), (0, 2), (0, 3)]
        self.dict['outline_segment_tags'] = ['50', '40', '30', '20']
        self.dict['holes'] = [(0.2, 0.6)]
        self.dict['point_attributes'] = [[5, 2], [4, 2], [3, 2], [2, 2]]
        self.dict['regions'] = [(0.3, 0.3), (0.3, 0.4)]
        self.dict['region_tags'] = ['1.3', 'yeah']
        self.dict['region_max_areas'] = [36.0, -7.1]
        self.dict['points'] = [(0.0, 0.0), (0.0, 4.0), (4.0, 0.0), (1.0, 1.0)]
        self.dict['vertices'] = [(0.0, 0.0), (0.0, 4.0), (4.0, 0.0),
                                 (1.0, 1.0), (2.0, 2.0)]
        self.dict['triangles'] = [(3, 2, 4), (1, 0, 3), (3, 4,1), (2, 3, 0)]
        self.dict['segments'] = [(0, 1), (1, 4), (2, 0), (0, 3), (4, 2)]
        self.dict['triangle_tags'] = ['1.3', '1.3', '1.3', '1.3']
        self.dict['vertex_attributes'] = [[1.2, 2.], [1.2, 2.], [1.2, 2.],
                                          [1.2, 2.], [1.2, 3.]]
        self.dict['triangle_neighbors'] = [[-1, 2, 3], [3, 2, -1],
                                           [-1, 1, 0], [1, -1, 0]]
        self.dict['segment_tags'] = ['50', '40', '30', '20', '40']
        self.dict['vertex_attribute_titles'] = ['bed elevation', 'height']
        self.dict['geo_reference'] = Geo_reference(56, 1.9, 1.9)
        
        
        self.dict_1 = {}
        self.dict_1['outline_segments'] = [(0, 1), (1, 2), (0, 2), (0, 3)]
        self.dict_1['outline_segment_tags'] = ['50', '40', '30', '20']
        self.dict_1['holes'] = [(0.2, 0.6)]
        self.dict_1['point_attributes'] = [[5], [4], [3], [2]]
        self.dict_1['regions'] = [(0.3, 0.3), (0.3, 0.4)]
        self.dict_1['region_tags'] = ['1.3', 'yeah']
        self.dict_1['region_max_areas'] = [36.0, -7.1]
        self.dict_1['points'] = [(0.0, 0.0), (0.0, 4.0), (4.0, 0.0), (1.0, 1.0)]
        self.dict_1['vertices'] = [(0.0, 0.0), (0.0, 4.0), (4.0, 0.0),
                                 (1.0, 1.0), (2.0, 2.0)]
        self.dict_1['triangles'] = [(3, 2, 4), (1, 0, 3), (3, 4,1), (2, 3, 0)]
        self.dict_1['segments'] = [(0, 1), (1, 4), (2, 0), (0, 3), (4, 2)]
        self.dict_1['triangle_tags'] = ['1.3', '1.3', '1.3', '1.3']
        self.dict_1['vertex_attributes'] = [[1.2], [1.2], [1.2],
                                         [1.2], [1.2]]
        self.dict_1['triangle_neighbors'] = [[-1, 2, 3], [3, 2, -1],
                                           [-1, 1, 0], [1, -1, 0]]
        self.dict_1['segment_tags'] = ['50', '40', '30', '20', '40']
        self.dict_1['vertex_attribute_titles'] = ['height']
        self.dict_1['geo_reference'] = Geo_reference(56, 1.9, 1.9)        

        self.sparse_dict = {}
        self.sparse_dict['outline_segments'] = []
        self.sparse_dict['outline_segment_tags'] = []
        self.sparse_dict['holes'] = []
        self.sparse_dict['points'] = [(0.0, 0.0), (9, 8)]
        self.sparse_dict['point_attributes'] = [[], []] # points don't have to
                                                        # have attributes
        self.sparse_dict['regions'] = []
        self.sparse_dict['region_tags'] = []
        self.sparse_dict['region_max_areas'] = []

        self.sparse_dict['vertices'] = []
        self.sparse_dict['triangles'] = []
        self.sparse_dict['segments'] = []
        self.sparse_dict['triangle_tags'] = []
        self.sparse_dict['vertex_attributes'] = []
        self.sparse_dict['triangle_neighbors'] = []
        self.sparse_dict['segment_tags'] = []
        self.sparse_dict['vertex_attribute_titles'] = []

