Beispiel #1
0
def forward(net, input_data, deploy=False):
    """Defines and creates the ReInspect network given the net, input data
    and configurations."""

    net.clear_forward()
    if deploy:
        image = np.array(input_data["image"])
    else:
        image = np.array(input_data["image"])
        label = np.array(input_data["label"])
        net.f(NumpyData("label", data=label))

    net.f(NumpyData("image", data=image))
    generate_decapitated_alexnet(net)
    net.f(
        InnerProduct(name="fc8_dish",
                     bottoms=["fc7"],
                     param_lr_mults=[1.0 * 10, 2.0 * 10],
                     param_decay_mults=[1.0, 0.0],
                     weight_filler=Filler("gaussian", 0.01),
                     bias_filler=Filler("constant", 0.0),
                     num_output=128))

    net.f(Softmax("dish_probs", bottoms=["fc8_dish"]))

    if not deploy:
        net.f(SoftmaxWithLoss(name="loss", bottoms=["fc8_dish", "label"]))
        # net.f(Accuracy(name="dish_accuracy",bottoms=["fc8_dish_23", "label"]))

    if deploy:
        probs = np.array(net.blobs["dish_probs"].data)
        return probs
    else:
        return None
Beispiel #2
0
def generate_lstm_seeds(net, num_cells):
    """Generates the lstm seeds that are used as
    input to the first lstm layer."""

    net.f(NumpyData("lstm_hidden_seed",
                    np.zeros((net.blobs["lstm_input"].shape[0], num_cells))))
    net.f(NumpyData("lstm_mem_seed",
                    np.zeros((net.blobs["lstm_input"].shape[0], num_cells))))
Beispiel #3
0
def forward(net, sentence_batches):
    net.clear_forward()
    batch = next(sentence_batches)
    sentence_batch = pad_batch(batch)
    length = min(sentence_batch.shape[1], 100)
    assert length > 0

    net.f(NumpyData('lstm_seed', np.zeros((batch_size, dimension))))
    for step in range(length):
        if step == 0:
            prev_hidden = 'lstm_seed'
            prev_mem = 'lstm_seed'
            word = np.zeros(sentence_batch[:, 0].shape)
        else:
            prev_hidden = 'lstm%d_hidden' % (step - 1)
            prev_mem = 'lstm%d_mem' % (step - 1)
            word = sentence_batch[:, step - 1]
        net.f(NumpyData('word%d' % step, word))
        net.f(
            Wordvec('wordvec%d' % step,
                    dimension,
                    vocab_size,
                    bottoms=['word%d' % step],
                    param_names=['wordvec_param']))
        net.f(
            Concat('lstm_concat%d' % step,
                   bottoms=[prev_hidden, 'wordvec%d' % step]))
        net.f(
            LstmUnit('lstm%d' % step,
                     bottoms=['lstm_concat%d' % step, prev_mem],
                     param_names=[
                         'lstm_input_value', 'lstm_input_gate',
                         'lstm_forget_gate', 'lstm_output_gate'
                     ],
                     tops=['lstm%d_hidden' % step,
                           'lstm%d_mem' % step],
                     num_cells=dimension))
        net.f(
            Dropout('dropout%d' % step, 0.16,
                    bottoms=['lstm%d_hidden' % step]))

        net.f(NumpyData('label%d' % step, sentence_batch[:, step]))
        net.f(
            InnerProduct('ip%d' % step,
                         vocab_size,
                         bottoms=['dropout%d' % step],
                         param_names=['softmax_ip_weights',
                                      'softmax_ip_bias']))
        net.f(
            SoftmaxWithLoss('softmax_loss%d' % step,
                            ignore_label=zero_symbol,
                            bottoms=['ip%d' % step,
                                     'label%d' % step]))
Beispiel #4
0
def generate_ground_truth_layers(net, box_flags, boxes):
    """Generates the NumpyData layers that output the box_flags and boxes
    when not in deploy mode. box_flags = list of bitstring (e.g. [1,1,1,0,0])
    encoding the number of bounding boxes in each cell, in unary,
    boxes = a numpy array of the center_x, center_y, width and height
    for each bounding box in each cell."""

