Beispiel #1
0
def readmap(orbitmap):
    """Reads an orbit map"""
    COM = None
    ERRANDS = Node("--ERRAND--")

    for orbit in orbitmap:
        center, orbiter = orbit.strip().split(")")

        if center == "COM":
            COM = Node(center)

        centerNode = None
        if COM:
            centerNode = find_by_attr(COM, center)
        if centerNode is None:
            centerNode = find_by_attr(ERRANDS, center)
        if centerNode is None:
            centerNode = Node(center, parent=ERRANDS)

        orbiterNode = find_by_attr(ERRANDS, orbiter)
        if orbiterNode is not None:
            orbiterNode.parent = centerNode
        else:
            orbiterNode = Node(orbiter, parent=centerNode)

    return COM
def test_binding_at_template_assignment():
    template0 = XMLTemplateParser("""
        <template name="template0" size="4">
        </template>
        """).parse()
    template1 = XMLTemplateParser("""
        <template name="template0">
            <layout name="layout0">
                <area name="area0">
                    <field name="field1_size" size="4"></field>
                    <field name="field1" size="{field1_size, byteorder=little}"></field>
                    <field name="field2" size="{field1_size, byteorder=big}"></field>
                </area>
            </layout>
        </template>""").parse()
    template_provider0 = TemplateProvider(template0)
    template_provider1 = TemplateProvider(template1)
    data_provider = DataProvider(io.BytesIO(bytes(4 * [0x0])))
    binalyzer = Binalyzer(template_provider0, data_provider)
    binalyzer.template = template_provider1.template
    binalyzer.data = io.BytesIO(bytes([0x04, 0x00, 0x00, 0x00]))
    field1_size = find_by_attr(template1, "field1_size")
    field1 = find_by_attr(template1, "field1")
    field2 = find_by_attr(template1, "field2")
    assert field1_size.size == 4
    assert field1_size.value == bytes([0x04, 0x00, 0x00, 0x00])
    assert field1.size == 0x4
    assert field2.size == 0x4000000
Beispiel #3
0
def get_path_capacity(source, target):
    """ given an origin and a destination, get bandwidth capacity """
    node_tree = get_node_tree()
    source_node = find_by_attr(node_tree, name='id', value=source)
    target_node = find_by_attr(node_tree, name='id', value=target)

    return min(source_node.capacity, target_node.capacity)
Beispiel #4
0
def generate_tree(filename):
    """
    It generates a tree level structure of a MS-COCO things
    and stuff label with leaf node act as an actual label
    while the upper nodes are supercategories
    :param filename: A panoptic categories filename generated
                     from `create_category_json()`
    :return: root node of things and stuff label
    """
    categories = json.load(open(filename))

    things_tree = categories['things']['tree']
    stuff_tree = categories['stuff']['tree']

    # CHILD:PARENT structure
    child_t, _ = things_tree[1].strip().split(':')
    root_things = Node(child_t)
    child_s, _ = stuff_tree[1].strip().split(':')
    root_stuff = Node(child_s)

    for line in things_tree[2:]:
        child, parent = line.strip().split(':')
        Node(child, parent=find_by_attr(root_things, parent))

    for line in stuff_tree[2:]:
        child, parent = line.strip().split(':')
        Node(child, parent=find_by_attr(root_stuff, parent))

    return root_things, root_stuff
def akm_distance(name_1: str, name_2: str, tree: Node):
    message = 'Unknown name "%s". The name must be associated to a node in the tree.'

    start = find_by_attr(tree, name_1)
    end = find_by_attr(tree, name_2)

    if start is None:
        raise ValueError(message % name_1)
    if end is None:
        raise ValueError(message % name_2)

    return sum([calculate_weight(edge) for edge in calculate_path(start, end)])
Beispiel #6
0
def findNumericalConcept(subject_concept, value_set):
    remove = "$,\"[]()? -!abcdefghijklmnopqstuvw"
    normalized_value_set = []
    for txt in value_set[1:]:
        for r in remove:
            txt = txt.replace(r, '')
        if len(txt) > 0:
            normalized_value_set.append(float(txt))
    # findign the domains correspond to concepts
    candidates_to_domain = findDomains(
        findNearestNeighbours(normalized_value_set, 20))

    predicted_concept = None
    b = False
    for candidate in candidates_to_domain.keys():
        if candidates_to_domain[candidate] != None and candidates_to_domain[
                candidate][28:] == subject_concept:
            b = True
            predicted_concept = candidate[28:]
            break

