class Jobs(Resource): parser = api.parser() parser.add_argument('page_size', required=False, type=str, help="Job Listing Pagination Size") parser.add_argument('offset', required=False, type=str, help="Job Listing Pagination Offset") def get(self, username): """ This will return run a list of jobs for a specified user :return: """ # request_xml = request.data # job_id = ogc.parse_status_request(request_xml) try: logging.info("Finding jobs for user: {}".format(username)) size = request.form.get('page_size', request.args.get('page_size', 100)) offset = request.form.get('offset', request.args.get('offset', 0)) response = hysds.get_mozart_jobs(username=username, page_size=size, offset=offset) job_list = response.get("result") logging.info("Found Jobs: {}".format(job_list)) response_body = dict() response_body["code"] = 200 response_body["jobs"] = job_list response_body["message"] = "success" """ <?xml version="1.0" encoding="UTF-8"?> <Jobs> <Job> <JobID></JobID> <JobStatus></JobStatus> <JobType></JobType> <JobParams></JobParams> </Job> <Job>...</Job> <Job>...</Job> ... <Jobs> """ return response_body except Exception as ex: return Response(ogc.get_exception(type="FailedGetJobs", origin_process="GetJobs", ex_message="Failed to get jobs for user {}. " \ " please contact administrator " \ "of DPS".format(username)), mimetype='text/xml', status=500)
from flask_restplus import Resource from werkzeug.datastructures import FileStorage from flask import current_app as app from ..models import timeplan_item from api.restplus import api ns = api.namespace( 'timeplan', description='Operations related to the injection timeplan of the host') timeplan_parser = api.parser() timeplan_parser.add_argument('timeplan', location='files', type=FileStorage, required=True) @ns.route('/') class HostTimePlan(Resource): @api.doc(responses={ 200: 'Timeplan has been returned.', 400: 'No Timeplan exists.' }) @api.marshal_with(timeplan_item) def get(self): """ Returns the currently injected timeplan as JSON Object. """ AnomalyEngine = app.config['AnomalyEngine'] timeplan = AnomalyEngine.timeplan
from flask_restplus import Resource, fields from api.restplus import api from api.ende.logic.tf_client import make_prediction from werkzeug.datastructures import FileStorage from nltk import sent_tokenize # create dedicated namespace for ENDE client ns = api.namespace( 'ende_client', description= 'Operations for Translating the ende model using the sentence piece model') # Flask-RestPlus specific parser for file uploading UPLOAD_KEY = 'file' UPLOAD_LOCATION = 'files' upload_parser = api.parser() upload_parser.add_argument(UPLOAD_KEY, location=UPLOAD_LOCATION, type=FileStorage, required=True) text_parser = api.parser() text_parser.add_argument('text', required=True, help='enter sentences') @ns.route('/prediction/file') class EndePredictionFile(Resource): @ns.doc(description='input is text file, output json', responses={ 200: "Success", 400: "Bad request", 500: "Internal server error"
import logging from flask import request from flask_restplus import Resource from api.restplus import api from api.gan.logic.tf_serving_client import make_prediction from werkzeug.datastructures import FileStorage log = logging.getLogger(__name__) # create dedicated namespace for GAN client ns = api.namespace('gan_client', description='Operations for GAN client') # Flask-RestPlus specific parser for image uploading UPLOAD_KEY = 'inputs' UPLOAD_LOCATION = 'files' upload_parser = api.parser() upload_parser.add_argument(UPLOAD_KEY, location=UPLOAD_LOCATION, type=FileStorage, required=True) @ns.route('/prediction') class GanPrediction(Resource): @ns.doc( description='Predict the house number on the image using GAN model. ' + 'Return 3 most probable digits with their probabilities', responses={ 200: "Success", 400: "Bad request", 500: "Internal server error"
import json from flask import request from flask_restplus import Resource from api.restplus import api from api.gan.logic.tf_serving_client import make_prediction from werkzeug.datastructures import FileStorage # create dedicated namespace for GAN client ns = api.namespace('gan_client', description='Operations for GAN client') # Flask-RestPlus specific parser for image uploading UPLOAD_KEY = 'image' UPLOAD_LOCATION = 'files' upload_parser = api.parser() upload_parser.add_argument(UPLOAD_KEY, location=UPLOAD_LOCATION, type=FileStorage, required=True) @ns.route('/prediction') class GanPrediction(Resource): @ns.doc(description='Predict the house number on the image using GAN model. ' + 'Return 3 most probable digits with their probabilities', responses={ 200: "Success", 400: "Bad request", 500: "Internal server error" })
from flask_restplus import Resource, reqparse from flask import current_app as app from api.restplus import api from ..models import wan_simulation import logging import json ns = api.namespace('wan_simulation', description='Simulate a Wide Area Network') simulation_parser = api.parser() simulation_parser.add_argument('rate', type=str, required=False, help="Network bandwidth rate") simulation_parser.add_argument('delay', type=str, required=False, help="Round trip network delay in ms") simulation_parser.add_argument('delay-distro', type=str, required=False, help="Distribution of network latency") simulation_parser.add_argument('loss', type=str, required=False, help="Round trip packet loss rate") simulation_parser.add_argument('duplicate', type=str, required=False, help="Round trip packet duplicate rat")