Beispiel #1
0
    def get_no_of_shares(self,
                         capital: float,
                         pct_risk_per_trade: float,
                         volume_limit: float,
                         price: Series,
                         slippage: int = None,
                         is_slip_up: bool = True) -> int:
        if not AppConsts.PRICE_COL_OPEN in price.index \
                or not AppConsts.CUSTOM_COL_ADV in price.index:
            return 0
        open_price: float = price.loc[AppConsts.PRICE_COL_OPEN]
        if slippage:
            if is_slip_up:
                open_price = NumberUtils.round(open_price + (
                    open_price * AppConsts.BASIS_POINT * slippage))
            else:
                open_price = NumberUtils.round(open_price - (
                    open_price * AppConsts.BASIS_POINT * slippage))

        no_of_shares: int = NumberUtils.to_floor(capital * pct_risk_per_trade /
                                                 100 / open_price)
        adv: float = price.loc[AppConsts.CUSTOM_COL_ADV] if price.loc[
            AppConsts.CUSTOM_COL_ADV] > 0 else price.loc[
                AppConsts.PRICE_COL_VOLUME]
        max_volume: float = NumberUtils.to_int(adv * volume_limit / 100)
        if no_of_shares > max_volume:
            LogUtils.warning(
                'Capping max_volume adv={0}, no_of_shares={1}, max_volume={2}'.
                format(adv, no_of_shares, max_volume))
            no_of_shares = max_volume
        return no_of_shares
Beispiel #2
0
    def set_readonly_props(self) -> None:
        if not self._transactions:
            return

        self._start_capital = self._capital.get(
            ModelUtils.get_first_key(self._capital))
        self._end_capital = self._capital.get(
            ModelUtils.get_last_key(self._capital))
        self._hold_length_days_stats = StatUtils.get_descriptive_stats(
            [t.hold_length_days for t in self._transactions])
        self._change_in_capital_stats = StatUtils.get_descriptive_stats(
            [t.change_in_capital for t in self._transactions])
        self._has_profit_stats = StatUtils.get_descriptive_stats(
            [NumberUtils.to_int(t.has_profit) for t in self._transactions])
        self._pct_return = NumberUtils.get_change(self._end_capital,
                                                  self._start_capital)

        self._best_transactions = [
            t for t in sorted(self._transactions,
                              key=lambda x: x.change_in_capital,
                              reverse=True) if t.has_profit
        ][:20]
        self._worst_transactions = [
            t for t in sorted(self._transactions,
                              key=lambda x: x.change_in_capital)
            if not t.has_profit
        ][:20]

        symbol_grouped: Dict = {}
        for t in self._transactions:
            if not t.symbol_master.symbol in symbol_grouped:
                symbol_grouped[t.symbol_master.symbol]: Dict = {
                    'symbol_master': t.symbol_master,
                    'change_in_capital': 0,
                    'no_of_transactions': 0
                }
            symbol_grouped[t.symbol_master.
                           symbol]['change_in_capital'] += t.change_in_capital
            symbol_grouped[t.symbol_master.symbol]['no_of_transactions'] += 1

