Beispiel #1
0
def getSexGeneral():
    global ageSexe04, usaData
    df = pd.DataFrame(index=['Male', 'Female'],
                      columns=['Morocco', 'Usa'],
                      data=[[0, 0], [0, 0]])
    SexeMar = [
        ageSexe04[disType].df[['Masculin', 'Féminin']]
        for disType in ageSexe04.keys()
    ]
    sumUsa = 0
    usefulDfs = toolz.dfSelector(
        toolz.dfSelector(toolz.dfSelector(usaData.dfsArray, 'index', ['SEX']),
                         'year', ['16']), 'difficulty',
        ['self-care ', 'vision ', 'hearing ', 'cognitive ', 'ambulatory '])

    for tmpExtDf in usefulDfs:
        for option in ['Male', 'Female']:
            df.loc[option]['Usa'] += tmpExtDf['dataFrame'].loc[option].sum()

    for tmpDf in SexeMar:
        for option in ['Masculin', 'Féminin']:
            if option == 'Masculin':
                df.loc['Male']['Morocco'] += tmpDf[option].sum()
            elif option == 'Féminin':
                df.loc['Female']['Morocco'] += tmpDf[option].sum()
    return df
Beispiel #2
0
def updateFigWorkExp(states, years):
    traces = []
    for year in years:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['WORK EXPERIENCE']), 'state', states),
            'year', [year])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        traces.append(
            go.Bar(x=df.index.tolist(),
                   y=df.iloc[:, 0].tolist(),
                   name="20" + year))
    return {'data': traces, 'layout': {'title': "WORK EXPERIENCE".title()}}
Beispiel #3
0
def getDisTypeGeneral():
    global ageSexe04, usaData
    df = pd.DataFrame(index=[disType for disType in ageSexe04.keys()],
                      columns=['Morocco', 'Usa'])
    sumMar = pd.Series(index=[disType for disType in ageSexe04.keys()],
                       data=[
                           ageSexe04[disType].df['Ensemble'].sum()
                           for disType in ageSexe04.keys()
                       ]).sum()
    for disType in ageSexe04.keys():
        df.loc[disType,
               'Morocco'] = (ageSexe04[disType].df['Ensemble'].sum()) / sumMar

    sumUsa = 0
    usefulDfs = toolz.dfSelector(
        toolz.dfSelector(usaData.dfsArray, 'difficulty', [
            'independent living ', 'self-care ', 'vision ', 'hearing ',
            'cognitive ', 'ambulatory '
        ]), 'year', ['16'])
    for tmpDf in usefulDfs:
        sumUsa += tmpDf['dataFrame'].sum().sum()

