Beispiel #1
0
    def findPath(self, state):
        #print "findPath"
        #initialize the queue for a Depth First Seach
        bfsQueue = self.getBFSQueue(state)
        #copy of the current state of internal map to mark searched nodes
        copyMap = deepcopy(self.map)

        #conducts bfs search
        while len(bfsQueue) != 0:
            #pop the element from the queue
            nextCheck = bfsQueue.pop(0)
            #get the position stored at element
            nextCheckPosition = nextCheck[0]
            #extract x position from position
            possibleX = nextCheckPosition[0]
            #extract y position from position
            possibleY = nextCheckPosition[1]
            #if the position contains food, a capsule, or is unknown, pacman will visit it
            if self.map[possibleX][possibleY] == "F" or self.map[possibleX][possibleY] == "?" or self.map[possibleX][possibleY] == "C":
                #print "next move"
                #pop the first step of the path stored in the currently searching element
                nextMove = nextCheck[1].pop(0)
                #set the internal path of pacman to the one found by the BFS
                self.path = nextCheck[1]
                #mark the position on the map as "P" to mark visited positions
                self.map[nextMove[0][0]][nextMove[0][1]] = "P"
                #set lastDir as the next move
                self.lastDir = nextMove[1]
                #return the popped direction stored at the frist step above as the next move
                return api.makeMove(self.lastDir, api.legalActions(state))
            else:
                #if position does not contain food, capsule, or unknown information, continue the BFS search
                #print "searching bfs"
                #check all possibleMoves from the current popped from the queue in the current iteration of the BFS algorithm
                for move in self.possibleMoves:
                    #get the next position in the search
                    nextPosition = self.sumPair(move[0], nextCheckPosition)
                    #if this postion is neither a wall nor a location already searched by the algorithm, add it to the search
                    if self.map[nextPosition[0]][nextPosition[1]] != "W" and copyMap[nextPosition[0]][nextPosition[1]] != "X":
                        #mark this location as searched by the BFS algorithm
                        copyMap[nextPosition[0]][nextPosition[1]] = "X"
                        #copy the existing path from the search into a new variable
                        path = deepcopy(nextCheck[1])
                        #add in the new loation and the direction to move to said location to the path
                        path.append((nextPosition, move[1]))
                        #add the path to the bfsQueue
                        bfsQueue.append((nextPosition, path))

        #if no moves are available, pacman will not move
        self.lastDir = Directions.STOP
        return api.makeMove(Directions.STOP,  api.legalActions(state))
Beispiel #2
0
    def getAction(self, state):
        legal = api.legalActions(state)

        corners = api.corners(state)
        print(corners)

        return api.makeMove(Directions.STOP, legal)
Beispiel #3
0
    def initialize(self, state):

        # get location of all visible food
        foods = api.food(state)
        #get location of all corners
        corners = api.corners(state)
        #get location of all visible capsules
        capsules = api.capsules(state)
        # Get the actions we can try, and remove "STOP" if that is one of them.
        legal = api.legalActions(state)
        #get location of all visible walls
        walls = api.walls(state)
        #get pacmans position
        pacman = api.whereAmI(state)
        x = pacman[0]
        y = pacman[1]

        if self.map == None:
            width = 0
            height = 0
            for corner in corners:
                if corner[0] > width:
                    width = corner[0]
                if corner[1] > height:
                    height = corner[1]
            self.map = [["?" for y in range(height)] for x in range(width)]
            for wall in walls:
                self.map[wall[0]][wall[1]] = "W"
            for food in foods:
                self.map[food[0]][food[1]] = "F"
            for capsule in capsules:
                self.map[capsule[0]][capsule[1]] = "F"
            self.map[x][y] = "0"

        self.init = True
Beispiel #4
0
    def getAction(self, state):

        # How we access the features.
        features = api.getFeatureVector(
            state
        )  # first 4: walls, next 4: food, next 8: ghosts, next 1: ghost infront, next 1: class

        # *****************************************************
        #
        # Here you should insert code to call the classifier to
        # decide what to do based on features and use it to decide
        # what action to take.
        #
        # *******************************************************

        # from collected 'features' vector, classify as any of 0-3.
        # this gives your move

        # Get class from model and convert to action
        number = self.model.predict(features)
        action = self.convertNumberToMove(number)

