def run_validation_script(script, np=1, cfl=None, alg=None, verbose=False):
    """ For backwards compatiblity wrap new run_anuga_script as run_validation_script
    """

    from anuga import run_anuga_script

    run_anuga_script(script, np=np, cfl=cfl, alg=alg, verbose=verbose)
Beispiel #2
0
def run_validation_script(script, np=1, cfl=None, alg=None, verbose=False):
    """ For backwards compatiblity wrap new run_anuga_script as run_validation_script
    """

    from anuga import run_anuga_script

    run_anuga_script(script, np=np, cfl=cfl, alg=alg, verbose=verbose)
Beispiel #3
0
def produce_report(script, args=None):

    import anuga

    if args is None:
        args = anuga.get_args()

    verbose = args.verbose

    #print args

    # Get the arguments from the calling script

    run_anuga_script(script, args=args)

    # We don't want to run plot_results in parallel
    args.np = 1

    run_anuga_script('plot_results.py', args=args)

    typeset_report(verbose=verbose)
def produce_report(script, args=None):

    import anuga

    if args is None:
        args  = anuga.get_args()
        

    verbose = args.verbose
    
    
    
    #print args
    
    # Get the arguments from the calling script

    run_anuga_script(script, args=args)
    
    # We don't want to run plot_results in parallel
    args.np = 1

    run_anuga_script('plot_results.py', args=args)
    
    typeset_report(verbose=verbose)
Beispiel #5
0
    def test_simulation(self):

        if verbose:
            print(indent + 'Running simulation script')

        s = 'run_okushiri.py'
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print(indent + 'Running test script')

        s = 'test_results.py'
        res = os.system('python %s' % s)
        # Test that script runs ok
        assert res == 0
    def test_simulation(self):
    
        if verbose:
            print indent+'Running simulation script'

        s = 'run_okushiri.py'
        res = anuga.run_anuga_script(s,args=args)

        # Test that script runs ok
        assert res == 0



        if verbose:
            print indent+'Running test script'

        s = 'plot_results.py'
        res = os.system('python %s' %s)
        # Test that script runs ok
        assert res == 0
    def test_dam_break_dry(self):

        if verbose:
            print
            print indent + 'Running simulation script'

        s = 'numerical_dam_break_dry.py'
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print indent + 'Testing accuracy'

        import anuga.utilities.plot_utils as util
        import analytical_dam_break_dry as analytic

        p_st = util.get_output('dam_break.sww')
        p2_st = util.get_centroids(p_st)

        v = p2_st.y[10]
        v2 = (p2_st.y == v)

        h0 = 1.0
        h1 = 10.0

        # calculate analytic values at various time slices
        h10, u10 = analytic.vec_dam_break(p2_st.x[v2],
                                          p2_st.time[10],
                                          h0=h0,
                                          h1=h1)
        h50, u50 = analytic.vec_dam_break(p2_st.x[v2],
                                          p2_st.time[50],
                                          h0=h0,
                                          h1=h1)
        h100, u100 = analytic.vec_dam_break(p2_st.x[v2],
                                            p2_st.time[100],
                                            h0=h0,
                                            h1=h1)

        #Test stages
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eh10 = numpy.sum(numpy.abs(p2_st.stage[10, v2] - h10)) / numpy.sum(
            numpy.abs(h10))
        eh50 = numpy.sum(numpy.abs(p2_st.stage[50, v2] - h50)) / numpy.sum(
            numpy.abs(h50))
        eh100 = numpy.sum(numpy.abs(p2_st.stage[100, v2] - h100)) / numpy.sum(
            numpy.abs(h100))

        print
        print indent + 'Errors in stage: ', eh10, eh50, eh100

        #Test xmomenta
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        euh10 = numpy.sum(
            numpy.abs(p2_st.xmom[10, v2] - u10 * h10)) / numpy.sum(
                numpy.abs(u10 * h10))
        euh50 = numpy.sum(
            numpy.abs(p2_st.xmom[50, v2] - u50 * h50)) / numpy.sum(
                numpy.abs(u50 * h50))
        euh100 = numpy.sum(
            numpy.abs(p2_st.xmom[100, v2] - u100 * h100)) / numpy.sum(
                numpy.abs(u100 * h100))