    convDict = {
        "Sensoriel":
        toolz.dfSelector(
            toolz.dfSelector(usaData.dfsArray, 'difficulty',
                             ['vision ', 'hearing ']), 'year', ['16']),
        "Moteur":
        toolz.dfSelector(
            toolz.dfSelector(usaData.dfsArray, 'difficulty',
                             ['independent living ', 'self-care ']), 'year',
            ['16']),
        "Chronique":
        toolz.dfSelector(
            toolz.dfSelector(usaData.dfsArray, 'difficulty', ['ambulatory ']),
            'year', ['16']),
        "Mental":
        toolz.dfSelector(
            toolz.dfSelector(usaData.dfsArray, 'difficulty', ['cognitive ']),
            'year', ['16'])
    }
    for disType in df.index.tolist():
        tmpSum = 0
        for tmpExtDf in convDict[disType]:
            tmpSum += tmpExtDf['dataFrame'].sum().sum()
        df.loc[disType, 'Usa'] = tmpSum / sumUsa
    return df
Beispiel #4
0
def updateFigEmplStatus(states, years):
    if len(years) > 1:
        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['EMPLOYMENT SECTOR']), 'state', states),
            'year', [years[0]])
        dfYear1 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear1])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['EMPLOYMENT SECTOR']), 'state', states),
            'year', [years[1]])
        dfYear2 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear2])
        trace = go.Sunburst(
            ids=["20" + year for year in years] + [
                "20" + year + " - " + status for year in years
                for status in dfYear1.columns.tolist()
            ],
            labels=["20" + year for year in years] +
            [status for status in dfYear1.columns.tolist()] * 2,
            parents=["" for i in range(len(years))] + list(
                chain.from_iterable(
                    ("20" + year, "20" + year) for year in years)),
            values=[dfYear1.iloc[0, :].sum(), dfYear2.iloc[0, :].sum()] + [
                dfYear1.iloc[0, 0], dfYear1.iloc[0, 1], dfYear2.iloc[0, 0],
                dfYear2.iloc[0, 1]
            ],
            branchvalues="total",
        )
        return {
            'data': [trace],
            'layout': {
                'title': "EMPLOYMENT STATUS".title()
            }
        }
    else:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['EMPLOYMENT SECTOR']), 'state', states),
            'year', [years[0]])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        trace = go.Pie(labels=df.columns.tolist(), values=df.iloc[0].tolist())
        return {
            'data': [trace],
            'layout': {
                'title': "EMPLOYMENT STATUS".title()
            }
        }
Beispiel #5
0
def updateFigEmplStatus(states, years):
    global layout, my_colors, my_line_colors
    my_colors1 = copy.deepcopy(my_colors).extend(my_line_colors)
    layout1 = copy.deepcopy(layout)
    layout1['title'] = "EMPLOYMENT STATUS".title()
    if len(years) > 1:
        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['EMPLOYMENT SECTOR']), 'state', states),
            'year', [years[0]])
        dfYear1 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear1])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['EMPLOYMENT SECTOR']), 'state', states),
            'year', [years[1]])
        dfYear2 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear2])
        trace = go.Sunburst(
            ids=["20" + year for year in years] + [
                "20" + year + " - " + status for year in years
                for status in dfYear1.columns.tolist()
            ],
            labels=["20" + year for year in years] +
            [status for status in dfYear1.columns.tolist()] * 2,
            parents=["" for i in range(len(years))] + list(
                chain.from_iterable(
                    ("20" + year, "20" + year) for year in years)),
            values=[dfYear1.iloc[0, :].sum(), dfYear2.iloc[0, :].sum()] + [
                dfYear1.iloc[0, 0], dfYear1.iloc[0, 1], dfYear2.iloc[0, 0],
                dfYear2.iloc[0, 1]
            ],
            branchvalues="total",
            marker=dict(colors=my_colors, autocolorscale=True))
        return {'data': [trace], 'layout': layout1}
    else:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['EMPLOYMENT SECTOR']), 'state', states),
            'year', [years[0]])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        trace = go.Pie(labels=df.columns.tolist(),
                       values=df.iloc[0].tolist(),
                       marker_colors=my_colors,
                       hole=.3,
                       opacity=0.7)
        return {'data': [trace], 'layout': layout1}
Beispiel #6
0
def updateFigWorkExp(states, years):
    global layout, my_colors
    layout1 = copy.deepcopy(layout)
    layout1['title'] = "WORK EXPERIENCE".title()