        # Get the actions we can try.
        legal = api.legalActions(state)

        return api.makeMove(action, legal)
Beispiel #5
0
    def getAction(self, state):
        """Get Action of pacman

        Args:
            state: The state of an agent (configuration, speed, scared, etc).
        """
        # Get the actions we can try, and remove "STOP" if that is one of them.
        legal = api.legalActions(state)
        if Directions.STOP in legal:
            legal.remove(Directions.STOP)

        cols,rows = self.mapSize(state) # Get the layout size
        # Judge the layout type medium or small
        map_type = 'medium'
        if cols >= 10 and rows >= 10:   
            map_type = 'medium'
        else:
            map_type = 'small'

        # Update value map after pacman moved
        updated_map = self.mapUpdate(state)
        # Update value map with iteration
        updated_map = self.Iteration(state,updated_map,map_type)
    
        # Make move
        return api.makeMove(self.whichToMove(state,updated_map), legal)
Beispiel #6
0
    def getAction(self,state):
        walls = api.walls(state)
        width,height = api.corners(state)[-1]
        legal = api.legalActions(state)
        me = api.whereAmI(state)
        food = api.food(state)
        ghosts = api.ghosts(state)
        capsules = api.capsules(state)
        direction = Directions.STOP
        x, y = me

        if not hasattr(self, 'map'):
            self.createMap(walls, width + 1, height + 1)

        self.checkForCapsules(capsules, legal, ghosts)
        legal = self.solveLoop(ghosts, legal)

        if len(ghosts):
            self.memorizeGhosts(ghosts)
            if self.counter < 0:
                for ghost in ghosts:
                    legal = self.checkForGhosts(ghost, me, legal)

        direction = self.pickMove(me, legal, width  + 1, height + 1, food)
        self.updatePosition(me, 1, self.map)


        self.printMap(self.map)


        self.last = direction
        return direction
Beispiel #7
0
 def getAction(self, state):
     self.updateMap(state)
     self.policyIteration()
     pacman = api.whereAmI(state)
     legal = api.legalActions(state)
     move = self.policy[pacman]
     return api.makeMove(move, legal)
    def getAction(self, state):

        start = api.whereAmI(state)

        # generate rewards for map locations in each game cycle to reflect changing conditions
        self.rewardMapping(state)

        # create the dictionary of states at the start of the game
        if not self.stateDict:
            self.stateMapping(state)

        # get converged utilities from value iteration
        gridVals = self.valueIteration(state)

        # get and assign the utility values and their associated locations to the Grid object, then print this map
        # representation to the console
        valKeys = gridVals.keys()
        valVals = gridVals.values()

        for i in range(len(gridVals)):
            y = valKeys[i][0]
            x = valKeys[i][1]
            val = '{:3.2f}'.format(valVals[i])
            self.map.setValue(y, x, val)

        self.map.prettyDisplay()

        # optimal policy for Pacman: get the location of the optimal utility from his current position
        sPrime = self.bestMove(state, gridVals)

        # required argument for makeMove()
        legal = api.legalActions(state)

        # return a move based on the direction returned by singleMove() and sPrime
        return api.makeMove(self.singleMove(start, sPrime), legal)
Beispiel #9
0
    def getAction(self, state):
        """ This function is used to make pacman move.

        Parameter:
        state: the state of pacman.

        Returns the move of pacman.
        """

        # Get the actions we can try, and remove "STOP" if that is one of them.
        legal = api.legalActions(state)
        if Directions.STOP in legal:
            legal.remove(Directions.STOP)

        # Get the size of layout
        rows,columns = self.map_size(state) 

        # Judge the map_type is mediumClass or smallGrid
        map_type = 'mediumClass'
        if rows >= 10 and columns >= 10:   
            map_type = 'mediumClass'
        else:
            map_type = 'smallGrid'

        # Update the value map once pacman moved
        value_map = self.map_update(state)

        # Update the value map with value_iteration
        value_map = self.value_iteration(state, value_map, map_type)
    
        # Make move
        return api.makeMove(self.where_to_move(state,value_map), legal)
Beispiel #10
0
    def getAction(self, state):