    old_shape = list(box_flags.shape)
    new_shape = [old_shape[0] * old_shape[1]] + old_shape[2:]
    net.f(NumpyData("box_flags", data=np.reshape(box_flags, new_shape)))

    old_shape = list(boxes.shape)
    new_shape = [old_shape[0] * old_shape[1]] + old_shape[2:]
    net.f(NumpyData("boxes", data=np.reshape(boxes, new_shape)))
Beispiel #5
0
def eval_forward(net):
    net.clear_forward()
    output_words = []
    net.f(NumpyData('lstm_hidden_prev', np.zeros((1, dimension))))
    net.f(NumpyData('lstm_mem_prev', np.zeros((1, dimension))))
    length = 150
    for step in range(length):
        net.clear_forward()
        net.f(NumpyData('word', [0]))
        prev_hidden = 'lstm_hidden_prev'
        prev_mem = 'lstm_mem_prev'
        if step == 0:
            output = ord('.')
        else:
            output = softmax_choice(net.blobs['softmax'].data)
        output_words.append(output)
        net.blobs['word'].data[0] = output
        net.f(
            Wordvec('wordvec',
                    dimension,
                    vocab_size,
                    bottoms=['word'],
                    param_names=['wordvec_param']))
        net.f(Concat('lstm_concat', bottoms=[prev_hidden, 'wordvec']))
        net.f(
            LstmUnit('lstm',
                     dimension,
                     bottoms=['lstm_concat', prev_mem],
                     param_names=[
                         'lstm_input_value', 'lstm_input_gate',
                         'lstm_forget_gate', 'lstm_output_gate'
                     ],
                     tops=['lstm_hidden_next', 'lstm_mem_next']))
        net.f(Dropout('dropout', 0.16, bottoms=['lstm_hidden_next']))

        net.f(
            InnerProduct('ip',
                         vocab_size,
                         bottoms=['dropout'],
                         param_names=['softmax_ip_weights',
                                      'softmax_ip_bias']))
        net.blobs['ip'].data[:] *= i_temperature
        net.f(Softmax('softmax', bottoms=['ip']))
        net.blobs['lstm_hidden_prev'].data_tensor.copy_from(
            net.blobs['lstm_hidden_next'].data_tensor)
        net.blobs['lstm_mem_prev'].data_tensor.copy_from(
            net.blobs['lstm_mem_next'].data_tensor)
    print ''.join([chr(x) for x in output_words])
Beispiel #6
0
def forward(net, input_data, net_config, deploy=False):
    """Defines and creates the ReInspect network given the net, input data
    and configurations."""

    net.clear_forward()
    if deploy:
        image = np.array(input_data["image"])
    else:
        image = np.array(input_data["image"])
        box_flags = np.array(input_data["box_flags"])
        boxes = np.array(input_data["boxes"])
        numbers = np.array(input_data["numbers"])

    net.f(NumpyData("image", data=image))
    generate_decapitated_googlenet(net, net_config)
    generate_intermediate_layers(net)
    if not deploy:
        generate_ground_truth_layers(net, box_flags, boxes)
        generate_number_ground_truth_layers(net, numbers)
    generate_lstm_seeds(net, net_config["lstm_num_cells"])

    filler = Filler("uniform", net_config["init_range"])
    concat_bottoms = {"score": [], "bbox": []}
    lstm_params = (net_config["lstm_num_cells"], filler)
    for step in range(net_config["max_len"]):
        lstm_out = get_lstm_params(step)
        generate_lstm(net, step, lstm_params, lstm_out,
                      net_config["dropout_ratio"])
        generate_inner_products(net, step, filler)