        symbol_grouped_list: List[BackTestResultItemPerSymbol] = []
        for k, v in symbol_grouped.items():
            item: BackTestResultItemPerSymbol = BackTestResultItemPerSymbol()
            item.symbol_master = symbol_grouped[k]['symbol_master']
            item.change_in_capital = NumberUtils.round(
                symbol_grouped[k]['change_in_capital'])
            item.no_of_transactions = symbol_grouped[k]['no_of_transactions']
            symbol_grouped_list.append(item)
        self._best_symbols = [
            i for i in sorted(symbol_grouped_list,
                              key=lambda x: x.change_in_capital,
                              reverse=True) if i.change_in_capital > 0
        ][:20]
        self._worst_symbols = [
            i for i in sorted(symbol_grouped_list,
                              key=lambda x: x.change_in_capital)
            if i.change_in_capital < 0
        ][:20]
Beispiel #3
0
 def set_readonly_props(self) -> None:
     if not hasattr(self, 'start_date') \
             or not hasattr(self, 'end_date') \
             or not hasattr(self, 'start_price') \
             or not hasattr(self, 'end_price') \
             or not hasattr(self, 'no_of_shares') \
             or not hasattr(self, 'action'):
         return
     delta: timedelta = DateUtils.get_diff(self._end_date, self._start_date)
     if self._action == AppConsts.ACTION_BUY:
         self._net_change_in_price = NumberUtils.round(self._end_price -
                                                       self._start_price)
     elif self._action == AppConsts.ACTION_SELL:
         self._net_change_in_price = NumberUtils.round(self._start_price -
                                                       self._end_price)
     self._year = self._end_date.year
     self._quarter = DateUtils.get_quarter(self._end_date.month)
     self._month = self._end_date.month
     self._hold_length_days = delta.days if delta else 0
     self._change_in_capital = NumberUtils.round(self._net_change_in_price *
                                                 self._no_of_shares)
     self._has_profit = (self._change_in_capital > 0)
Beispiel #4
0
 def __calc_benchmark_capital(self, req: BackTestRunRequest,
                              start_price: float, end_price: float,
                              no_of_shares: int) -> float:
     capital: float = req.start_capital - (start_price * no_of_shares)
     return NumberUtils.round(capital + (end_price * no_of_shares))
Beispiel #5
0
    def run(self, req: BackTestRunRequest) -> BackTestRunResponse:
        if not req or not req.is_valid_model():
            raise BadRequestException()
        response: BackTestRunResponse = BackTestRunResponse(req)

        # Init Symbols
        symbols: List[SymbolMaster] = self.__get_symbols__(req)

        # Init Prices
        prices: DataFrame = self.__get_prices__(req, symbols)

        # Do Base Preparation
        prices[AppConsts.CUSTOM_COL_PV] = prices[
            AppConsts.PRICE_COL_CLOSE] * prices[AppConsts.PRICE_COL_VOLUME]
        for s in symbols:
            prices = self.__calc_service.append_sma(
                prices=prices,
                index=[s.id],
                sma_period=AppConsts.ADV_PERIOD_DFLT,
                sma_column_name=AppConsts.CUSTOM_COL_ADV,
                target_column=AppConsts.PRICE_COL_VOLUME)
            prices = self.__calc_service.append_sma(
                prices=prices,
                index=[s.id],
                sma_period=AppConsts.ADPV_PERIOD_DFLT,
                sma_column_name=AppConsts.CUSTOM_COL_ADPV,
                target_column=AppConsts.CUSTOM_COL_PV)

        LogUtils.debug('Prices shape after base preparation={0}'.format(
            prices.shape))

        # region Init Service
        strategy_service: Any = self.__stock_service.get_strategy_service(
            req.strategy_type, req.strategy_request, symbols, prices)
        if not strategy_service or not strategy_service._is_valid_request():
            raise BadRequestException()
        strategy_service._do_preparations()

        LogUtils.debug('Prices shape after strategy preparation={0}'.format(
            prices.shape))
        # endregion

        LogUtils.debug(prices.info())

        # region Init Dates
        start_date: date = DateUtils.add_business_days(req.date_from_obj, -1)
        start_date = DateUtils.add_business_days(start_date, 1)
        start_date_str: str = DateUtils.to_string(start_date)
        end_date: date = DateUtils.add_business_days(req.date_to_obj, -1)
        dates: DataFrame = self.__stock_service.get_dates(
            prices, start_date, end_date)

        LogUtils.debug(
            'Dates actual_start={0}, actual_end={1}, shape={2}'.format(
                start_date, end_date, dates.shape))
        # endregion