        # How we access the features.
        features = api.getFeatureVector(state)

        # *****************************************************
        #
        # Here you should insert code to call the classifier to
        # decide what to do based on features and use it to decide
        # what action to take.
        #
        # *******************************************************

        nn = self.nn

        # use the trained neural network to predict
        y_pred = nn.predict(features)

        # transform the output value from a list of 0 and 1 to a single value
        n = 0
        for i in range(len(y_pred)):
            if y_pred[i] > y_pred[n]:
                n = i

        # Get the actions we can try.
        legal = api.legalActions(state)

        # getAction has to return a move. Here we pass "STOP" to the
        # API to ask Pacman to stay where they are. We need to pass
        # the set of legal moves to teh API so it can do some safety
        # checking.
        return api.makeMove(self.convertNumberToMove(n), legal)
Beispiel #11
0
    def getAction(self, state):

        # How we access the features.
        features = api.getFeatureVector(state)

        # *****************************************************
        #
        # Here you should insert code to call the classifier to
        # decide what to do based on features and use it to decide
        # what action to take.
        features = np.append(features, 0)
        number = self.PredictMove(features)
        move = self.convertNumberToMove(number)
        #
        # *******************************************************

        # Get the actions we can try.
        legal = api.legalActions(state)
        # Add some randomness to not get pacman completely stuck in the corner.
        if move not in legal:
            move = random.choice(legal)
        # getAction has to return a move. Here we pass "STOP" to the
        # API to ask Pacman to stay where they are. We need to pass
        # the set of legal moves to teh API so it can do some safety
        # checking.
        return api.makeMove(move, legal)
Beispiel #12
0
    def getAction(self, state):

        self.pacman = api.whereAmI(state)
        self.legal = api.legalActions(state)
        self.ghosts = api.ghosts(state)

        if not self.init:
            self.initialize(state)
        else:
        #    if self.reward[self.pacman[0]][self.pacman[1]] < 10:
        #        self.reward[self.pacman[0]][self.pacman[1]] = self.reward[self.pacman[0]][self.pacman[1]] - 1
        #    else:
                self.reward[self.pacman[0]][self.pacman[1]] = self.baseReward

        reward = self.updateMap(state)

        self.bellman(state, reward)


        print ''
        for row in reward:
            print row

        print ''
        for row in self.utility:
            print row


        #return self.getMove(state)
        return api.makeMove(Directions.STOP, self.legal)
    def getAction(self, state):
        # find the facing direction of ghost
        self.current_ghosts_states = api.ghostStatesWithTimes(state)

        valid_facing = [(1, 0), (-1, 0), (0, 1), (0, -1), (0, 0)]
        self.ghosts_facing = []
        for i in range(len(self.current_ghosts_states)):
            facing_of_ghost = (int(
                round(self.current_ghosts_states[i][0][0] -
                      self.last_ghosts_states[i][0][0])),
                               int(
                                   round(self.current_ghosts_states[i][0][1] -
                                         self.last_ghosts_states[i][0][1])))
            # elated by pacman
            if facing_of_ghost not in valid_facing:
                facing_of_ghost = (0, 0)
            self.ghosts_facing.append(facing_of_ghost)

        self.last_ghosts_states = self.current_ghosts_states

        # search optimal policy and do an optimal action
        self.initialRewardMap(state)

        pacman = api.whereAmI(state)
        utilities_map = self.updateUtilities()

        legal = api.legalActions(state)

        action_vectors = [Actions.directionToVector(a, 1) for a in legal]
        optic_action = max(
            map(
                lambda x: (float(
                    utilities_map.getValue(x[0] + pacman[0], x[1] + pacman[1])
                ), x), action_vectors))
        return api.makeMove(Actions.vectorToDirection(optic_action[1]), legal)
Beispiel #14
0
    def deGhost(self, state):
        # Avoid ghosts
        #
        # When running from a ghost, if pacman turns a corner,
        # pacman can no longer see ghost, and thus may backtrack
        # towards the ghost, causing him to get caught.
        # Avoid this by going straight and never backtracking
        # for 2 steps. Allows pacman to turn corners without losing
        # track of ghost and backtracking towards it

        self.update(state)