        print indent + 'Errors in xmomentum: ', euh10, euh50, euh100

        #Test xvelocity
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eu10 = numpy.sum(numpy.abs(p2_st.xvel[10, v2] - u10)) / numpy.sum(
            numpy.abs(u10))
        eu50 = numpy.sum(numpy.abs(p2_st.xvel[50, v2] - u50)) / numpy.sum(
            numpy.abs(u50))
        eu100 = numpy.sum(numpy.abs(p2_st.xvel[100, v2] - u100)) / numpy.sum(
            numpy.abs(u100))

        print indent + 'Errors in xvelocity: ', eu10, eu50, eu100

        assert eh10 < 0.1, 'Relative L^1 error %g greater than 0.1' % eh10
        assert eh50 < 0.1, 'Relative L^1 error %g greater than 0.1' % eh50
        assert eh100 < 0.15, 'Relative L^1 error %g greater than 0.15' % eh100

        assert euh10 < 0.25, 'Relative L^1 error %g greater than 0.25' % euh10
        assert euh50 < 0.25, 'Relative L^1 error %g greater than 0.25' % euh50
        assert euh100 < 0.25, 'Relative L^1 error %g greater than 0.25' % euh100

        assert eu10 < 2.0, 'Relative L^1 error %g greater than 2.0' % eu10
        assert eu50 < 2.0, 'Relative L^1 error %g greater than 2.0' % eu50
        assert eu100 < 0.3, 'Relative L^1 error %g greater than 0.3' % eu100
Beispiel #8
0
    def test_avalanche_dry(self):

        if verbose:
            print
            print indent + 'Running simulation script'

        # Run basic script (can be parallel if -np used in call
        # to this script
        s = 'numerical_avalanche_dry.py'
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print indent + 'Testing accuracy'

        import anuga.utilities.plot_utils as util
        from analytical_avalanche_dry import analytical_sol

        p_st = util.get_output('avalanche.sww')
        p2_st = util.get_centroids(p_st)

        v = p2_st.y[10]
        v2 = (p2_st.y == v)

        x_n = p2_st.x[v2]

        u0, h0, w0, z0, p0 = analytical_sol(x_n, p2_st.time[0])
        u10, h10, w10, z10, p10 = analytical_sol(x_n, p2_st.time[10])
        u30, h30, w30, z30, p30 = analytical_sol(x_n, p2_st.time[30])

        w0_n = p2_st.stage[0, v2]
        w10_n = p2_st.stage[10, v2]
        w30_n = p2_st.stage[30, v2]

        z_n = p2_st.elev[v2]

        uh0_n = p2_st.xmom[0, v2]
        uh10_n = p2_st.xmom[10, v2]
        uh30_n = p2_st.xmom[30, v2]

        u0_n = p2_st.xvel[0, v2]
        u10_n = p2_st.xvel[10, v2]
        u30_n = p2_st.xvel[30, v2]

        #Test stages
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eh10 = numpy.sum(numpy.abs(w10_n - w10)) / numpy.sum(numpy.abs(w10))
        eh30 = numpy.sum(numpy.abs(w30_n - w30)) / numpy.sum(numpy.abs(w30))

        print
        print indent + 'Errors in stage: ', eh10, eh30

        #Test xmomenta
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        euh10 = numpy.sum(numpy.abs(uh10_n - u10 * h10)) / numpy.sum(
            numpy.abs(u10 * h10))
        euh30 = numpy.sum(numpy.abs(uh30_n - u30 * h30)) / numpy.sum(
            numpy.abs(u30 * h30))

        print indent + 'Errors in xmomentum: ', euh10, euh30

        #Test xvelocity
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eu10 = numpy.sum(numpy.abs(u10_n - u10)) / numpy.sum(numpy.abs(u10))
        eu30 = numpy.sum(numpy.abs(u30_n - u30)) / numpy.sum(numpy.abs(u30))

        print indent + 'Errors in xvelocity: ', eu10, eu30

        assert eh10 < 0.01, 'L^1 error %g greater than 1 percent' % eh10
        assert eh30 < 0.01, 'L^1 error %g greater than 1 percent' % eh30

        assert euh10 < 0.025, 'L^1 error %g greater than 2.5 percent' % euh10
        assert euh30 < 0.025, 'L^1 error %g greater than 2.5 percent' % euh30

        assert eu10 < 0.2, 'L^1 error %g greater than 20 percent' % eu10
        assert eu30 < 0.2, 'L^1 error %g greater than 20 percent' % eu30
Beispiel #9
0
    def test_carrier_greenspan_transient(self):

        if verbose:
            print
            print indent + 'Running simulation script'

        s = 'numerical_cg_transient.py'
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print indent + 'Testing accuracy'

        import anuga.utilities.plot_utils as util
        from analytical_cg_transient import analytical_sol

        p_st = util.get_output('carrier_greenspan.sww')
        p2_st = util.get_centroids(p_st)

        v = p2_st.y[10]
        v2 = (p2_st.y == v)

        x_n = p2_st.x[v2]

        ids = [1, 15, 30]
        use_absolute = [False, True, True]
        n = len(ids)