        concat_bottoms["score"].append("ip_conf%d" % step)
        concat_bottoms["bbox"].append("ip_bbox%d" % step)

    net.f(Concat("score_concat", bottoms=concat_bottoms["score"],
                 concat_dim=2))
    net.f(Concat("bbox_concat", bottoms=concat_bottoms["bbox"], concat_dim=2))

    generate_number_layers(net, step, filler, net_config["max_len"])
    if not deploy:
        generate_losses(net, net_config)
        generate_number_losses(net, net_config)

    if deploy:
        bbox = [
            np.array(net.blobs["ip_bbox%d" % j].data)
            for j in range(net_config["max_len"])
        ]
        conf = [
            np.array(net.blobs["ip_soft_conf%d" % j].data)
            for j in range(net_config["max_len"])
        ]
        num = np.array(net.blobs["ip_number"].data)
        return (bbox, conf, num)
    else:
        return None
Beispiel #7
0
def evaluate_forward(net, net_config):
    net.clear_forward()
    length = 20

    net.f(NumpyData("prev_hidden", np.zeros((1, net_config["mem_cells"]))))
    net.f(NumpyData("prev_mem", np.zeros((1, net_config["mem_cells"]))))
    filler = Filler("uniform", net_config["init_range"])
    predictions = []

    value = 0.5
    for _ in range(length):
        # We'll be updating values in place for efficient memory usage. This
        # will break backprop and cause warnings. Use clear_forward to suppress.
        net.clear_forward()

        # Add 0.5 to the sum at each step
        net.f(NumpyData("value", data=np.array(value).reshape((1, 1))))
        prev_hidden = "prev_hidden"
        prev_mem = "prev_mem"
        net.f(Concat("lstm_concat", bottoms=[prev_hidden, "value"]))
        net.f(
            LstmUnit("lstm",
                     net_config["mem_cells"],
                     bottoms=["lstm_concat", prev_mem],
                     param_names=[
                         "input_value", "input_gate", "forget_gate",
                         "output_gate"
                     ],
                     weight_filler=filler,
                     tops=["next_hidden", "next_mem"]))
        net.f(InnerProduct("ip", 1, bottoms=["next_hidden"]))
        predictions.append(float(net.blobs["ip"].data.flatten()[0]))
        # set up for next prediction by copying LSTM outputs back to inputs
        net.blobs["prev_hidden"].data_tensor.copy_from(
            net.blobs["next_hidden"].data_tensor)
        net.blobs["prev_mem"].data_tensor.copy_from(
            net.blobs["next_mem"].data_tensor)

    targets = np.cumsum([value for _ in predictions])
    residuals = [x - y for x, y in zip(predictions, targets)]
    return targets, predictions, residuals
Beispiel #8
0
def evaluate_forward(net, net_config, feat,scene_feat):
    net.clear_forward()
    feat_dim=feat.shape[1]

    net.f(NumpyData("prev_hidden", np.zeros((1, net_config["mem_cells"]))))
    net.f(NumpyData("prev_mem", np.zeros((1, net_config["mem_cells"]))))
    filler = Filler("uniform", net_config["init_range"])

    length = feat.shape[0]+1
    for step in range(length):
        net.clear_forward()
        if step==0:
            value=scene_feat.reshape(1,feat_dim)
        else:
            value = feat[step-1,:].reshape(1,feat_dim)
        net.f(NumpyData("value", data=value ))
        prev_hidden = "prev_hidden"
        prev_mem = "prev_mem"
        net.f(Concat("lstm_concat", bottoms=[prev_hidden, "value"]))
        net.f(LstmUnit("lstm", net_config["mem_cells"],
            bottoms=["lstm_concat", prev_mem],
            param_names=[
                "input_value", "input_gate", "forget_gate", "output_gate"],
            weight_filler=filler,
            tops=["next_hidden", "next_mem"]))
        net.f(InnerProduct("ip", 1, bottoms=["next_hidden"]))
        net.blobs["prev_hidden"].data_tensor.copy_from(
            net.blobs["next_hidden"].data_tensor)
        net.blobs["prev_mem"].data_tensor.copy_from(
            net.blobs["next_mem"].data_tensor)