    # loading the concept tree
    root = load_tree()
    if not b:
        min_dis = float('inf')
        min_dist_concept = None
        for candidate in candidates_to_domain.keys():
            x = [
                ancestor.name
                for ancestor in find_by_attr(root, subject_concept).ancestors
            ]
            x.append(subject_concept)
            x = set(x)
            y = None
            if candidates_to_domain[candidate] != None:
                try:
                    y = [
                        ancestor.name for ancestor in find_by_attr(
                            root, candidates_to_domain[candidate]
                            [28:]).ancestors
                    ]
                    y.append(candidates_to_domain[candidate][28:])
                    y = set(y)
                    curr_dis = len(list(x.union(y) - x.intersection(y)))
                    if curr_dis < min_dis:
                        min_dis = curr_dis
                        min_dist_concept = candidate
                except:
                    continue
        predicted_concept = min_dist_concept[28:]

    return "http://dbpedia.org/ontology/" + predicted_concept
Beispiel #7
0
def test_find_by_attr():
    f = Node("f")
    b = Node("b", parent=f)
    Node("a", parent=b)
    d = Node("d", parent=b)
    c = Node("c", parent=d, foo=4)
    Node("e", parent=d)
    g = Node("g", parent=f)
    i = Node("i", parent=g)
    Node("h", parent=i)

    eq_(find_by_attr(f, "d"), d)
    eq_(find_by_attr(f, name="foo", value=4), c)
    eq_(find_by_attr(f, name="foo", value=8), None)
Beispiel #8
0
def bind_data_to_template(root_template, bindings):
    for binding in bindings:
        data_url = binding.get('data_url')
        template_name = binding.get('template_name')
        template = find_by_attr(root_template, template_name)
        if template:
            data = requests.get(data_url).content
            template.value = data
Beispiel #9
0
def beam_search(inputs_to_ids_fn, starting_state, starting_id, stop_condition_fn, beam_width=3, \
                num_states_returned=3, top_k=10, top_p=1.0, num_dist_samples=-1, temperature=1.0):
    """
    Searches a space using a beam constrrained tree to find the most likely outcomes.
    
    inputs_to_ids_fn: (state, id)->(new_state, [float]): the prediction function returning an 
                                            array of probabilities corresponding to the next valid ids
    starting_cache: an object containing the state of the prediction fn before being passed a new id
    starting_id: int: the integer used to prime the first distribution
    stop_condition_fn: (state)->bool: a function determining if the sequence should be stopped,
                                      this could include maximum length reached.
    beam_width: int: number of active beams to search at any particular point.
    
    returns: [state]: most probable terminated states
    """
    terminated_states = []
    active_states = [(0.0, starting_state, starting_id)] # we use log probabilities, and thus sum future log probs. log(p==1) = 0
    beam_tree = Node(f"Start", state=starting_state["input_ids"].cpu().tolist().copy())
    
    while len(terminated_states) < num_states_returned and len(active_states) != 0:
        p, best_state, best_next_id = heappop(active_states)
        new_state, next_id_probs = inputs_to_ids_fn(best_state, best_next_id)
        
        print("searching for", best_state["input_ids"].cpu().tolist().copy())
        parent = find_by_attr(beam_tree, name="state", value=best_state["input_ids"].cpu().tolist())
        print("found parent ",parent)
        print("adding node with state ",new_state["input_ids"].cpu().tolist().copy())
        added_node = Node(f"{best_next_id}", state=new_state["input_ids"].cpu().tolist().copy(), parent=parent)
        if stop_condition_fn(new_state):
            terminated_states.append((-p, new_state.copy()))
            continue
        