    traces = []
    for year in years:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index',
                                 ['WORK EXPERIENCE']), 'state', states),
            'year', [year])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        traces.append(
            go.Scatterpolar(r=df.iloc[:, 0],
                            theta=df.index,
                            fill='toself',
                            name=df.columns.tolist()[0] + ' (20' + year + ')',
                            line=dict(color=my_colors[years.index(year)])))
        layout1['polar'] = dict(radialaxis=dict(visible=True))
        layout1['showlegend'] = True
    return {'data': traces, 'layout': layout1}
Beispiel #7
0
def updateFigAgeDisNumber(states, ageCateg, year):
    global layout, my_colors, my_line_colors
    layout1 = copy.deepcopy(layout)
    layout1['title'] = "Prevalence BY NUMBER OF DISABILITIES".title()
    if len(year) > 1:
        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["NUMBER OF DISABILITIES"]),
            'year', [year[0]])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["NUMBER OF DISABILITIES"]),
            'year', [year[1]])
        dfYear1 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear1])
        dfYear2 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear2])
        fig = make_subplots(rows=1,
                            cols=2,
                            subplot_titles=("20" + str(year[0]),
                                            "20" + str(year[1])))
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear1.index.tolist()],
            y=dfYear1.iloc[:, 0].tolist(),
            name=dfYear1.columns.tolist()[0].title(),
            marker_color=my_colors[0],
            marker_line_color=my_line_colors[0],
            marker_line_width=1.5,
            opacity=0.6),
                      row=1,
                      col=1)
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear1.index.tolist()],
            y=dfYear1.iloc[:, 1].tolist(),
            name=dfYear1.columns.tolist()[1].title(),
            marker_color=my_colors[1],
            marker_line_color=my_line_colors[1],
            marker_line_width=1.5,
            opacity=0.6),
                      row=1,
                      col=1)
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear2.index.tolist()],
            y=dfYear2.iloc[:, 0].tolist(),
            name=dfYear2.columns.tolist()[0].title(),
            marker_color=my_colors[0],
            marker_line_color=my_line_colors[0],
            marker_line_width=1.5,
            opacity=0.6,
            showlegend=False),
                      row=1,
                      col=2)
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear2.index.tolist()],
            y=dfYear2.iloc[:, 1].tolist(),
            name=dfYear2.columns.tolist()[1].title(),
            marker_color=my_colors[1],
            marker_line_color=my_line_colors[1],
            marker_line_width=1.5,
            opacity=0.6,
            showlegend=False),
                      row=1,
                      col=2)
        fig.update_layout(barmode='stack')
        fig.update_layout(autosize=True)
        fig.update_layout(margin=dict(l=30, r=30, b=20, t=40))
        fig.update_layout(hovermode="closest")
        fig.update_layout(plot_bgcolor="#F9F9F9")
        fig.update_layout(paper_bgcolor="#F9F9F9")
        fig.update_layout(legend=dict(font=dict(size=10), orientation="h"))
        fig.update_layout(yaxis=go.YAxis(showticklabels=False))
        fig.update_layout(
            title=dict(text='Prevalence By Number Of Disabilities',
                       x=0.5,
                       xanchor='center'))
        return fig

    else:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["NUMBER OF DISABILITIES"]),
            'year', [year[0]])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        trace1 = go.Bar(x=[index[:-1] for index in df.index.tolist()],
                        y=df.iloc[:, 0].tolist(),
                        name=df.columns.tolist()[0].title(),
                        marker_color=my_colors[0],
                        marker_line_color=my_line_colors[0],
                        marker_line_width=1.5,
                        opacity=0.6)
        trace2 = go.Bar(x=[index[:-1] for index in df.index.tolist()],
                        y=df.iloc[:, 1].tolist(),
                        name=df.columns.tolist()[1].title(),
                        marker_color=my_colors[1],
                        marker_line_color=my_line_colors[1],
                        marker_line_width=1.5,
                        opacity=0.6)