        W, UH, Z, H, U = [], [], [], [], []
        W_n, U_n, UH_n = [], [], []

        #Dimensional parameters
        L = 5e4  # Length of channel (m)
        h0 = 5e2  # Height at origin when the water is still
        g = 9.81  # Gravity

        for i, id in enumerate(ids):
            w, z, u = analytical_sol(x_n / L,
                                     p2_st.time[id] * sqrt(g * h0) / L)

            w = w * h0
            z = z * h0
            u = u * sqrt(g * h0)
            h = w - z
            uh = u * h

            W.append(w)
            Z.append(z)
            H.append(h)
            U.append(u)
            UH.append(uh)

            W_n.append(p2_st.stage[id, v2])
            UH_n.append(p2_st.xmom[id, v2])
            U_n.append(p2_st.xvel[id, v2])

            #print id, numpy.max(H[i]), numpy.min(H[i])
            #print id, numpy.max(U[i]), numpy.min(U[i])
            #print id, numpy.max(U_n[i]), numpy.min(U_n[i])

        #Test stages
        # Calculate L^1 error at times

        ew = numpy.zeros(n)
        for i, id in enumerate(ids):
            ew[i] = numpy.sum(numpy.abs(W_n[i] - W[i])) / numpy.sum(
                numpy.abs(W[i]))

        print
        print indent + 'L^1 Errors in stage: ', ew

        #Test xmomenta
        # Calculate L^1 error at times
        euh = numpy.zeros(n)
        for i, id in enumerate(ids):
            euh[i] = numpy.sum(numpy.abs(UH_n[i] - U[i] * H[i])) / numpy.sum(
                numpy.abs(UH_n[i]))

        print indent + 'L^1 Errors in xmomentum: ', euh

        #Test xvelocity
        # Calculate L^1 error at times

        eu = numpy.zeros(n)
        for i, id in enumerate(ids):
            if use_absolute[i]:
                eu[i] = numpy.sum(numpy.abs(U_n[i] - U[i])) / len(U[i])
            else:
                eu[i] = numpy.sum(numpy.abs(U_n[i] - U[i])) / numpy.sum(
                    numpy.abs(U[i]))

        print indent + 'L^1 Errors in xvelocity: ', eu

        for i, id in enumerate(ids):
            assert ew[i] < 0.01, 'L^1 error %g greater than 1 percent' % ew[i]

        for i, id in enumerate(ids):
            assert euh[
                i] < 0.025, 'L^1 error %g greater than 2.5 percent' % euh[i]

        for i, id in enumerate(ids):
            assert eu[
                i] < 0.025, 'L^1 error %g greater than 2.5 percent' % eu[i]
    def test_carrier_greenspan_periodic(self):

        if verbose:
            print
            print indent + 'Running simulation script'

        s = 'numerical_carrier_greenspan.py'
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print indent + 'Testing accuracy'

        import anuga.utilities.plot_utils as util
        from analytical_carrier_greenspan import analytic_cg

        p_st = util.get_output('carrier_greenspan.sww')
        p2_st = util.get_centroids(p_st)

        v = p2_st.y[10]
        v2 = (p2_st.y == v)

        x_n = p2_st.x[v2]

        #ids = [288, 296, 304, 312, 320, 328]
        ids = [296, 304, 320, 328]

        # For the velocity and xmomentum calculations use
        # absolute error (as the exact solution is 0)
        use_absolute = [False, False, False, False]

        n = len(ids)

        W, P, Z, H, U = [], [], [], [], []

        W_n, U_n, UH_n = [], [], []

        for i, id in enumerate(ids):
            w0, p0, z0, h0, u0 = analytic_cg(x_n,
                                             p2_st.time[id],
                                             h0=5e2,
                                             L=5e4,
                                             a=1.0,
                                             Tp=900.0)