    for i in xrange(6):
        net.f(InnerProduct("ip%d"%i, 2, bottoms=["next_hidden"]))
        net.f(Softmax("prob%d"%i, bottoms=["ip%d"%i]))

    predictions=[]
    for i in xrange(6):
        predictions.append(float(net.blobs["prob%d"%i].data.flatten()[1]))

    return predictions
def add_MMD_loss_layer(target_net, src_net, MMD_config):
    # # # loss of ip split
    for layers, loss_weight in zip(MMD_config['layers'],
                                   MMD_config['loss_weights']):
        if loss_weight == 0:
            continue
        for bottom0 in layers:
            bottom1 = 'src_' + bottom0
            target_net.f(NumpyData(bottom1, data=src_net.blobs[bottom0].data))
            top = bottom0 + '_loss'
            target_net.f(
                MMDLoss(name=top,
                        bottoms=[bottom0, bottom1],
                        loss_weight=loss_weight))
Beispiel #10
0
def forward(net, net_config):
    net.clear_forward()
    length = random.randrange(net_config["min_len"], net_config["max_len"])

    # initialize all weights in [-0.1, 0.1]
    filler = Filler("uniform", net_config["init_range"])
    # initialize the LSTM memory with all 0's
    net.f(
        NumpyData(
            "lstm_seed",
            np.zeros((net_config["batch_size"], net_config["mem_cells"]))))
    accum = np.zeros((net_config["batch_size"], ))

    # Begin recurrence through 5 - 15 inputs
    for step in range(length):
        # Generate random inputs
        value = np.array(
            [random.random() for _ in range(net_config["batch_size"])])
        # Set data of value blob to contain a batch of random numbers
        net.f(NumpyData("value%d" % step, value.reshape((-1, 1))))
        accum += value
        for l in lstm_layers(net, step, filler, net_config):
            net.f(l)

    # Add a fully connected layer with a bottom blob set to be the last used
    # LSTM cell. Note that the network structure is now a function of the data
    net.f(
        InnerProduct("ip",
                     1,
                     bottoms=["lstm_hidden%d" % (length - 1)],
                     weight_filler=filler))
    # Add a label for the sum of the inputs
    net.f(NumpyData("label", np.reshape(accum, (-1, 1))))
    # Compute the Euclidean loss between the preiction and label,
    # used for backprop
    net.f(EuclideanLoss("euclidean", bottoms=["ip", "label"]))
Beispiel #11
0
def forward(net, input_data, net_config, deploy=False):
    net.clear_forward()
    if deploy:
        image = np.array(input_data["image"])
    else:
        image = np.array(input_data["image"])
        box_flags = np.array(input_data["box_flags"])
        boxes = np.array(input_data["boxes"])

    net.f(NumpyData("image", data=image))
    generate_decapitated_googlenet(net)
    generate_googlenet_to_lstm_layers(net)
    if not deploy:
        generate_ground_truth_layers(net, box_flags, boxes)
    generate_lstm_seeds(net, net_config["lstm_num_cells"])

    filler = Filler("uniform", net_config["init_range"])
    score_concat_bottoms = []
    bbox_concat_bottoms = []
    for step in range(net_config["max_len"]):
        hidden_bottom, mem_bottom = get_lstm_params(step)
        generate_lstm(net, step, net_config["lstm_num_cells"], hidden_bottom,
                      mem_bottom, filler, net_config["dropout_ratio"])
        generate_inner_products(net, step, filler)

        score_concat_bottoms.append("ip_conf%d" % step)
        bbox_concat_bottoms.append("ip_bbox%d" % step)

