Beispiel #1
0
def load_and_run_detector(options, detector=None):

    imageFileNames = options_to_images(options)

    if options.forceCpu:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

    print('Running detector on {} images'.format(len(imageFileNames)))

    if len(imageFileNames) == 0:
        print('Warning: no files available')
        return

    # Load detector if necessary
    if detector is None:
        startTime = time.time()
        print('Loading model...')
        detector = TFDetector(options.detectorFile)
        elapsed = time.time() - startTime
        print("Loaded model in {}".format(
            humanfriendly.format_timespan(elapsed)))

    # Run detector on target images
    boxes, scores, classes, imageFileNames = generate_detections(
        detector, imageFileNames, options)

    assert len(boxes) == len(imageFileNames)

    print('Writing output...')

    df = detector_output_to_api_output(imageFileNames, options, boxes, scores,
                                       classes)

    # PERF: iterrows is the wrong way to do this for large files
    if options.outputPathReplacements is not None:
        for iRow, row in df.iterrows():
            for query in options.outputPathReplacements:
                replacement = options.outputPathReplacements[query]
                row['image_path'] = row['image_path'].replace(
                    query, replacement)

    if options.outputRelativeFilenames and os.path.isdir(options.imageFile):
        for iRow, row in df.iterrows():
            row['image_path'] = os.path.relpath(row['image_path'],
                                                options.imageFile)

    # While we're in transition between formats, write out the old format and
    # convert to the new format
    if options.outputFile.endswith('.csv'):
        write_api_results(df, options.outputFile)
    else:
        tempfilename = next(tempfile._get_candidate_names()) + '.csv'
        write_api_results(df, tempfilename)
        convert_output_format.convert_csv_to_json(tempfilename,
                                                  options.outputFile)
        os.remove(tempfilename)

    return boxes, scores, classes, imageFileNames
def update_detection_table(RepeatDetectionResults,
                           options,
                           outputFilename=None):
    detectionResults = RepeatDetectionResults.detectionResults

    # An array of length nDirs, where each element is a list of DetectionLocation
    # objects for that directory that have been flagged as suspicious
    suspiciousDetectionsByDirectory = RepeatDetectionResults.suspiciousDetections

    nBboxChanges = 0

    print('Updating output table')

    # For each suspicious detection (two loops)
    for iDir, directoryEvents in enumerate(suspiciousDetectionsByDirectory):

        for iDetectionEvent, detectionEvent in enumerate(directoryEvents):

            locationBbox = detectionEvent.bbox

            for iInstance, instance in enumerate(detectionEvent.instances):

                instanceBbox = instance.bbox

                # This should match the bbox for the detection event
                iou = ct_utils.get_iou(instanceBbox, locationBbox)
                # There are instances where iou is very close to the threshold so cannot use >
                assert iou >= options.iouThreshold

                assert instance.filename in RepeatDetectionResults.filenameToRow
                iRow = RepeatDetectionResults.filenameToRow[instance.filename]
                row = detectionResults.iloc[iRow]
                rowDetections = row['detections']
                detectionToModify = rowDetections[instance.iDetection]

                # Make sure the bounding box matches
                assert (instanceBbox[0:3] == detectionToModify['bbox'][0:3])

                # Make the probability negative, if it hasn't been switched by
                # another bounding box
                if detectionToModify['conf'] >= 0:
                    detectionToModify['conf'] = -1 * detectionToModify['conf']
                    nBboxChanges += 1

            # ...for each instance

        # ...for each detection

    # ...for each directory

    # Update maximum probabilities

    # For each row...
    nProbChanges = 0
    nProbChangesToNegative = 0
    nProbChangesAcrossThreshold = 0

    for iRow, row in detectionResults.iterrows():

        detections = row['detections']
        if len(detections) == 0:
            continue

        maxPOriginal = float(row['max_detection_conf'])
        assert maxPOriginal >= 0

        maxP = None
        nNegative = 0

        for iDetection, detection in enumerate(detections):
            p = detection['conf']

            if p < 0:
                nNegative += 1

            if (maxP is None) or (p > maxP):
                maxP = p

        if abs(maxP - maxPOriginal) > 0.00000001:

            # We should only be making detections *less* likely
            assert maxP < maxPOriginal
            # row['max_confidence'] = str(maxP)
            detectionResults.at[iRow, 'max_detection_conf'] = maxP

            nProbChanges += 1

            if maxP < 0:
                nProbChangesToNegative += 1

            if maxPOriginal >= options.confidenceMin and maxP < options.confidenceMin:
                nProbChangesAcrossThreshold += 1