            W.append(w0)
            H.append(h0)
            U.append(u0)
            W_n.append(p2_st.stage[id, v2])
            UH_n.append(p2_st.xmom[id, v2])
            U_n.append(p2_st.xvel[id, v2])

            #print id, numpy.max(H[i]), numpy.min(H[i])
            #print id, numpy.max(U[i]), numpy.min(U[i])
            #print id, numpy.max(U_n[i]), numpy.min(U_n[i])

        #Test stages
        # Calculate L^1 error at times

        ew = numpy.zeros(n)
        for i, id in enumerate(ids):
            ew[i] = numpy.sum(numpy.abs(W_n[i] - W[i])) / numpy.sum(
                numpy.abs(W[i]))

        print
        print indent + 'L^1 Errors in stage: ', ew

        #Test xmomenta
        # Calculate L^1 error at times
        euh = numpy.zeros(n)
        for i, id in enumerate(ids):
            if use_absolute[i]:
                euh[i] = numpy.sum(numpy.abs(UH_n[i] - U[i] * H[i])) / len(
                    U[i])
            else:
                euh[i] = numpy.sum(
                    numpy.abs(UH_n[i] - U[i] * H[i])) / numpy.sum(
                        numpy.abs(UH_n[i]))

        print indent + 'L^1 Errors in xmomentum: ', euh

        #Test xvelocity
        # Calculate L^1 error at times

        eu = numpy.zeros(n)
        for i, id in enumerate(ids):
            if use_absolute[i]:
                eu[i] = numpy.sum(numpy.abs(U_n[i] - U[i])) / len(U[i])
            else:
                eu[i] = numpy.sum(numpy.abs(U_n[i] - U[i])) / numpy.sum(
                    numpy.abs(U[i]))

        print indent + 'L^1 Errors in xvelocity: ', eu

        for i, id in enumerate(ids):
            assert ew[i] < 0.01, 'L^1 error %g greater than 1 percent' % ew[i]

        for i, id in enumerate(ids):
            assert euh[
                i] < 0.025, 'L^1 error %g greater than 2.5 percent' % euh[i]

        for i, id in enumerate(ids):
            assert eu[i] < 0.1, 'L^1 error %g greater than 10 percent' % eu[i]
    def test_carrier_greenspan_periodic(self):
    

        if verbose:
            print
            print indent+'Running simulation script'

        s = 'numerical_carrier_greenspan.py'
        res = anuga.run_anuga_script(s,args=args)

        # Test that script runs ok
        assert res == 0


        if verbose:
            print indent+'Testing accuracy'

        import anuga.utilities.plot_utils as util
        from analytical_carrier_greenspan import analytic_cg

        p_st = util.get_output('carrier_greenspan.sww')
        p2_st=util.get_centroids(p_st)

        v = p2_st.y[10]
        v2=(p2_st.y==v)

        x_n = p2_st.x[v2]

        #ids = [288, 296, 304, 312, 320, 328]
        ids = [296, 304, 320, 328]

        # For the velocity and xmomentum calculations use
        # absolute error (as the exact solution is 0)
        use_absolute = [False, False, False, False]

        n = len(ids)

        W, P, Z, H, U = [], [], [], [], []

        W_n, U_n, UH_n = [], [], []

        for i, id in enumerate(ids):
            w0, p0, z0, h0, u0 = analytic_cg(x_n, p2_st.time[id], h0=5e2, L=5e4, a=1.0, Tp=900.0)

            W.append(w0)
            H.append(h0)
            U.append(u0)
            W_n.append(p2_st.stage[id,v2])
            UH_n.append(p2_st.xmom[id,v2])
            U_n.append(p2_st.xvel[id,v2])

            #print id, numpy.max(H[i]), numpy.min(H[i])
            #print id, numpy.max(U[i]), numpy.min(U[i])
            #print id, numpy.max(U_n[i]), numpy.min(U_n[i])