        # print "Avoiding ghosts"

        cur = api.whereAmI(state)
        legal = api.legalActions(state)
        legal.remove(Directions.STOP)
        if len(legal) > 1:
            #Remove option to backtrack
            legal.remove(self.oppositeDirection(state, self.last))
        #Go straight if possible
        if self.last in legal:
            return self.last
        self.last = random.choice(legal)
        return self.last
Beispiel #15
0
    def getAction(self, state):

        self.pacman = api.whereAmI(state)
        self.legal = api.legalActions(state)

        if not self.init:
            self.initialize(state)
        else:
            #    if self.reward[self.pacman[0]][self.pacman[1]] < 10:
            #        self.reward[self.pacman[0]][self.pacman[1]] = self.reward[self.pacman[0]][self.pacman[1]] - 1
            #    else:
            self.reward[self.pacman[0]][self.pacman[1]] = -1

        print "reward"
        for row in self.reward:
            print row

        self.updateMap(state)

        #print "\nreward"
        #for row in self.reward:
        #    print row

        self.bellman(state)

        #print "utility"
        #for row in self.utility:
        #    print row
        return self.getMove(state)
        return api.makeMove(Directions.STOP, self.legal)
Beispiel #16
0
        def getAction(self, state):

            # Get legal actions
            legal = api.legalActions(state)

            # Get location of Pacman
            pacman = api.whereAmI(state)

            # Get location of Ghosts
            locGhosts = api.ghosts(state)
            #print "locGhosts: ", locGhosts

            # Get distance between pacman and the ghosts
            for i in locGhosts:
                p_g_dist = util.manhattanDistance(pacman, i)

            # Get distance between ghosts
            g_g_dist = util.manhattanDistance(locGhosts[0], locGhosts[1])
            #print "g_g_dist:", g_g_dist

            # Get distance between pacman and first Ghost
            dist = []
            dist.append(locGhosts[0][0] - pacman[0])
            dist.append(locGhosts[0][1] - pacman[1])

            return api.makeMove(Directions.STOP, legal)
Beispiel #17
0
 def getAction(self, state):
     # Get the actions we can try, and remove "STOP" if that is one of them.
     legal = api.legalActions(state)
     if Directions.STOP in legal:
         legal.remove(Directions.STOP)
     # Random choice between the legal options.
     return api.makeMove(random.choice(legal), legal)
Beispiel #18
0
    def getAction(self, state):
        self.makeMap(state)
        self.addWallsToMap(state)
        self.addConsumablesToMap(state)
        self.updateGhosts(state)
        # Get the actions we can try, and remove "STOP" if that is one of them.
        pacman = api.whereAmI(state)
        legal = api.legalActions(state)
        ghosts = api.ghosts(state)
        corners = api.corners(state)
        layoutHeight = self.getLayoutHeight(corners)
        layoutWidth = self.getLayoutWidth(corners)
        
        if (layoutHeight-1)<8 and (layoutWidth-1)<8:
            for i in range (100):
                self.valIterS(state,0.68,-0.1)
        else:
            for i in range (50):
                self.valIterM(state,0.8,-0.1)
        plannedMove = self.plannedMove(pacman[0],pacman[1])
        #self.dankMap.prettyDisplay()
        #Feel free to uncomment this if you like to see the values generated

        if Directions.STOP in legal:
            legal.remove(Directions.STOP)
        