    net.f(Concat("score_concat", bottoms=score_concat_bottoms, concat_dim=2))
    net.f(Concat("bbox_concat", bottoms=bbox_concat_bottoms, concat_dim=2))

    if not deploy:
        generate_losses(net)

    if deploy:
        bbox = [
            np.array(net.blobs["ip_bbox%d" % j].data)
            for j in range(net_config["max_len"])
        ]
        conf = [
            np.array(net.blobs["ip_soft_conf%d" % j].data)
            for j in range(net_config["max_len"])
        ]
        return (bbox, conf)
    else:
        return None
Beispiel #12
0
def forward(net, input_data, net_config, deploy=False):
    """Defines and creates the ReInspect network given the net, input data
    and configurations."""

    net.clear_forward()

    net.f(
        NumpyData("wordvec_layer",
                  data=np.array(input_data["wordvec_layer"])))  # 128*38*100*1
    net.f(NumpyData("target_words",
                    data=np.array(input_data["target_words"])))  # 128*100*1*1

    tops = []
    slice_point = []
    for i in range(net_config['max_len']):
        tops.append('label%d' % i)
        if i != 0:
            slice_point.append(i)
    net.f(
        Slice("label_slice_layer",
              slice_dim=1,
              bottoms=["target_words"],
              tops=tops,
              slice_point=slice_point))

    tops = []
    slice_point = []
    for i in range(net_config['max_len']):
        tops.append('target_wordvec%d_4d' % i)
        if i != 0:
            slice_point.append(i)
    net.f(
        Slice("wordvec_slice_layer",
              slice_dim=2,
              bottoms=['wordvec_layer'],
              tops=tops,
              slice_point=slice_point))

    for i in range(net_config["max_len"]):  # 128*38*1*1 -> 128*38
        net.f("""
            name: "target_wordvec%d"
            type: "Reshape"
            bottom: "target_wordvec%d_4d"
            top: "target_wordvec%d"
            reshape_param {
              shape {
                dim: 0  # copy the dimension from below
                dim: -1
              }
            }
            """ % (i, i, i))
        #net.f(Reshape('target_wordvec%d'%i, bottoms = ['target_wordvec%d_4d'%i], shape = [0,-1]))

    filler = Filler("uniform", net_config["init_range"])
    for i in range(net_config['max_len']):
        if i == 0:
            net.f(
                NumpyData(
                    "dummy_layer",
                    np.zeros((net_config["batch_size"],
                              net_config["lstm_num_cells"]))))
            net.f(
                NumpyData(
                    "dummy_mem_cell",
                    np.zeros((net_config["batch_size"],
                              net_config["lstm_num_cells"]))))

        for j in range(net_config['lstm_num_stacks']):
            bottoms = []
            if j == 0:
                bottoms.append('target_wordvec%d' % i)
            if j >= 1:
                bottoms.append('dropout%d_%d' % (j - 1, i))
            if i == 0:
                bottoms.append("dummy_layer")
            else:
                bottoms.append('lstm%d_hidden%d' % (j, i - 1))
            net.f(Concat('concat%d_layer%d' % (j, i), bottoms=bottoms))

            param_names = []
            for k in range(4):
                param_names.append('lstm%d_param_%d' % (j, k))
            bottoms = ['concat%d_layer%d' % (j, i)]
            if i == 0:
                bottoms.append('dummy_mem_cell')
            else:
                bottoms.append('lstm%d_mem_cell%d' % (j, i - 1))
            net.f(
                LstmUnit('lstm%d_layer%d' % (j, i),
                         net_config["lstm_num_cells"],
                         weight_filler=filler,
                         param_names=param_names,
                         bottoms=bottoms,
                         tops=[
                             'lstm%d_hidden%d' % (j, i),
                             'lstm%d_mem_cell%d' % (j, i)
                         ]))