        #Test stages
        # Calculate L^1 error at times
        
        ew = numpy.zeros(n)
        for i, id in enumerate(ids):
            ew[i] = numpy.sum(numpy.abs(W_n[i]-W[i]))/numpy.sum(numpy.abs(W[i]))
 

        print 
        print indent+'L^1 Errors in stage: ', ew

        #Test xmomenta
        # Calculate L^1 error at times
        euh = numpy.zeros(n)
        for i, id in enumerate(ids):
            if use_absolute[i]:
                euh[i] = numpy.sum(numpy.abs(UH_n[i]-U[i]*H[i]))/len(U[i])
            else:
                euh[i] = numpy.sum(numpy.abs(UH_n[i]-U[i]*H[i]))/numpy.sum(numpy.abs(UH_n[i]))

        
        print indent+'L^1 Errors in xmomentum: ',euh   

        #Test xvelocity
        # Calculate L^1 error at times

        eu = numpy.zeros(n)
        for i, id in enumerate(ids):
            if use_absolute[i]:
                eu[i] = numpy.sum(numpy.abs(U_n[i]-U[i]))/len(U[i])
            else:
                eu[i] = numpy.sum(numpy.abs(U_n[i]-U[i]))/numpy.sum(numpy.abs(U[i]))

        print indent+'L^1 Errors in xvelocity: ', eu

        for i, id in enumerate(ids):
            assert ew[i] < 0.01,  'L^1 error %g greater than 1 percent'% ew[i]

        for i, id in enumerate(ids):
            assert euh[i] < 0.025,  'L^1 error %g greater than 2.5 percent'% euh[i]
 
        for i, id in enumerate(ids):
            assert eu[i] < 0.1,  'L^1 error %g greater than 10 percent'% eu[i]
    def test_dam_break_dry(self):
    

        if verbose:
            print
            print indent+'Running simulation script'

        s = 'numerical_dam_break_dry.py'
        res = anuga.run_anuga_script(s,args=args)

        # Test that script runs ok
        assert res == 0


        if verbose:
            print indent+'Testing accuracy'
            
        import anuga.utilities.plot_utils as util
        import analytical_dam_break_dry as analytic

        p_st = util.get_output('dam_break.sww')
        p2_st=util.get_centroids(p_st)

        v = p2_st.y[10]
        v2=(p2_st.y==v)


        h0 = 1.0
        h1 = 10.0

        # calculate analytic values at various time slices
        h10,u10 = analytic.vec_dam_break(p2_st.x[v2], p2_st.time[10], h0=h0, h1=h1)
        h50,u50 = analytic.vec_dam_break(p2_st.x[v2], p2_st.time[50], h0=h0, h1=h1)
        h100,u100 = analytic.vec_dam_break(p2_st.x[v2], p2_st.time[100], h0=h0, h1=h1)


        #Test stages
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eh10 = numpy.sum(numpy.abs(p2_st.stage[10,v2]-h10))/numpy.sum(numpy.abs(h10))
        eh50 = numpy.sum(numpy.abs(p2_st.stage[50,v2]-h50))/numpy.sum(numpy.abs(h50))
        eh100 = numpy.sum(numpy.abs(p2_st.stage[100,v2]-h100))/numpy.sum(numpy.abs(h100))

        print 
        print indent+'Errors in stage: ',eh10, eh50, eh100


        #Test xmomenta
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        euh10 = numpy.sum(numpy.abs(p2_st.xmom[10,v2]-u10*h10))/numpy.sum(numpy.abs(u10*h10))
        euh50 = numpy.sum(numpy.abs(p2_st.xmom[50,v2]-u50*h50))/numpy.sum(numpy.abs(u50*h50))
        euh100 = numpy.sum(numpy.abs(p2_st.xmom[100,v2]-u100*h100))/numpy.sum(numpy.abs(u100*h100))

        print indent+'Errors in xmomentum: ',euh10, euh50, euh100

        #Test xvelocity
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eu10 = numpy.sum(numpy.abs(p2_st.xvel[10,v2]-u10))/numpy.sum(numpy.abs(u10))
        eu50 = numpy.sum(numpy.abs(p2_st.xvel[50,v2]-u50))/numpy.sum(numpy.abs(u50))
        eu100 = numpy.sum(numpy.abs(p2_st.xvel[100,v2]-u100))/numpy.sum(numpy.abs(u100))

        print indent+'Errors in xvelocity: ', eu10, eu50, eu100


        assert eh10 < 0.1,  'Relative L^1 error %g greater than 0.1'% eh10
        assert eh50 < 0.1,  'Relative L^1 error %g greater than 0.1'% eh50
        assert eh100 < 0.15, 'Relative L^1 error %g greater than 0.15'% eh100

        assert euh10 < 0.25,  'Relative L^1 error %g greater than 0.25'% euh10
        assert euh50 < 0.25,  'Relative L^1 error %g greater than 0.25'% euh50
        assert euh100 < 0.25, 'Relative L^1 error %g greater than 0.25'% euh100

        assert eu10 < 2.0,  'Relative L^1 error %g greater than 2.0'% eu10
        assert eu50 < 2.0,  'Relative L^1 error %g greater than 2.0'% eu50
        assert eu100 < 0.3, 'Relative L^1 error %g greater than 0.3'% eu100
    def test_avalanche_dry(self):

        if verbose:
            print
            print indent + "Running simulation script"