        self.blank_dict = {}
        self.blank_dict['outline_segments'] = []
        self.blank_dict['outline_segment_tags'] = []
        self.blank_dict['holes'] = []
        self.blank_dict['points'] = []
        self.blank_dict['point_attributes'] = []
        self.blank_dict['regions'] = []
        self.blank_dict['region_tags'] = []
        self.blank_dict['region_max_areas'] = []
        self.blank_dict['vertices'] = []
        self.blank_dict['triangles'] = []
        self.blank_dict['segments'] = []
        self.blank_dict['triangle_tags'] = []
        self.blank_dict['vertex_attributes'] = []
        self.blank_dict['triangle_neighbors'] = []
        self.blank_dict['segment_tags'] = []
        self.blank_dict['vertex_attribute_titles'] = []

        self.tri_dict = {}
        self.tri_dict['outline_segments'] = [[0, 1]]
        self.tri_dict['outline_segment_tags'] = ['']
        self.tri_dict['holes'] = []
        self.tri_dict['points'] = [(9, 8), (7, 8)]
        self.tri_dict['point_attributes'] = [[], []]
        self.tri_dict['regions'] = []
        self.tri_dict['region_tags'] = []
        self.tri_dict['region_max_areas'] = []
        self.tri_dict['vertices'] = [[9, 8], [7, 8], [4, 5]]
        self.tri_dict['triangles'] = [[0, 1, 2]]
        self.tri_dict['segments'] = [[0, 1]]
        self.tri_dict['triangle_tags'] = ['']
        self.tri_dict['vertex_attributes'] = None
        self.tri_dict['triangle_neighbors'] = [[0, 0, 0]]
        self.tri_dict['segment_tags'] = ['']
        self.tri_dict['vertex_attribute_titles'] = []

        self.seg_dict = {}
        self.seg_dict['outline_segments'] = [[0, 1]]
        self.seg_dict['outline_segment_tags'] = ['']
        self.seg_dict['holes'] = []
        self.seg_dict['points'] = [(9, 8), (7, 8)]
        self.seg_dict['point_attributes'] = [[], []]
        self.seg_dict['regions'] = [(5, 4)]
        self.seg_dict['region_tags'] = ['']
        self.seg_dict['region_max_areas'] = [-999]
        self.seg_dict['vertices'] = [(9, 8), (7, 8)]
        self.seg_dict['triangles'] = []
        self.seg_dict['segments'] = [[0, 1]]
        self.seg_dict['triangle_tags'] = []
        self.seg_dict['vertex_attributes'] = None
        self.seg_dict['triangle_neighbors'] = []
        self.seg_dict['segment_tags'] = ['']
        self.seg_dict['vertex_attribute_titles'] = []

        self.reg_dict = {}
        self.reg_dict['outline_segments'] = [[0, 1]]
        self.reg_dict['outline_segment_tags'] = ['']
        self.reg_dict['holes'] = []
        self.reg_dict['points'] = [(9, 8), (7, 8)]
        self.reg_dict['point_attributes'] = [[], []]
        self.reg_dict['regions'] = [(5, 4)]
        self.reg_dict['region_tags'] = ['']
        self.reg_dict['region_max_areas'] = []
        self.reg_dict['vertices'] = [(9, 8), (7, 8)]
        self.reg_dict['triangles'] = []
        self.reg_dict['segments'] = [[0, 1]]
        self.reg_dict['triangle_tags'] = []
        self.reg_dict['vertex_attributes'] = [[], []]
        self.reg_dict['triangle_neighbors'] = []
        self.reg_dict['segment_tags'] = ['']
        self.reg_dict['vertex_attribute_titles'] = []

        self.triangle_tags_dict = {}
        self.triangle_tags_dict['outline_segments'] = [(0, 1), (1, 2),
                                                       (0, 2), (0, 3)]
        self.triangle_tags_dict['outline_segment_tags'] = ['50', '40',
                                                           '30', '20']
        self.triangle_tags_dict['holes'] = [(0.2, 0.6)]
        self.triangle_tags_dict['point_attributes'] = [[5, 2], [4, 2],
                                                       [3, 2], [2,2]]
        self.triangle_tags_dict['regions'] = [(0.3, 0.3), (0.3, 0.4)]
        self.triangle_tags_dict['region_tags'] = ['1.3', 'yeah']
        self.triangle_tags_dict['region_max_areas'] = [36.0, -7.1]
        self.triangle_tags_dict['points'] = [(0.0, 0.0), (0.0, 4.0),
                                             (4.0, 0.0), (1.0, 1.0)]
        self.triangle_tags_dict['vertices'] = [(0.0, 0.0), (0.0, 4.0),
                                               (4.0, 0.0), (1.0, 1.0),
                                               (2.0, 2.0)]
        self.triangle_tags_dict['triangles'] = [(3, 2, 4), (1, 0, 3),
                                                (3, 4, 1), (2, 3, 0)]
        self.triangle_tags_dict['segments'] = [(0, 1), (1, 4), (2, 0),
                                               (0, 3), (4, 2)]
        self.triangle_tags_dict['triangle_tags'] = ['yeah', '1.3', '1.3', '']
        self.triangle_tags_dict['vertex_attributes'] = [[1.2,2.], [1.2,2.],
                                                        [1.2,2.], [1.2,2.],
                                                        [1.2,3.]]
        self.triangle_tags_dict['triangle_neighbors'] = [[-1, 2, 3], [3, 2, -1],
                                                         [-1, 1, 0], [1, -1, 0]]
        self.triangle_tags_dict['segment_tags'] = ['50', '40', '30', '20', '40']
        self.triangle_tags_dict['vertex_attribute_titles'] = ['bed elevation',
                                                              'height']
        self.triangle_tags_dict['geo_reference'] = Geo_reference(56, 1.9, 1.9)
Beispiel #29
0
    def concept_ungenerateII(self):
        from anuga import Domain, Reflective_boundary, Dirichlet_boundary