            net.f(
                Dropout('dropout%d_%d' % (j, i),
                        net_config["dropout_ratio"],
                        bottoms=['lstm%d_hidden%d' % (j, i)]))

    bottoms = []
    for i in range(net_config['max_len']):
        bottoms.append('dropout%d_%d' % (net_config['lstm_num_stacks'] - 1, i))
    net.f(Concat('hidden_concat', bottoms=bottoms, concat_dim=0))

    net.f(
        InnerProduct("inner_product",
                     net_config['vocab_size'],
                     bottoms=["hidden_concat"],
                     weight_filler=filler))

    bottoms = []
    for i in range(net_config['max_len']):
        bottoms.append('label%d' % i)
    net.f(Concat('label_concat', bottoms=bottoms, concat_dim=0))

    if deploy:
        net.f(Softmax("word_probs", bottoms=["inner_product"]))
    else:
        net.f(
            SoftmaxWithLoss("word_loss",
                            bottoms=["inner_product", "label_concat"],
                            ignore_label=net_config['zero_symbol']))
Beispiel #13
0
def generate_numbers_ground_truth_layers(net, numbers):
    """Generates the NumpyData layers that output the numbers."""
    net.f(NumpyData("numbers", data=numbers))
Beispiel #14
0
import apollocaffe
from apollocaffe.layers import NumpyData, Wordvec, TheanoGPU, EuclideanLoss
import numpy as np

apollocaffe.set_device(0)

net = apollocaffe.ApolloNet()

for i in range(1000):
    val1 = [[-2, 4, 1]]
    net.clear_forward()
    net.f(NumpyData('val1', val1))
    net.f(NumpyData('wordval', [0]))
    net.f(Wordvec('vec', 3, 1, bottoms=['wordval']))
    net.f(NumpyData('cosine_target', [1]))
    net.f(NumpyData('norm_target', [2]))
    expr = 'T.dot(x[0], x[1].T) / (T.dot(x[0], x[0].T) * T.dot(x[1], x[1].T))**0.5'
    net.f(TheanoGPU('cosine', [expr, (1, 1)], bottoms=['val1', 'vec']))
    expr2 = 'T.dot(x[0], x[0].T)'
    net.f(TheanoGPU('norm', [expr2, (1, 1)], bottoms=['vec']))
    net.f(EuclideanLoss('loss1', bottoms=['cosine', 'cosine_target']))
    net.f(EuclideanLoss('loss2', bottoms=['norm', 'norm_target']))
    net.backward()
    net.update(lr=0.01)
    if i % 100 == 0:
        print net.loss
        print net.blobs['vec'].data
        print net.blobs['norm'].data
Beispiel #15
0
import apollocaffe
from apollocaffe.layers import NumpyData, Convolution, EuclideanLoss
import numpy as np

net = apollocaffe.ApolloNet()
for i in range(1000):
    example = np.array(np.random.random()).reshape((1, 1, 1, 1))
    net.clear_forward()
    net.f(NumpyData('data', example))
    net.f(NumpyData('label', example * 3))
    net.f(Convolution('conv', (1, 1), 1, bottoms=['data']))
    net.f(EuclideanLoss('loss', bottoms=['conv', 'label']))
    net.backward()
    net.update(lr=0.1)
    if i % 100 == 0:
        print net.loss
Beispiel #16
0
def forward(net, input_data, net_config, phase='train', deploy=False):
    """Defines and creates the ReInspect network given the net, input data
    and configurations."""