            # Negative probabilities should be the only reason maxP changed, so
            # we should have found at least one negative value
            assert nNegative > 0

        # ...if there was a change to the max probability for this row

    # ...for each row

    if outputFilename is not None:
        write_api_results(detectionResults, RepeatDetectionResults.otherFields,
                          outputFilename)

    print(
        'Finished updating detection table\nChanged {} detections that impacted {} maxPs ({} to negative) ({} across confidence threshold)'
        .format(nBboxChanges, nProbChanges, nProbChangesToNegative,
                nProbChangesAcrossThreshold))

    return detectionResults
Beispiel #3
0
def update_detection_table(RepeatDetectionResults,
                           options,
                           outputFilename=None):

    detectionResults = RepeatDetectionResults.detectionResults

    # An array of length nDirs, where each element is a list of DetectionLocation
    # objects for that directory that have been flagged as suspicious
    suspiciousDetectionsByDirectory = RepeatDetectionResults.suspiciousDetections

    nBboxChanges = 0

    print('Updating output table')

    # For each directory
    for iDir, directoryEvents in enumerate(suspiciousDetectionsByDirectory):

        # For each suspicious detection group in this directory
        for iDetectionEvent, detectionEvent in enumerate(directoryEvents):

            locationBbox = detectionEvent.bbox

            # For each instance of this suspicious detection
            for iInstance, instance in enumerate(detectionEvent.instances):

                instanceBbox = instance.bbox

                # This should match the bbox for the detection event
                iou = ct_utils.get_iou(instanceBbox, locationBbox)

                # The bbox for this instance should be almost the same as the bbox
                # for this detection group, where "almost" is defined by the IOU
                # threshold.
                assert iou >= options.iouThreshold
                # if iou < options.iouThreshold:
                #    print('IOU warning: {},{}'.format(iou,options.iouThreshold))

                assert instance.filename in RepeatDetectionResults.filenameToRow
                iRow = RepeatDetectionResults.filenameToRow[instance.filename]
                row = detectionResults.iloc[iRow]
                rowDetections = row['detections']
                detectionToModify = rowDetections[instance.iDetection]

                # Make sure the bounding box matches
                assert (instanceBbox[0:3] == detectionToModify['bbox'][0:3])

                # Make the probability negative, if it hasn't been switched by
                # another bounding box
                if detectionToModify['conf'] >= 0:
                    detectionToModify['conf'] = -1 * detectionToModify['conf']
                    nBboxChanges += 1

            # ...for each instance

        # ...for each detection

    # ...for each directory

    # Update maximum probabilities

    # For each row...
    nProbChanges = 0
    nProbChangesToNegative = 0
    nProbChangesAcrossThreshold = 0

    for iRow, row in detectionResults.iterrows():

        detections = row['detections']
        if isinstance(detections, float):
            assert isinstance(row['failure'], str)
            continue

        if len(detections) == 0:
            continue

        maxPOriginal = float(row['max_detection_conf'])

        # No longer strictly true; sometimes I run RDE on RDE output
        # assert maxPOriginal >= 0
        assert maxPOriginal >= -1.0

        maxP = None
        nNegative = 0

        for iDetection, detection in enumerate(detections):

            p = detection['conf']

            if p < 0:
                nNegative += 1

            if (maxP is None) or (p > maxP):
                maxP = p

        if abs(maxP - maxPOriginal) > 1e-3:

            # We should only be making detections *less* likely
            assert maxP < maxPOriginal
            # row['max_confidence'] = str(maxP)
            detectionResults.at[iRow, 'max_detection_conf'] = maxP

            nProbChanges += 1

            if (maxP < 0) and (maxPOriginal >= 0):
                nProbChangesToNegative += 1

            if (maxPOriginal >=
                    options.confidenceMin) and (maxP < options.confidenceMin):
                nProbChangesAcrossThreshold += 1

            # Negative probabilities should be the only reason maxP changed, so
            # we should have found at least one negative value
            assert nNegative > 0

        # ...if there was a meaningful change to the max probability for this row

    # ...for each row

    # If we're also writing output...
    if outputFilename is not None and len(outputFilename) > 0:
        write_api_results(detectionResults, RepeatDetectionResults.otherFields,
                          outputFilename)

    print(
        'Finished updating detection table\nChanged {} detections that impacted {} maxPs ({} to negative) ({} across confidence threshold)'
        .format(nBboxChanges, nProbChanges, nProbChangesToNegative,
                nProbChangesAcrossThreshold))

    return detectionResults