def evaluate(self):
        """
        Display all tweets collected for training
        """
        self.process_tweets()
        cli = Cli()
        cli.training_title()

        for t in self.tweets:
            print "@%s say:" % t['user']
            print "\n"
            print t['original']

            cli.training()

            evaluation = cli.waiting_input()
            t['evaluation'] = evaluation[0]

            if t['evaluation'] != 4:
                self.tuples.append(t)

            cli.divider()

        cli.clear_terminal()
        cli.dashboard()

        return self.tuples
def training():
    data = Storage('collected').load()
    tweets = Training(data).evaluate()
    Storage('trained').save(tweets)

def prediction():
    collect_files = Storage('collected').load()
    trained_files = Storage('trained').load()

    Mining(collect_files, trained_files).start()

if __name__ == '__main__':
    """
    Human-Machine Interface
    """
    cli = Cli()
    start(cli)

    while cli.option != 'x':
        if cli.option == 'h':
            display_help(cli)
        elif cli.option == 'c' or cli.option == "collect":
            collect(cli)
        elif cli.option == 't' or cli.option == "training":
            training()
        elif cli.option == 'p' or cli.option == "prediction":
            prediction()
        elif cli.option == 'tweets':
            data = Storage('collected').load()
            cli.tweets_colleted(data)
        elif cli.option == 'tweets trained':
    def evaluate(self):
        """
        Display all tweets collected for training
        """
        self.process_tweets()
        cli = Cli()
        cli.training_title()

        for t in self.tweets:
            print "@%s say:" % t['user']
            print "\n"
            print t['original']

            cli.training()

            evaluation = cli.waiting_input()
            t['evaluation'] = evaluation[0]

            if t['evaluation'] != 4:
                self.tuples.append(t)

            cli.divider()

        cli.clear_terminal()
        cli.dashboard()

        return self.tuples
Beispiel #4
0
    tweets = Training(data).evaluate()
    Storage('trained').save(tweets)


def prediction():
    collect_files = Storage('collected').load()
    trained_files = Storage('trained').load()

    Mining(collect_files, trained_files).start()


if __name__ == '__main__':
    """
    Human-Machine Interface
    """
    cli = Cli()
    start(cli)

    while cli.option != 'x':
        if cli.option == 'h':
            display_help(cli)
        elif cli.option == 'c' or cli.option == "collect":
            collect(cli)
        elif cli.option == 't' or cli.option == "training":
            training()
        elif cli.option == 'p' or cli.option == "prediction":
            prediction()
        elif cli.option == 'tweets':
            data = Storage('collected').load()
            cli.tweets_colleted(data)
        elif cli.option == 'tweets trained':