        return {'data': [trace1, trace2], 'layout': layout1}
Beispiel #8
0
def updateFigHealthIns(states, ageCateg, year):
    global layout, my_colors, my_line_colors
    layout1 = copy.deepcopy(layout)
    layout1['title'] = "Health Insurance Coverage".title()
    if len(year) > 1:
        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["POPULATION"]), 'year',
            [year[0]])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["POPULATION"]), 'year',
            [year[1]])
        dfYear1 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear1])
        dfYear2 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear2])
        trace1 = go.Bar(x=[index[:-1] for index in dfYear1.index.tolist()],
                        y=dfYear1.iloc[:, 0].tolist(),
                        name="20" + year[0],
                        marker_color=my_colors[0],
                        marker_line_color=my_line_colors[0],
                        marker_line_width=1.5,
                        opacity=0.6)
        trace2 = go.Bar(x=[index[:-1] for index in dfYear2.index.tolist()],
                        y=dfYear2.iloc[:, 0].tolist(),
                        name="20" + year[1],
                        marker_color=my_colors[1],
                        marker_line_color=my_line_colors[1],
                        marker_line_width=1.5,
                        opacity=0.6)
        return {'data': [trace1, trace2], 'layout': layout1}
    else:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["POPULATION"]), 'year',
            [year[0]])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        trace = go.Bar(x=[index[:-1] for index in df.index.tolist()],
                       y=df.iloc[:, 0].tolist(),
                       marker_color=my_colors[0],
                       marker_line_color=my_line_colors[0],
                       marker_line_width=1.5,
                       opacity=0.6)
        return {'data': [trace], 'layout': layout1}
Beispiel #9
0
def updateFigAge(ageCateg, states, sex, difTypes, year):
    global layout, my_colors, my_line_colors
    layout1 = copy.deepcopy(layout)
    layout1['title'] = "PREVALENCE BY AGE".title()
    if len(year) == 1:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['SEX']),
                    'state', states), 'difficulty', difTypes), 'year', year)
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs
                      ])[toolz.getAgeOptions(usaData.dfsArray, ageCateg)]
        if len(sex) == 2:
            trace1 = go.Bar(x=df.columns.tolist(),
                            y=df.loc["Male"].tolist(),
                            name='Male',
                            marker_color=my_colors[0],
                            marker_line_color=my_line_colors[0],
                            marker_line_width=1.5,
                            opacity=0.6)
            trace2 = go.Bar(x=df.columns.tolist(),
                            y=df.loc["Female"].tolist(),
                            name='Female',
                            marker_color=my_colors[1],
                            marker_line_color=my_line_colors[1],
                            marker_line_width=1.5,
                            opacity=0.6)
            return {'data': [trace1, trace2], 'layout': layout1}
        else:
            trace = go.Bar(x=df.columns.tolist(),
                           y=df.loc[sex[0].title()].tolist(),
                           name=sex[0].title(),
                           marker_color=my_colors[0],
                           marker_line_color=my_line_colors[0],
                           marker_line_width=1.5,
                           opacity=0.6)
            return {'data': [trace], 'layout': layout1}
    else:
        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['SEX']),
                    'state', states), 'difficulty', difTypes), 'year',
            [year[0]])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['SEX']),
                    'state', states), 'difficulty', difTypes), 'year',
            [year[1]])
        dfYear1 = dfs_sum([
            df['dataFrame'] for df in selectedExtendedDfsForYear1
        ])[toolz.getAgeOptions(usaData.dfsArray, ageCateg)]
        dfYear2 = dfs_sum([
            df['dataFrame'] for df in selectedExtendedDfsForYear2
        ])[toolz.getAgeOptions(usaData.dfsArray, ageCateg)]

        if len(sex) == 2:
            trace1 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear1.loc["Male"].tolist(),
                            name='Male (20' + year[0] + ")",
                            width=0.15,
                            marker_color=my_colors[0],
                            marker_line_color=my_line_colors[0],
                            marker_line_width=1.5,
                            opacity=0.6)
            trace2 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear1.loc["Female"].tolist(),
                            name='Female (20' + year[0] + ")",
                            width=0.15,
                            marker_color=my_colors[1],
                            marker_line_color=my_line_colors[1],
                            marker_line_width=1.5,
                            opacity=0.6)
            trace3 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear2.loc["Male"].tolist(),
                            name='Male (20' + year[1] + ")",
                            width=0.15,
                            marker_color=my_colors[0],
                            marker_line_color=my_line_colors[0],
                            marker_line_width=1.5,
                            opacity=0.6)
            trace4 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear2.loc["Female"].tolist(),
                            name='Female (20' + year[1] + ")",
                            width=0.15,
                            marker_color=my_colors[1],
                            marker_line_color=my_line_colors[1],
                            marker_line_width=1.5,
                            opacity=0.6)