        #Input the calculated move for our next move
        return api.makeMove(plannedMove, legal)
Beispiel #19
0
 def getAction(self, state):
     value_list = []
     legal = api.legalActions(state)	
     corner = api.corners(state)
     pacman = api.whereAmI(state)
     pacman_x = pacman[0]
     pacman_y = pacman[1]
     legal_width = corner[3][0]
     legal_height = corner[3][1]
     # policy iteration and evaluation
     # get the value of four directions and select the direction corresponding to
     # the maximum value as Pacman's decision.
     map_effect = gridworld().map_valuegeneration(state, (legal_width, legal_height))
     value_list.append(map_effect[(pacman_x-1, pacman_y)])
     value_list.append(map_effect[(pacman_x+1, pacman_y)])
     value_list.append(map_effect[(pacman_x, pacman_y + 1)])
     value_list.append(map_effect[(pacman_x, pacman_y - 1)])
     max_value = value_list.index(max(value_list))
     # print 'map_effect'
     # print map_effect
     # print 'value_list'
     # print value_list
     # print 'max_value'
     # print max_value
     if max_value == 0:
         return api.makeMove(Directions.WEST, legal)
     if max_value == 1:
         return api.makeMove(Directions.EAST, legal)
     if max_value == 2:
         return api.makeMove(Directions.NORTH, legal)
     if max_value == 3:
         return api.makeMove(Directions.SOUTH, legal)
Beispiel #20
0
 def __maximum_expected_utility(self, state, debug_mode):
     # the location of agent
     agent_location = api.whereAmI(state)
     if debug_mode:
         print("\tagent_location=" + str(agent_location))
     # discover the legal actions
     legal = api.legalActions(state)
     # remove STOP to increase mobility
     legal.remove(Directions.STOP)
     # decide next move based on maximum expected utility
     action, maximum_expected_utility = None, None
     for direction in legal:
         utility = self.__utilities[self.__neighbors[agent_location]
                                    [direction]][1]
         if action == None or maximum_expected_utility == None:
             action = direction
             maximum_expected_utility = utility
         expected_utility = utility
         if debug_mode:
             print("\tdirection=" + str(direction) + "\texpected_utility=" +
                   str(expected_utility))
         if expected_utility > maximum_expected_utility:
             action = direction
             maximum_expected_utility = expected_utility
     if debug_mode:
         print("\taction=" + str(action))
     return action
Beispiel #21
0
 def getAction(self, state):
     legal = api.legalActions(state)
     if not Directions.WEST in legal:
         if Directions.EAST in legal:
             legal.remove(Directions.EAST)
         return api.makeMove(random.choice(legal), legal)
     return api.makeMove(Directions.WEST, legal)
Beispiel #22
0
    def getAction(self, state):
        legal = api.legalActions(state)
        if Directions.STOP in legal:
            legal.remove(Directions.STOP)

        #SELECT TARGET
        target = api.food(state)[0]
        print target

        pacman = api.whereAmI(state)
        print "Pacman position: ", pacman
        if self.backsteps == 0:
            if pacman[0] >= target[0]:
                if Directions.WEST in legal:
                    return api.makeMove(Directions.WEST, legal)
            else:
                if Directions.EAST in legal:
                    return api.makeMove(Directions.EAST, legal)

            if pacman[1] >= target[1]:
                if Directions.SOUTH in legal:
                    return api.makeMove(Directions.SOUTH, legal)
            else:
                if Directions.NORTH in legal:
                    return api.makeMove(Directions.NORTH, legal)
            self.backsteps = 2  #IT REACHES HERE ONLY ONCE BOTH DIRECTIONS IT WANTS TO GO ARE ILLEGAL, SO: BACKSTEP 2 STOPS TOWARDS RANDOM LEGAL DIRECTION
            self.backstep_direction = random.choice(legal)

        self.backsteps -= 1
        return api.makeMove(self.backstep_direction, legal)
Beispiel #23
0
    def getAction(self, state):

        legal = api.legalActions(state)
        if Directions.STOP in legal:
            legal.remove(Directions.STOP)

        target = (1, 1)
        print target

        print "Food locations: "
        print len(api.food(state))

        pacman = api.whereAmI(state)
        print "Pacman position: ", pacman
        if self.backsteps == 0:
            if pacman[0] >= target[0]:
                if Directions.WEST in legal:
                    return api.makeMove(Directions.WEST, legal)
            else:
                if Directions.EAST in legal:
                    return api.makeMove(Directions.EAST, legal)

            if pacman[1] >= target[1]:
                if Directions.SOUTH in legal:
                    return api.makeMove(Directions.SOUTH, legal)
            else:
                if Directions.NORTH in legal:
                    return api.makeMove(Directions.NORTH, legal)
            self.backsteps = 2
            self.backstep_direction = random.choice(legal)

        self.backsteps -= 1
        return api.makeMove(self.backstep_direction, legal)
Beispiel #24
0
    def getAction(self, state):
        """
            The function to work out next intended action carried out.