        x = 0
        y = 0
        mesh_geo = geo_reference = Geo_reference(56, x, y)

        # These are the absolute values
        polygon_absolute = [[0, 0], [100, 0], [100, 100], [0, 100]]
        x_p = -10
        y_p = -40
        geo_ref_poly = Geo_reference(56, x_p, y_p)
        polygon = geo_ref_poly.change_points_geo_ref(polygon_absolute)

        boundary_tags = {'wall': [0, 1, 3], 'wave': [2]}

        inner1_polygon_absolute = [[10, 10], [20, 10], [20, 20], [10, 20]]
        inner1_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner1_polygon_absolute)

        inner2_polygon_absolute = [[30, 30], [40, 30], [40, 40], [30, 40]]
        inner2_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner2_polygon_absolute)

        max_area = 1
        interior_regions = [(inner1_polygon, 5), (inner2_polygon, 10)]
        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     max_area,
                                     interior_regions=interior_regions,
                                     poly_geo_reference=geo_ref_poly,
                                     mesh_geo_reference=mesh_geo)

        m.export_mesh_file('a_test_mesh_iknterface.tsh')

        fileName = tempfile.mktemp('.txt')
        file = open(fileName, 'w')
        file.write('         1       ??      ??\n\
       90.0       90.0\n\
       81.0       90.0\n\
       81.0       81.0\n\
       90.0       81.0\n\
       90.0       90.0\n\
END\n\
         2      ?? ??\n\
       10.0       80.0\n\
       10.0       90.0\n\
       20.0       90.0\n\
       10.0       80.0\n\
END\n\
END\n')
        file.close()

        m.import_ungenerate_file(fileName)  #, tag='wall')
        os.remove(fileName)
        m.generate_mesh(maximum_triangle_area=max_area, verbose=False)
        mesh_filename = 'bento_b.tsh'
        m.export_mesh_file(mesh_filename)

        domain = Domain(mesh_filename, use_cache=False)

        Br = Reflective_boundary(domain)
        Bd = Dirichlet_boundary([3, 0, 0])
        domain.set_boundary({'wall': Br, 'wave': Bd})
        yieldstep = 0.1
        finaltime = 10
        for t in domain.evolve(yieldstep, finaltime):
            domain.write_time()
Beispiel #30
0
    def test_get_maximum_inundation_de0(self):
        """Test that sww information can be converted correctly to maximum
        runup elevation and location (without and with georeferencing)

        This test creates a slope and a runup which is maximal (~11m) at around 10s
        and levels out to the boundary condition (1m) at about 30s.
        """

        import time, os
        from anuga.file.netcdf import NetCDFFile

        verbose = False
        #Setup

        #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular

        # Create basic mesh (100m x 100m)
        points, vertices, boundary = rectangular(20, 5, 100, 50)

        # Create shallow water domain
        domain = Domain(points, vertices, boundary)

        domain.set_flow_algorithm('DE0')
        domain.set_low_froude(0)
        domain.set_minimum_storable_height(0.01)

        filename = 'runup_test_3'
        domain.set_name(filename)
        swwfile = domain.get_name() + '.sww'

        domain.set_datadir('.')
        domain.format = 'sww'
        domain.smooth = True

        # FIXME (Ole): Backwards compatibility
        # Look at sww file and see what happens when
        # domain.tight_slope_limiters = 1
        domain.tight_slope_limiters = 0
        domain.use_centroid_velocities = 0  # Backwards compatibility (7/5/8)

        Br = Reflective_boundary(domain)
        Bd = Dirichlet_boundary([1.0, 0, 0])