            return {
                'data': [trace1, trace2, trace3, trace4],
                'layout': layout1
            }
        else:
            traces = [
                go.Bar(x=dfYear1.columns.tolist(),
                       y=dfYear1.loc[sex[0].title()].tolist(),
                       name=sex[0].title()),
                go.Bar(x=dfYear1.columns.tolist(),
                       y=dfYear2.loc[sex[0].title()].tolist(),
                       name=sex[0].title())
            ]
            traces = trace = [
                go.Bar(name="20" + year[0],
                       x=dfYear1.columns.tolist(),
                       y=dfYear1.loc[sex[0].title()].tolist(),
                       marker_color=my_colors[0],
                       marker_line_color=my_line_colors[0],
                       marker_line_width=1.5,
                       opacity=0.6),
                go.Bar(name="20" + year[1],
                       x=dfYear1.columns.tolist(),
                       y=dfYear2.loc[sex[0].title()],
                       marker_color=my_colors[1],
                       marker_line_color=my_line_colors[1],
                       marker_line_width=1.5,
                       opacity=0.6)
            ]
            return {'data': traces, 'layout': layout1}
Beispiel #10
0
def updateFigAgeDisNumber(states, ageCateg, year):
    if len(year) > 1:
        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["NUMBER OF DISABILITIES"]),
            'year', [year[0]])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["NUMBER OF DISABILITIES"]),
            'year', [year[1]])
        dfYear1 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear1])
        dfYear2 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear2])
        fig = make_subplots(rows=1,
                            cols=2,
                            subplot_titles=("20" + str(year[0]),
                                            "20" + str(year[1])))
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear1.index.tolist()],
            y=dfYear1.iloc[:, 0].tolist(),
            name=dfYear1.columns.tolist()[0].title()),
                      row=1,
                      col=1)
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear1.index.tolist()],
            y=dfYear1.iloc[:, 1].tolist(),
            name=dfYear1.columns.tolist()[1].title()),
                      row=1,
                      col=1)
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear1.index.tolist()],
            y=dfYear2.iloc[:, 0].tolist(),
            name=dfYear2.columns.tolist()[0].title()),
                      row=1,
                      col=2)
        fig.add_trace(go.Bar(
            x=[index[:-1] for index in dfYear1.index.tolist()],
            y=dfYear2.iloc[:, 1].tolist(),
            name=dfYear2.columns.tolist()[1].title()),
                      row=1,
                      col=2)
        return fig

    else:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']), 'state',
                states), "columns", ["NUMBER OF DISABILITIES"])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        trace1 = go.Bar(x=[index[:-1] for index in df.index.tolist()],
                        y=df.iloc[:, 0].tolist(),
                        name=df.columns.tolist()[0].title())
        trace2 = go.Bar(x=[index[:-1] for index in df.index.tolist()],
                        y=df.iloc[:, 1].tolist(),
                        name=df.columns.tolist()[1].title())