            Parameters:
                None

            Returns:
                Directions: Intended action that Pacman will carry out.
        """
        current_pos = api.whereAmI(state)
        corners = api.corners(state)
        food = api.food(state)
        ghosts = api.ghosts(state)
        ghost_scared_time = api.ghostStatesWithTimes(state)[0][1]
        walls = api.walls(state)
        legal = api.legalActions(state)
        capsules = api.capsules(state)
        protected_coords = walls + ghosts + [current_pos]

        width = max(corners)[0] + 1
        height = max(corners, key=itemgetter(1))[1] + 1

        board = self.create_board(width, height, -0.04)
        board.set_position_values(food, 1)
        board.set_position_values(walls, 'x')
        board.set_position_values(capsules, 2)

        if ghost_scared_time < 5:
            board.set_position_values(ghosts, -3)

            # for i in range(height):
            #     for j in range(width):
            #         print board[i, j],
            #     print
            # print
            print "GHOST LIST: ", ghosts
            for x, y in ghosts:
                # set the surrounding area around the ghost to half the reward of the ghost
                # avoids changing the reward of the ghost itself, the pacman and the walls
                # print "GHOST Coordinates: " + str(x) + " " + str(y)
                x_coordinates = [x - 1, x, x + 1]
                y_coordinates = [y - 1, y, y + 1]
                # print "X/Y Coordinates: " + str(x_coordinates) + " " + str(y_coordinates)
                for x_coord in x_coordinates:
                    for y_coord in y_coordinates:
                        if (x_coord, y_coord) not in protected_coords:
                            # print("index: " + str((board.convert_y(y_coord), x_coord)))
                            converted_y = board.convert_y(y_coord)
                            # print "VALUE: " + str(board[board.convert_y(y), x])
                            board[converted_y,
                                  x_coord] = board[board.convert_y(y), x] / 2
                            # print "VALUE PART 2: " + str(board[converted_y, x_coord])

        board = self.value_iteration(state, board)
        expected_utility = self.calculate_expected_utility(
            state, board, abs(current_pos[1] - (height - 1)), current_pos[0])
        return max([(utility, action) for utility, action in expected_utility
                    if action in legal])[1]
Beispiel #25
0
 def getAction(self, state):
     self.updateMap(state)
     pacman = api.whereAmI(state)
     legal = api.legalActions(state)
     move = self.policy[pacman]
     print self.values
     print move
     return api.makeMove(move, legal)
Beispiel #26
0
    def getAction(self, state):
        """
            The function to work out next intended action carried out.
            Parameters:
                None
            Returns:
                Directions: Intended action that Pacman will carry out.
        """
        current_pos = api.whereAmI(state)
        food = api.food(state)
        # make sure all ghost coordinates are ints rather than floats
        ghosts = [(int(x), int(y)) for x, y in api.ghosts(state)]
        legal = api.legalActions(state)
        capsules = api.capsules(state)

        food_multiplier = (
            (0.8 * len(food) / float(self.initial_num_food))**2) + 6
        ghost_multiplier = (
            (0.2 * len(food) / float(self.initial_num_food))**2) + 3

        board = Board(self.width, self.height, -0.04)
        board.set_position_values(self.walls, 'x')
        board.set_position_values(capsules, 2 * food_multiplier)
        board.set_position_values(food, 1 * food_multiplier)
        board.set_position_values(ghosts, -7 * ghost_multiplier)

        # rewards of ghosts, walls and current position cannot be overridden
        protected_pos = set(ghosts + self.walls + [current_pos])

        # setting a much more negative reward for potential positions ghosts can occupy
        # in two moves.
        for ghost in ghosts:
            # loop through potential positions that the ghost can occupy if it were
            # to move now
            for pos in self.get_next_pos(ghost):
                if pos not in protected_pos:
                    # set the reward value of surrounding positions of ghosts to -6 *
                    # ghost multiplier.
                    board[int(board.convert_y(pos[1])),
                          int(pos[0])] = -6 * ghost_multiplier
                    for position in self.get_next_pos(pos):
                        # loop through potential positions that the ghost can occupy if
                        # it were to move two times.
                        if position not in protected_pos:
                            board[int(board.convert_y(position[1])),
                                  int(position[0])] = -6 * ghost_multiplier

        board = self.value_iteration(state, board)  # call value iteration

        expected_utility = self.calculate_expected_utility(
            state, board, board.convert_y(current_pos[1]), current_pos[0])

        # returns action associated to the max utility out of all the legal actions.
        return api.makeMove(
            max([(utility, action) for utility, action in expected_utility
                 if action in legal])[1], legal)
Beispiel #27
0
    def runFromGhost(self, state):
        # Runs away from ghosts
        #
        # Returns any direction that moves pacman away from ghost
        # Removes option of going towards ghost
        # Makes random choice of remaining options

        self.update(state)