        #---------- First run without geo referencing

        domain.set_quantity('elevation', lambda x, y: -0.2 * x + 14)  # Slope
        domain.set_quantity('stage', -6)
        domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})

        for t in domain.evolve(yieldstep=1, finaltime=50):
            pass

        # Check maximal runup
        runup, location, max_time = get_maximum_inundation_data(
            swwfile, return_time=True)
        if verbose:
            print('Runup, location', runup, location, max_time)

        assert num.allclose(runup, 3.33333325386)
        assert num.allclose(location, [53.333332, 43.333332])
        assert num.allclose(max_time, 10.0)

        # Check runup in restricted time interval
        runup, location, max_time = get_maximum_inundation_data(
            swwfile, time_interval=[0, 9], return_time=True)
        if verbose:
            print('Runup, location:', runup, location, max_time)

        assert num.allclose(runup, 2.66666674614)
        assert num.allclose(location, [56.666668, 16.666666])
        assert num.allclose(max_time, 9.0)

        # Check final runup
        runup, location = get_maximum_inundation_data(swwfile,
                                                      time_interval=[45, 50])
        if verbose:
            print('Runup, location:', runup, location, max_time)

        assert num.allclose(runup, 3.33333325386)
        assert num.allclose(location, [53.333332, 33.333332])
        #assert num.allclose(max_time, 45.0)

        # Check runup restricted to a polygon
        p = [[50, 1], [99, 1], [99, 40], [50, 40]]
        runup, location = get_maximum_inundation_data(swwfile, polygon=p)
        #runup = get_maximum_inundation_elevation(swwfile, polygon=p)
        #location = get_maximum_inundation_location(swwfile, polygon=p)
        #print runup, location, max_time

        assert num.allclose(runup, 3.33333325386)
        assert num.allclose(location, [53.333332, 33.333332])
        #assert num.allclose(max_time, 11.0)

        # Check that mimimum_storable_height works
        fid = NetCDFFile(swwfile, netcdf_mode_r)  # Open existing file

        stage = fid.variables['stage_c'][:]
        z = fid.variables['elevation_c'][:]
        xmomentum = fid.variables['xmomentum_c'][:]
        ymomentum = fid.variables['ymomentum_c'][:]

        for i in range(stage.shape[0]):
            h = stage[i] - z  # depth vector at time step i

            # Check every node location
            for j in range(stage.shape[1]):
                # Depth being either exactly zero implies
                # momentum being zero.
                # Or else depth must be greater than or equal to
                # the minimal storable height
                if h[j] == 0.0:
                    assert xmomentum[i, j] == 0.0
                    assert ymomentum[i, j] == 0.0
                else:
                    assert h[j] >= 0.0

        fid.close()

        # Cleanup
        os.remove(swwfile)

        #------------- Now the same with georeferencing

        domain.time = 0.0
        E = 308500
        N = 6189000
        #E = N = 0
        domain.geo_reference = Geo_reference(56, E, N)

        domain.set_quantity('elevation', lambda x, y: -0.2 * x + 14)  # Slope
        domain.set_quantity('stage', -6)
        domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})

        for t in domain.evolve(yieldstep=1, finaltime=50):
            pass

        # Check maximal runup
        runup, location = get_maximum_inundation_data(swwfile)
        #print 'Runup, location', runup, location, max_time

        assert num.allclose(runup, 3.33333325386)
        assert num.allclose(location, [53.333332 + E, 43.333332 + N])
        #assert num.allclose(max_time, 10.0)

        # Check runup in restricted time interval
        runup, location = get_maximum_inundation_data(swwfile,
                                                      time_interval=[0, 9])
        #print 'Runup, location:',runup, location, max_time

        assert num.allclose(runup, 2.66666674614)
        assert num.allclose(location, [56.666668 + E, 16.666666 + N])
        #assert num.allclose(max_time, 9.0)

        # Check final runup
        runup, location = get_maximum_inundation_data(swwfile,
                                                      time_interval=[45, 50])
        #print 'Runup, location:',runup, location, max_time

        assert num.allclose(runup, 3.33333325386)
        assert num.allclose(location, [53.333332 + E, 33.333332 + N])
        #assert num.allclose(max_time, 45.0)

        # Check runup restricted to a polygon
        p = num.array([[50, 1], [99, 1], [99, 40], [50, 40]],
                      num.int) + num.array([E, N], num.int)
        runup, location = get_maximum_inundation_data(swwfile, polygon=p)
        #print runup, location, max_time

        assert num.allclose(runup, 3.33333325386)
        assert num.allclose(location, [53.333332 + E, 33.333332 + N])
        #assert num.allclose(max_time, 11.0)

        # Cleanup
        os.remove(swwfile)