    net.clear_forward()

    batch_ws_i = input_data["ws_i"]
    batch_stop_i = [net_config['max_len']] * net_config['batch_size']
    wordvec_layer = input_data["wordvec_layer"]  # 128*38*100*1
    net.f(NumpyData("target_words",
                    data=np.array(input_data["target_words"])))  # 128*100*1*1

    tops = []
    slice_point = []
    for i in range(net_config['max_len']):
        tops.append('label%d' % i)
        if i != 0:
            slice_point.append(i)
    net.f(
        Slice("label_slice_layer",
              slice_dim=1,
              bottoms=["target_words"],
              tops=tops,
              slice_point=slice_point))

    net.f(NumpyData("target_wordvec%d" % 0,
                    data=wordvec_layer[:, :, 0, 0]))  # start symbol, 128*38

    filler = Filler("uniform", net_config["init_range"])
    for i in range(net_config['max_len']):
        if i == 0:
            net.f(
                NumpyData(
                    "dummy_layer",
                    np.zeros((net_config["batch_size"],
                              net_config["lstm_num_cells"]))))
            net.f(
                NumpyData(
                    "dummy_mem_cell",
                    np.zeros((net_config["batch_size"],
                              net_config["lstm_num_cells"]))))

        for j in range(net_config['lstm_num_stacks']):
            bottoms = []
            if j == 0:
                bottoms.append('target_wordvec%d' % i)
            if j >= 1:
                bottoms.append('dropout%d_%d' % (j - 1, i))
            if i == 0:
                bottoms.append("dummy_layer")
            else:
                bottoms.append('lstm%d_hidden%d' % (j, i - 1))
            net.f(Concat('concat%d_layer%d' % (j, i), bottoms=bottoms))

            param_names = []
            for k in range(4):
                param_names.append('lstm%d_param_%d' % (j, k))
            bottoms = ['concat%d_layer%d' % (j, i)]
            if i == 0:
                bottoms.append('dummy_mem_cell')
            else:
                bottoms.append('lstm%d_mem_cell%d' % (j, i - 1))
            net.f(
                LstmUnit('lstm%d_layer%d' % (j, i),
                         net_config["lstm_num_cells"],
                         weight_filler=filler,
                         param_names=param_names,
                         bottoms=bottoms,
                         tops=[
                             'lstm%d_hidden%d' % (j, i),
                             'lstm%d_mem_cell%d' % (j, i)
                         ]))

            net.f(
                Dropout('dropout%d_%d' % (j, i),
                        net_config["dropout_ratio"],
                        bottoms=['lstm%d_hidden%d' % (j, i)]))

        net.f(
            InnerProduct("ip%d" % i,
                         net_config['vocab_size'],
                         bottoms=[
                             'dropout%d_%d' %
                             (net_config['lstm_num_stacks'] - 1, i)
                         ],
                         weight_filler=filler))

        if i < net_config['max_len'] - 1:
            tar_wordvec = np.array(wordvec_layer[:, :, i + 1, 0])  # 128*38
            if phase == 'test':
                net.f(Softmax("word_probs%d" % i, bottoms=["ip%d" % i]))
                probs = net.blobs["word_probs%d" % i].data
                for bi in range(net_config['batch_size']):
                    if i >= batch_ws_i[bi] and i < batch_stop_i[bi]:
                        vec = [0] * net_config["vocab_size"]
                        peakIndex = np.argmax(probs[bi, :])
                        if peakIndex == net_config['whitespace_symbol']:
                            batch_stop_i[bi] = i + 1
                        vec[peakIndex] = 1
                        tar_wordvec[bi, :] = vec
            net.f(NumpyData("target_wordvec%d" % (i + 1), data=tar_wordvec))

    bottoms = []
    for i in range(net_config['max_len']):
        bottoms.append("ip%d" % i)
    net.f(Concat('ip_concat', bottoms=bottoms, concat_dim=0))

    bottoms = []
    for i in range(net_config['max_len']):
        bottoms.append('label%d' % i)
    net.f(Concat('label_concat', bottoms=bottoms, concat_dim=0))

    if deploy:
        net.f(Softmax("word_probs", bottoms=["ip_concat"]))

    net.f(
        SoftmaxWithLoss("word_loss",
                        bottoms=["ip_concat", "label_concat"],
                        ignore_label=net_config['zero_symbol']))