        # choose best IDs to add to tree
        next_id_probs = np.array(next_id_probs)
        scaled_logits = np.log(next_id_probs) / temperature
        exp_logits = np.exp(scaled_logits)
        next_id_probs = exp_logits / np.sum(exp_logits) # softmax
        
        sorted_ids = np.argsort(next_id_probs)[::-1]
        cumulative_probs = np.cumsum(next_id_probs[sorted_ids])
        top_p_ids = [idx for idx, cumulative_p in zip(sorted_ids,cumulative_probs) if cumulative_p<=top_p]
        top_k_ids = top_p_ids[:top_k]
        
        if num_dist_samples<1:
            sampled_ids = top_k_ids[:beam_width]
        else:
            sampled_ids = np.random.choice(top_k_ids, min(num_dist_samples, len(top_k_ids)), p=normalize(next_id_probs[top_k_ids]), replace=False)
        
        for idx in sampled_ids:
            new_prob = p-np.log(next_id_probs[idx])
            heappush(active_states, (new_prob, new_state.copy(), idx))
        
        active_states = nsmallest(beam_width, active_states)
        
    for pre, fill, node in RenderTree(beam_tree):
        print("%s%s" % (pre, node.name))  
    
    return terminated_states
Beispiel #10
0
def load_tree():
    root = None
    f = open('input.txt', 'r')
    lines = f.readlines()[1:]
    root = Node(lines[0].split(" ")[0])
    for line in lines:
        line = line.split(" ")
        Node("".join(line[1:]).strip(), parent=find_by_attr(root, line[0]))
    return root
Beispiel #11
0
def get_common_path_alt(path_a, path_b):
    """ given two paths, return common path source and target """
    node_tree = get_node_tree()
    source_a = find_by_attr(node_tree, name='id', value=path_a[0])
    target_a = find_by_attr(node_tree, name='id', value=path_a[1])
    source_b = find_by_attr(node_tree, name='id', value=path_b[0])
    target_b = find_by_attr(node_tree, name='id', value=path_b[1])

    source = source_a if source_a == source_b else None
    target = None

    for node_a, node_b in zip(target_a.path, target_b.path):
        if node_a == node_b:
            target = node_a
        else:
            break

    return source.id, target.id
Beispiel #12
0
def add_children(lines,node,tree):
    for x in lines:
        parent = x.split(')')[0]
        child  = x.split(')')[1]
        if parent == node:
            Node(child, parent=find_by_attr(tree, node))
            add_children(lines,child,tree)

    return tree
Beispiel #13
0
    def add_entered_folder(self, parent, folder_name):
        root_folder = self.get_current_storage().root_folder
        parent_folder = anytree.find_by_attr(root_folder,
                                             name="id",
                                             value=parent.label_id)
        current_folder = ThemeFolders(folder_name, parent=parent_folder)

        self.populate_tree_view(self.get_current_storage().tree_view, parent,
                                current_folder)
Beispiel #14
0
def is_descendent(parent, child):
    """ given two nodes, check if one is ancestor of the other """
    root = get_node_tree()
    parent_node = find_by_attr(root, name='id', value=parent)
    decendency = False
    for node in parent_node.descendants:
        decendency = node.id == child or decendency

    return decendency
Beispiel #15
0
def is_ancestor(parent, child):
    """ given two nodes, check if one is ancestor of the other """
    root = get_node_tree()
    child_node = find_by_attr(root, name='id', value=child)
    ancestry = False
    for node in child_node.ancestors:
        ancestry = node.id == parent or ancestry

    return ancestry
Beispiel #16
0
def get_common_path_list(path_a, path_b):
    """ given two paths, return common path source and target """

    node_tree = get_node_tree()
    source_a = find_by_attr(node_tree, name='id', value=path_a[0])
    target_a = find_by_attr(node_tree, name='id', value=path_a[1])
    source_b = find_by_attr(node_tree, name='id', value=path_b[0])
    target_b = find_by_attr(node_tree, name='id', value=path_b[1])

    source = source_a if source_a == source_b else None
    common_path = [source]

    for node_a, node_b in zip(target_a.path, target_b.path):
        if node_a == node_b:
            common_path.append(node_a)
        else:
            break

    return common_path
Beispiel #17
0
    def tree(self, selected_refs, synonyms, hyponyms):
        
        #Adding lists to class:
        self.selected_refs = selected_refs
        self.synonyms = synonyms
        self.hyponyms = hyponyms
        
        participants = Node('participants')