        # Run basic script (can be parallel if -np used in call
        # to this script
        s = "numerical_avalanche_dry.py"
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print indent + "Testing accuracy"

        import anuga.utilities.plot_utils as util
        from analytical_avalanche_dry import analytical_sol

        p_st = util.get_output("avalanche.sww")
        p2_st = util.get_centroids(p_st)

        v = p2_st.y[10]
        v2 = p2_st.y == v

        x_n = p2_st.x[v2]

        u0, h0, w0, z0, p0 = analytical_sol(x_n, p2_st.time[0])
        u10, h10, w10, z10, p10 = analytical_sol(x_n, p2_st.time[10])
        u30, h30, w30, z30, p30 = analytical_sol(x_n, p2_st.time[30])

        w0_n = p2_st.stage[0, v2]
        w10_n = p2_st.stage[10, v2]
        w30_n = p2_st.stage[30, v2]

        z_n = p2_st.elev[v2]

        uh0_n = p2_st.xmom[0, v2]
        uh10_n = p2_st.xmom[10, v2]
        uh30_n = p2_st.xmom[30, v2]

        u0_n = p2_st.xvel[0, v2]
        u10_n = p2_st.xvel[10, v2]
        u30_n = p2_st.xvel[30, v2]

        # Test stages
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eh10 = numpy.sum(numpy.abs(w10_n - w10)) / numpy.sum(numpy.abs(w10))
        eh30 = numpy.sum(numpy.abs(w30_n - w30)) / numpy.sum(numpy.abs(w30))

        print
        print indent + "Errors in stage: ", eh10, eh30

        # Test xmomenta
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        euh10 = numpy.sum(numpy.abs(uh10_n - u10 * h10)) / numpy.sum(numpy.abs(u10 * h10))
        euh30 = numpy.sum(numpy.abs(uh30_n - u30 * h30)) / numpy.sum(numpy.abs(u30 * h30))

        print indent + "Errors in xmomentum: ", euh10, euh30

        # Test xvelocity
        # Calculate L^1 error at times corrsponding to slices 10, 50 and 100
        eu10 = numpy.sum(numpy.abs(u10_n - u10)) / numpy.sum(numpy.abs(u10))
        eu30 = numpy.sum(numpy.abs(u30_n - u30)) / numpy.sum(numpy.abs(u30))

        print indent + "Errors in xvelocity: ", eu10, eu30

        assert eh10 < 0.01, "L^1 error %g greater than 1 percent" % eh10
        assert eh30 < 0.01, "L^1 error %g greater than 1 percent" % eh30

        assert euh10 < 0.025, "L^1 error %g greater than 2.5 percent" % euh10
        assert euh30 < 0.025, "L^1 error %g greater than 2.5 percent" % euh30

        assert eu10 < 0.2, "L^1 error %g greater than 20 percent" % eu10
        assert eu30 < 0.2, "L^1 error %g greater than 20 percent" % eu30
    def test_carrier_greenspan_transient(self):
    

        if verbose:
            print
            print indent+'Running simulation script'

        s = 'numerical_cg_transient.py'
        res = anuga.run_anuga_script(s,args=args)
        
        # Test that script runs ok
        assert res == 0


        if verbose:
            print indent+'Testing accuracy'


        import anuga.utilities.plot_utils as util
        from analytical_cg_transient import analytical_sol

        p_st = util.get_output('carrier_greenspan.sww')
        p2_st=util.get_centroids(p_st)

        v = p2_st.y[10]
        v2=(p2_st.y==v)

        x_n = p2_st.x[v2]


        ids = [1, 15, 30]
        use_absolute = [False, True, True]
        n = len(ids)

        W, UH, Z, H, U = [], [], [], [], []
        W_n, U_n, UH_n = [], [], []