        # print "Running from ghosts"

        cur = api.whereAmI(state)
        ghosts = api.ghosts(state)
        legal = api.legalActions(state)
        legal.remove(Directions.STOP)

        for x in range(1, 4):

            #Ghost seen south of pacman
            if (cur[0], cur[1] - x) in ghosts:
                if Directions.SOUTH in legal:
                    #Stop pacman from going south towards ghost
                    if len(legal) > 1: legal.remove(Directions.SOUTH)
                    #Let pacman go in any direction except south
                    self.last = random.choice(legal)
                    return self.last

            #Ghost seen west of pacman
            if (cur[0] - x, cur[1]) in ghosts:
                if Directions.WEST in legal:
                    #Stop pacman from going west towards ghost
                    if len(legal) > 1: legal.remove(Directions.WEST)
                    #Let pacman go in any direction except west
                    self.last = random.choice(legal)
                    return self.last

            #Ghost seen north of pacman
            if (cur[0], cur[1] + x) in ghosts:
                if Directions.NORTH in legal:
                    #Stop pacman going north towards ghost
                    if len(legal) > 1: legal.remove(Directions.NORTH)
                    #Let pacman go in any direction except south
                    self.last = random.choice(legal)
                    return self.last

            #Ghost seen east of pacman
            if (cur[0] + x, cur[1]) in ghosts:
                if Directions.EAST in legal:
                    #Stop pacman going east towards ghost
                    if len(legal) > 1: legal.remove(Directions.EAST)
                    #Let pacman go in any direction except east
                    self.last = random.choice(legal)
                    return self.last

        self.last = random.choice(legal)
        return self.last
Beispiel #28
0
 def getAction(self, state):
     # Get the actions we can try, and remove "STOP" if that is one of them.
     legal = api.legalActions(state)
     if Directions.STOP in legal:
         legal.remove(Directions.STOP)
         # Always go West if it is an option
     if Directions.WEST in legal:
         return api.makeMove(Directions.WEST, legal)
     # Otherwise pick any other legal action
     return api.makeMove(random.choice(legal), legal)
    def getAction(self, state):

        features = api.getFeatureVector(state)

        # Return majority classification from ensemble
        moveNumber = majorityVote(features, self.classifier)

        legal = api.legalActions(state)

        return api.makeMove(self.convertNumberToMove(moveNumber), legal)
Beispiel #30
0
 def getAction(self, state):
     # Get the actions we can try, and remove "STOP" if that is one of them.
     legal = api.legalActions(state)
     if Directions.STOP in legal:
         legal.remove(Directions.STOP)
     # Get current location of pacman
     pacman = api.whereAmI(state)
     # Get list of food locations
     food = api.food(state)
     # Compute manhattan distance to each food location
     foodDistances = []
     for i in range(len(food)):
         foodDistances.append(util.manhattanDistance(pacman, food[i]))
     # print foodDistances
     minDistance = min(foodDistances)
     # print "Min Distance: ", minDistance
     minDistanceIndex = foodDistances.index(minDistance)
     # print "Min Food index: ", minDistanceIndex
     nearestFood = food[minDistanceIndex]
     # print "Pacman: ", pacman
     # print "Nearest Food: ", nearestFood
     diffX = pacman[0] - nearestFood[0]
     diffY = pacman[1] - nearestFood[1]
     # print "legal", legal
     # print diffX, diffY
     moveX = Directions.STOP
     moveY = Directions.STOP
     # Determine whether to move east or west
     if diffX >= 0:
         # print "Go left"
         moveX = Directions.WEST
     elif diffX < 0:
         # print "Go right"
         moveX = Directions.EAST
     # Determine whether to move north or south
     if diffY >= 0:
         # print "Go down"
         moveY = Directions.SOUTH
     elif diffY < 0:
         # print "Go up"
         moveY = Directions.NORTH
     # Determine whether to move in X or Y
     # print "diffX: ", diffX, " diffY", diffY
     if abs(diffX) >= abs(diffY) and moveX in legal:
         # print moveX
         return api.makeMove(moveX, legal)
     elif abs(diffY) >= 0 and moveY in legal:
         # print moveY
         return api.makeMove(moveY, legal)
     elif abs(diffX) >= 0 and moveX in legal:
         return api.makeMove(moveX, legal)
     else:
         # print "Random"
         return api.makeMove(random.choice(legal), legal)