        ##hyponyms
        for hyp in self.hyponyms:
            if not findall_by_attr(participants, hyp):
                hypo = Node(hyp, parent=participants)
                for hyper in self.hyponyms[hyp]:
                    hyper = Node(hyper, parent=hypo)

            else:
                for hyper in self.hyponyms[hyp]:
                    hypo = find_by_attr(participants, hyp)
                    hyper = Node(hyper, parent=hypo)

        ##synonyms
        for syn in self.synonyms:
            overlap = findall_by_attr(participants, syn) 
            if overlap: #The synonym already exists in the tree
                for n in overlap:
                    syno = find_by_attr(n, syn)
                    for s in self.synonyms[syn]:
                        s0 = Node(s, parent=syno) #Creating node
                        s1 = Node(syno.name, parent=s0) #Creating additional node for doubling and reversing the edge.
            else: #If the synonym does not exist in the tree
                syno = Node(syn, parent=participants) #Creating node
                for s in self.synonyms[syn]:
                    s0 = Node(s, parent=syno) #Creating synonym
                    s1 = Node(syno.name, parent=s0) #Reverse node
                
        ##remaining participants
        for n in self.selected_refs:
            if not findall_by_attr(participants, n):
                node = Node(n, parent=participants)    

        self.tree = participants
        return participants
def test_field_cross_reference():
    data = io.BytesIO(bytes([0x04, 0x00, 0x00, 0x00]))
    template = XMLTemplateParser("""
        <template name="template0">
            <layout name="layout0">
                <area name="area0">
                    <field name="field1-size" size="4"></field>
                    <field name="field1" size="{field1-size, byteorder=little}"></field>
                    <field name="field2" size="{field1-size, byteorder=big}"></field>
                </area>
            </layout>
        </template>""").parse()
    binalyzer = Binalyzer(template, data)
    field1_size = find_by_attr(template, "field1-size")
    field1 = find_by_attr(template, "field1")
    field2 = find_by_attr(template, "field2")
    assert field1_size.size == 4
    assert field1_size.value == bytes([0x04, 0x00, 0x00, 0x00])
    assert field1.size == 0x4
    assert field2.size == 0x4000000
def test_binding_at_stream_assignment():
    template = XMLTemplateParser("""
        <template name="template0">
            <layout name="layout0">
                <area name="area0">
                    <field name="field1_size" size="4"></field>
                    <field name="field1" size="{field1_size, byteorder=little}"></field>
                    <field name="field2" size="{field1_size, byteorder=big}"></field>
                </area>
            </layout>
        </template>""").parse()
    binalyzer = Binalyzer(template, io.BytesIO(bytes(4 * [0x0])))
    binalyzer.data = io.BytesIO(bytes([0x04, 0x00, 0x00, 0x00]))
    field1_size = find_by_attr(template, "field1_size")
    field1 = find_by_attr(template, "field1")
    field2 = find_by_attr(template, "field2")
    assert field1_size.size == 4
    assert field1_size.value == bytes([0x04, 0x00, 0x00, 0x00])
    assert field1.size == 0x4
    assert field2.size == 0x4000000
def test_template_reference_with_provider(binalyzer):
    data = io.BytesIO(bytes([0xE5, 0x8E, 0x26]))
    template = XMLTemplateParser(
        """
        <template name="template0">
            <layout name="layout0">
                <area name="area0">
                    <field name="field1_size" size="3"></field>
                    <field name="field1" size="{field1_size, provider=mock.ref_custom}"></field>
                </area>
            </layout>
        </template>""",
        binalyzer=binalyzer,
    ).parse()
    binalyzer = Binalyzer(template, data)
    field1_size = find_by_attr(template, "field1_size")
    field1 = find_by_attr(template, "field1")
    assert field1_size.size == 3
    assert field1_size.value == bytes([0xE5, 0x8E, 0x26])
    assert field1.size == 2526949
Beispiel #21
0
def find_deepest_concept(L):
    maxDepth = -float('inf')
    deepestConceptInClassTree = ""
    root = load_tree()
    for c, v in L.items():
        depth = find_by_attr(root, "Guitarist").depth
        L[c] = depth * v
        if L[c] > maxDepth:
            maxDepth = L[c]
            deepestConceptInClassTree = c