        #Dimensional parameters
        L   = 5e4         # Length of channel (m)
        h0  = 5e2         # Height at origin when the water is still
        g   = 9.81        # Gravity

        for i, id in enumerate(ids):
            w, z, u = analytical_sol(x_n/L, p2_st.time[id]*sqrt(g*h0)/L)

            w = w*h0
            z = z*h0
            u = u*sqrt(g*h0)
            h = w-z
            uh = u*h

            W.append(w)
            Z.append(z)
            H.append(h)
            U.append(u)
            UH.append(uh)


            W_n.append(p2_st.stage[id,v2])
            UH_n.append(p2_st.xmom[id,v2])
            U_n.append(p2_st.xvel[id,v2])

            #print id, numpy.max(H[i]), numpy.min(H[i])
            #print id, numpy.max(U[i]), numpy.min(U[i])
            #print id, numpy.max(U_n[i]), numpy.min(U_n[i])

        #Test stages
        # Calculate L^1 error at times
        
        ew = numpy.zeros(n)
        for i, id in enumerate(ids):
            ew[i] = numpy.sum(numpy.abs(W_n[i]-W[i]))/numpy.sum(numpy.abs(W[i]))
 
        print 
        print indent+'L^1 Errors in stage: ', ew



        #Test xmomenta
        # Calculate L^1 error at times
        euh = numpy.zeros(n)
        for i, id in enumerate(ids):
            euh[i] = numpy.sum(numpy.abs(UH_n[i]-U[i]*H[i]))/numpy.sum(numpy.abs(UH_n[i]))

        
        print indent+'L^1 Errors in xmomentum: ',euh    

        #Test xvelocity
        # Calculate L^1 error at times

        eu = numpy.zeros(n)
        for i, id in enumerate(ids):
            if use_absolute[i]:
                eu[i] = numpy.sum(numpy.abs(U_n[i]-U[i]))/len(U[i])
            else:
                eu[i] = numpy.sum(numpy.abs(U_n[i]-U[i]))/numpy.sum(numpy.abs(U[i]))

        print indent+'L^1 Errors in xvelocity: ', eu

        for i, id in enumerate(ids):
            assert ew[i] < 0.01,  'L^1 error %g greater than 1 percent'% ew[i]

        for i, id in enumerate(ids):
            assert euh[i] < 0.025,  'L^1 error %g greater than 2.5 percent'% euh[i]

        for i, id in enumerate(ids):
            assert eu[i] < 0.025,  'L^1 error %g greater than 2.5 percent'% eu[i]
    def test_avalanche_wet(self):

        if verbose:
            print
            print indent + 'Running simulation script'

        s = 'numerical_avalanche_wet.py'
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print indent + 'Testing accuracy'

        import anuga.utilities.plot_utils as util
        from analytical_avalanche_wet import analytical_sol

        p_st = util.get_output('avalanche.sww')
        p2_st = util.get_centroids(p_st)

        v = p2_st.y[20]
        v2 = (p2_st.y == v)

        x_n = p2_st.x[v2]

        u0, h0, w0, z0, p0 = analytical_sol(x_n, p2_st.time[0])
        u20, h20, w20, z20, p20 = analytical_sol(x_n, p2_st.time[20])
        u40, h40, w40, z40, p40 = analytical_sol(x_n, p2_st.time[40])

        w0_n = p2_st.stage[0, v2]
        w20_n = p2_st.stage[20, v2]
        w40_n = p2_st.stage[40, v2]

        z_n = p2_st.elev[v2]

        uh0_n = p2_st.xmom[0, v2]
        uh20_n = p2_st.xmom[20, v2]
        uh40_n = p2_st.xmom[40, v2]

        u0_n = p2_st.xvel[0, v2]
        u20_n = p2_st.xvel[20, v2]
        u40_n = p2_st.xvel[40, v2]