        return {
            'data': [trace1, trace2],
            'layout': {
                'title': "AGE BY NUMBER OF DISABILITIES".title()
            }
        }
Beispiel #11
0
def updateFigHealthIns(states, ageCateg, year):
    if len(year) > 1:
        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["POPULATION"]), 'year',
            [year[0]])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["POPULATION"]), 'year',
            [year[1]])
        dfYear1 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear1])
        dfYear2 = dfs_sum(
            [df['dataFrame'] for df in selectedExtendedDfsForYear2])
        trace1 = go.Bar(x=[index[:-1] for index in dfYear1.index.tolist()],
                        y=dfYear1.iloc[:, 0].tolist(),
                        name="20" + year[0])
        trace2 = go.Bar(x=[index[:-1] for index in dfYear2.index.tolist()],
                        y=dfYear2.iloc[:, 0].tolist(),
                        name="20" + year[1])
        return {
            'data': [trace1, trace2],
            'layout': {
                'title': "PREVALENCE OF INSURED DISABLED PEOPLE".title()
            }
        }
    else:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['AGE']),
                    'state', states), "columns", ["POPULATION"]), 'year',
            [year[0]])
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs])
        trace = go.Bar(x=[index[:-1] for index in df.index.tolist()],
                       y=df.iloc[:, 0].tolist())
        return {
            'data': [trace],
            'layout': {
                'title': "PREVALENCE OF INSURED DISABLED PEOPLE".title()
            }
        }
Beispiel #12
0
def updateFigAge(ageCateg, states, sex, difTypes, year):
    if len(year) == 1:
        selectedExtendedDfs = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['SEX']),
                    'state', states), 'difficulty', difTypes), 'year', year)
        df = dfs_sum([df['dataFrame'] for df in selectedExtendedDfs
                      ])[toolz.getAgeOptions(usaData.dfsArray, ageCateg)]
        if len(sex) == 2:
            trace1 = go.Bar(x=df.columns.tolist(),
                            y=df.loc["Male"].tolist(),
                            name='Male')
            trace2 = go.Bar(x=df.columns.tolist(),
                            y=df.loc["Female"].tolist(),
                            name='Female')
            return {
                'data': [trace1, trace2],
                'layout': {
                    'title': "PREVALENCE BY AGE".title()
                }
            }
        else:
            trace = go.Bar(x=df.columns.tolist(),
                           y=df.loc[sex[0].title()].tolist(),
                           name=sex[0].title())
            return {
                'data': [trace],
                'layout': {
                    'title': "PREVALENCE BY AGE".title()
                }
            }
    else:

        selectedExtendedDfsForYear1 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['SEX']),
                    'state', states), 'difficulty', difTypes), 'year',
            [year[0]])
        selectedExtendedDfsForYear2 = toolz.dfSelector(
            toolz.dfSelector(
                toolz.dfSelector(
                    toolz.dfSelector(usaData.dfsArray, 'index', ['SEX']),
                    'state', states), 'difficulty', difTypes), 'year',
            [year[1]])
        dfYear1 = dfs_sum([
            df['dataFrame'] for df in selectedExtendedDfsForYear1
        ])[toolz.getAgeOptions(usaData.dfsArray, ageCateg)]
        dfYear2 = dfs_sum([
            df['dataFrame'] for df in selectedExtendedDfsForYear2
        ])[toolz.getAgeOptions(usaData.dfsArray, ageCateg)]

        if len(sex) == 2:
            trace1 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear1.loc["Male"].tolist(),
                            name='Male (20' + year[0] + ")",
                            width=0.15)
            trace2 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear1.loc["Female"].tolist(),
                            name='Female (20' + year[0] + ")",
                            width=0.15)
            trace3 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear2.loc["Male"].tolist(),
                            name='Male (20' + year[1] + ")",
                            width=0.15)
            trace4 = go.Bar(x=dfYear1.columns.tolist(),
                            y=dfYear2.loc["Female"].tolist(),
                            name='Female (20' + year[1] + ")",
                            width=0.15)

            return {
                'data': [trace1, trace2, trace3, trace4],
                'layout': {
                    'title': "PREVALENCE BY AGE".title(),
                }
            }
        else:
            trace = go.Bar(x=df.columns.tolist(),
                           y=df.loc[sex[0].title()].tolist(),
                           name=sex[0].title())
            return {
                'data': [trace],
                'layout': {
                    'title': "PREVALENCE BY AGE".title()
                }
            }