    return 'http://dbpedia.org/ontology/' + deepestConceptInClassTree
Beispiel #22
0
async def analytics_callback_tree_api(request, user):
    # look at the current callbacks and return their data in a more manageable tree format
    # http://anytree.readthedocs.io/en/latest/
    query = await db_model.operation_query()
    operation = await db_objects.get(query, name=user['current_operation'])
    query = await db_model.callback_query()
    dbcallbacks = await db_objects.execute(query.where(Callback.operation == operation))
    callbacks = []
    # Default values here
    display_config = {}
    display_config['inactive'] = True  # by default, include all callbacks
    display_config['strikethrough'] = False
    # The POST version of this API function will provide modifiers for what specific information to provide in the callback tree, but the main logic remains the same
    if request.method == 'POST':
        data = request.json
        if 'inactive' in data:
            display_config['inactive'] = data['inactive']
        if 'strikethrough' in data:
            display_config['strikethrough'] = data['strikethrough']
    
    for dbc in dbcallbacks:
        if display_config['inactive']:  # include everything
            callbacks.append(dbc.to_json())
        elif dbc.active:
            callbacks.append(dbc.to_json())
        elif not dbc.active:
            json_val = dbc.to_json()
            json_val['description'] = "CALLBACK DEAD " + json_val['description']
            callbacks.append(json_val)
    # every callback with a pcallback of null should be at the root (remove them from list as we place them)
    tree = []
    while len(callbacks) != 0:  # when we hit 0 we are done processing
        for c in callbacks:
            # this is the root of a 'tree'
            if c['pcallback'] == 'null':
                display = await analytics_callback_tree_api_function(c, display_config)
                tree.append(Node(str(c['id']), display=display))
                callbacks.remove(c)  # remove the one we just processed from our list
            else:
                for t in tree:
                    # for each tree in our list, see if we can find the parent
                    leaf = find_by_attr(t, str(c['pcallback']))
                    if leaf:
                        display = await analytics_callback_tree_api_function(c, display_config)
                        Node(str(c['id']), parent=leaf, display=display)
                        callbacks.remove(c)
                        break
    output = ""
    for t in tree:
        output += str(RenderTree(t, style=DoubleStyle).by_attr("display")) + "\n"
    return text(output)
Beispiel #23
0
def load_tree():
    root = None
    f = open('dbp_tree_input.txt', 'r')
    lines = f.readlines()[1:]
    root = Node(lines[0].split(" ")[0])
    for line in lines:
        line = line.split(" ")
        Node("".join(line[1:]).strip(), parent=find_by_attr(root, line[0]))

    ### print the tree
    # for pre, _, node in RenderTree(root):
    #     print("%s%s" % (pre, node.name))

    return root
Beispiel #24
0
    def get_parent_gate(self, gate_id):
        """
        Retrieve the gate ID for a parent gate of the given gate ID.

        :param gate_id: text string of a gate ID
        :return: text string of the parent gate ID, None if given gate reference has no parent gate.
        """
        n = anytree.find_by_attr(self._gate_tree, gate_id)

        if n is None:
            raise ValueError("Gate ID %s was not found in gating strategy" %
                             gate_id)