        #Test stages
        # Calculate L^1 error at times corrsponding to slices 20, 40
        eh20 = numpy.sum(numpy.abs(w20_n - w20)) / numpy.sum(numpy.abs(w20))
        eh40 = numpy.sum(numpy.abs(w40_n - w40)) / numpy.sum(numpy.abs(w40))

        print
        print indent + 'Errors in stage: ', eh20, eh40

        #Test xmomenta
        # Calculate L^1 error at times corrsponding to slices 20, 40
        euh20 = numpy.sum(numpy.abs(uh20_n - u20 * h20)) / numpy.sum(
            numpy.abs(u20 * h20))
        euh40 = numpy.sum(numpy.abs(uh40_n - u40 * h40)) / numpy.sum(
            numpy.abs(u40 * h40))

        print indent + 'Errors in xmomentum: ', euh20, euh40

        #Test xvelocity
        # Calculate L^1 error at times corrsponding to slices 20, 40
        eu20 = numpy.sum(numpy.abs(u20_n - u20)) / numpy.sum(numpy.abs(u20))
        eu40 = numpy.sum(numpy.abs(u40_n - u40)) / numpy.sum(numpy.abs(u40))

        print indent + 'Errors in xvelocity: ', eu20, eu40

        assert eh20 < 0.01, 'L^1 error %g greater than 1 percent' % eh20
        assert eh40 < 0.01, 'L^1 error %g greater than 1 percent' % eh40

        assert euh20 < 0.025, 'L^1 error %g greater than 2.5 percent' % euh20
        assert euh40 < 0.025, 'L^1 error %g greater than 2.5 percent' % euh40

        assert eu20 < 0.02, 'L^1 error %g greater than 2 percent' % eu20
        assert eu40 < 0.01, 'L^1 error %g greater than 2 percent' % eu40
    def test_avalanche_wet(self):

        if verbose:
            print
            print indent + "Running simulation script"

        s = "numerical_avalanche_wet.py"
        res = anuga.run_anuga_script(s, args=args)

        # Test that script runs ok
        assert res == 0

        if verbose:
            print indent + "Testing accuracy"

        import anuga.utilities.plot_utils as util
        from analytical_avalanche_wet import analytical_sol

        p_st = util.get_output("avalanche.sww")
        p2_st = util.get_centroids(p_st)

        v = p2_st.y[20]
        v2 = p2_st.y == v

        x_n = p2_st.x[v2]

        u0, h0, w0, z0, p0 = analytical_sol(x_n, p2_st.time[0])
        u20, h20, w20, z20, p20 = analytical_sol(x_n, p2_st.time[20])
        u40, h40, w40, z40, p40 = analytical_sol(x_n, p2_st.time[40])

        w0_n = p2_st.stage[0, v2]
        w20_n = p2_st.stage[20, v2]
        w40_n = p2_st.stage[40, v2]

        z_n = p2_st.elev[v2]

        uh0_n = p2_st.xmom[0, v2]
        uh20_n = p2_st.xmom[20, v2]
        uh40_n = p2_st.xmom[40, v2]

        u0_n = p2_st.xvel[0, v2]
        u20_n = p2_st.xvel[20, v2]
        u40_n = p2_st.xvel[40, v2]

        # Test stages
        # Calculate L^1 error at times corrsponding to slices 20, 40
        eh20 = numpy.sum(numpy.abs(w20_n - w20)) / numpy.sum(numpy.abs(w20))
        eh40 = numpy.sum(numpy.abs(w40_n - w40)) / numpy.sum(numpy.abs(w40))

        print
        print indent + "Errors in stage: ", eh20, eh40

        # Test xmomenta
        # Calculate L^1 error at times corrsponding to slices 20, 40
        euh20 = numpy.sum(numpy.abs(uh20_n - u20 * h20)) / numpy.sum(numpy.abs(u20 * h20))
        euh40 = numpy.sum(numpy.abs(uh40_n - u40 * h40)) / numpy.sum(numpy.abs(u40 * h40))

        print indent + "Errors in xmomentum: ", euh20, euh40

        # Test xvelocity
        # Calculate L^1 error at times corrsponding to slices 20, 40
        eu20 = numpy.sum(numpy.abs(u20_n - u20)) / numpy.sum(numpy.abs(u20))
        eu40 = numpy.sum(numpy.abs(u40_n - u40)) / numpy.sum(numpy.abs(u40))

        print indent + "Errors in xvelocity: ", eu20, eu40

        assert eh20 < 0.01, "L^1 error %g greater than 1 percent" % eh20
        assert eh40 < 0.01, "L^1 error %g greater than 1 percent" % eh40

        assert euh20 < 0.025, "L^1 error %g greater than 2.5 percent" % euh20
        assert euh40 < 0.025, "L^1 error %g greater than 2.5 percent" % euh40

        assert eu20 < 0.02, "L^1 error %g greater than 2 percent" % eu20
        assert eu40 < 0.01, "L^1 error %g greater than 2 percent" % eu40