        return n.parent.gate
Beispiel #25
0
 def make_data(self):
     train_path = os.path.join(self.raw_folder, 'ILSVRC2012_img_train')
     test_path = os.path.join(self.raw_folder, 'ILSVRC2012_img_val')
     meta_path = os.path.join(self.raw_folder, 'ILSVRC2012_devkit_t12')
     extract_file(os.path.join(self.raw_folder, 'ILSVRC2012_img_train.tar'),
                  train_path)
     extract_file(os.path.join(self.raw_folder, 'ILSVRC2012_img_val.tar'),
                  test_path)
     extract_file(
         os.path.join(self.raw_folder, 'ILSVRC2012_devkit_t12.tar.gz'),
         meta_path)
     for archive in [
             os.path.join(train_path, archive)
             for archive in os.listdir(train_path)
     ]:
         extract_file(archive, os.path.splitext(archive)[0], delete=True)
     classes_to_labels, classes_size = make_meta(meta_path)
     with open(
             os.path.join(meta_path, 'data',
                          'ILSVRC2012_validation_ground_truth.txt'),
             'r') as f:
         test_id = f.readlines()
     test_id = [int(i) for i in test_id]
     test_img = sorted(
         [os.path.join(test_path, file) for file in os.listdir(test_path)])
     test_wnid = []
     for test_id_i in test_id:
         test_node_i = anytree.find_by_attr(classes_to_labels['label'],
                                            name='id',
                                            value=test_id_i)
         test_wnid.append(test_node_i.name)
     for test_wnid_i in set(test_wnid):
         os.mkdir(os.path.join(test_path, test_wnid_i))
     for test_wnid_i, test_img in zip(test_wnid, test_img):
         shutil.move(
             test_img,
             os.path.join(test_path, test_wnid_i,
                          os.path.basename(test_img)))
     train_img, train_label = make_img(
         os.path.join(self.raw_folder, 'ILSVRC2012_img_train'),
         IMG_EXTENSIONS, classes_to_labels['label'])
     test_img, test_label = make_img(
         os.path.join(self.raw_folder, 'ILSVRC2012_img_val'),
         IMG_EXTENSIONS, classes_to_labels['label'])
     train_target = {'label': train_label}
     test_target = {'label': test_label}
     return (train_img, train_target), (test_img,
                                        test_target), (classes_to_labels,
                                                       classes_size)
def make_tree(root, name, attribute=None):
    if len(name) == 0:
        return
    if attribute is None:
        attribute = {}
    this_name = name[0]
    next_name = name[1:]
    this_attribute = {k: attribute[k][0] for k in attribute}
    next_attribute = {k: attribute[k][1:] for k in attribute}
    this_node = anytree.find_by_attr(root, this_name)
    this_index = root.index + [len(root.children)]
    if this_node is None:
        this_node = anytree.Node(this_name, parent=root, index=this_index, **this_attribute)
    make_tree(this_node, next_name, next_attribute)
    return
Beispiel #27
0
def is_descendent(parent, child):
    """ given two nodes, check if one is ancestor of the other """
    root = get_node_tree()
    parent_node = find_by_attr(root, name='id', value=get_ip_by_handle(parent))

    decendency = False
    for node in parent_node.descendants:
        if "." in child:
            decendency = node.id == child or decendency
        else:
            decendency = next(
                (True for x in node.properties['handles'] if x == child),
                False) or decendency

    return decendency
def make_img(path, extensions, classes_to_labels):
    img, label = [], []
    classes = []
    leaf_nodes = classes_to_labels.leaves
    for node in leaf_nodes:
        classes.append(node.name)
    for c in sorted(classes):
        d = os.path.join(path, c)
        if not os.path.isdir(d):
            continue
        for root, _, filenames in sorted(os.walk(d)):
            for filename in sorted(filenames):
                if has_file_allowed_extension(filename, extensions):
                    cur_path = os.path.join(root, filename)
                    img.append(cur_path)
                    label.append(anytree.find_by_attr(classes_to_labels, c).flat_index)
    return img, label
def printTree(edges_list):
    # create root
    root = Node("Root")

    for (node1, node2) in edges_list:
        Node(node2, parent=find_by_attr(root, node1))
    for pre, _, node in RenderTree(root):
        print("%s%s" % (pre, node.name))

    # Print to file --- GRAPVIZ MUST BE INSTALLED!!!
    installed_packages = [
        "%s" % i.key for i in pip.get_installed_distributions()
    ]

    if 'graphviz' in installed_packages:
        RenderTreeGraph(root).to_picture("../Outputs/Part3/tree.png")
        print('Tree generated correctly')
def organizeParentPanels(panels, m):
    print('todo: organizing parent panels')
    root = Node('root')
    print('created root node')
    for key in panels:
        n = Node(key)
        print(n)
        parent = panels[key]['parent']
        print(f'node:{key}, parent:={parent}')
        print(f'{type(parent)}, {parent}')
        if not parent:
            print('not parent check')
            n.parent = root
        else:
            pn = find_by_attr(root, parent)
            n.parent = pn
    m['nodes'] = root
    pass