        # region Loop Dates
        strategy_item: BackTestResultItem = next(
            b for b in response.back_test_result_items
            if b.target == req.strategy_type)
        strategy_item.capital[start_date_str] = req.start_capital
        strategy_item.capital_available[start_date_str] = req.start_capital
        portfolio: Dict = {}

        for i, date_row in dates.iterrows():
            current_date = date_row[AppConsts.PRICE_COL_DATE]
            current_date_str: str = DateUtils.to_string(current_date)
            next_date = date_row[AppConsts.CUSTOM_COL_NEXT_DATE]
            next_date_str = DateUtils.to_string(next_date)
            next_next_date = date_row[AppConsts.CUSTOM_COL_NEXT_NEXT_DATE]

            shuffle(symbols)
            for symbol in symbols:
                has_price: bool = (symbol.id, current_date) in prices.index
                if not has_price:
                    continue
                price: Series = prices.loc[symbol.id, current_date]

                if symbol.instrument == AppConsts.INSTRUMENT_ETF:

                    # region Benchmark
                    b_result_item: BackTestResultItem = next(
                        b for b in response.back_test_result_items
                        if b.target == symbol.symbol)
                    if not b_result_item:
                        continue

                    if not b_result_item.transactions:
                        no_of_shares: int = self.__stock_service.get_no_of_shares(
                            req.start_capital, req.pct_risk_per_trade,
                            req.volume_limit, price, req.slippage)
                        if no_of_shares == 0:
                            LogUtils.warning('0 shares for ETF={0}'.format(
                                symbol.symbol))
                            continue

                        b_transaction: Transaction = Transaction()
                        b_transaction.symbol_master = symbol
                        b_transaction.action = AppConsts.ACTION_BUY
                        b_transaction.start_date = current_date
                        b_transaction.start_price = price.loc[
                            AppConsts.PRICE_COL_OPEN]
                        b_transaction.no_of_shares = no_of_shares
                        b_result_item.transactions.append(b_transaction)
                        b_result_item.capital[
                            current_date_str] = req.start_capital
                    else:
                        b_transaction: Transaction = b_result_item.transactions[
                            0]
                        b_transaction.end_date = current_date
                        b_transaction.end_price = price.loc[
                            AppConsts.PRICE_COL_CLOSE]
                        b_transaction.set_readonly_props()
                        b_result_item.capital[
                            current_date_str] = self.__calc_benchmark_capital(
                                req, b_transaction.start_price,
                                b_transaction.end_price,
                                b_transaction.no_of_shares)
                    b_result_item.ttl_no_days += 1
                    # endregion

                else:

                    # region Strategy
                    strategy_service._do_calculations(symbol.id, current_date)
                    action: str = strategy_service._get_action()

                    is_in_position: bool = symbol.id in portfolio
                    if not is_in_position:

                        if len(portfolio
                               ) == req.portfolio_max:  # todo: prioritize?
                            continue
                        if current_date == end_date or next_date >= end_date:
                            continue
                        has_next_price: bool = (symbol.id,
                                                next_date) in prices.index
                        has_next_next_price: bool = (
                            symbol.id, next_next_date) in prices.index
                        if not has_next_price or not has_next_next_price:
                            continue
                        adv: float = price.loc[
                            AppConsts.CUSTOM_COL_ADV] if price.loc[
                                AppConsts.CUSTOM_COL_ADV] > 0 else price.loc[
                                    AppConsts.PRICE_COL_VOLUME]
                        if adv < req.adv_min:
                            continue
                        adpv: float = price.loc[
                            AppConsts.CUSTOM_COL_ADPV] if price.loc[
                                AppConsts.CUSTOM_COL_ADPV] > 0 else price.loc[
                                    AppConsts.CUSTOM_COL_PV]
                        if adpv < req.adpv_min:
                            continue

                        next_price: Series = prices.loc[symbol.id, next_date]

                        has_entry_conditions: bool = strategy_service._has_entry_conditions(
                            symbol.id, current_date)
                        if has_entry_conditions:

                            no_of_shares: int = self.__stock_service.get_no_of_shares(
                                strategy_item.
                                capital_available[current_date_str],
                                req.pct_risk_per_trade, req.volume_limit,
                                next_price, req.slippage,
                                action == AppConsts.ACTION_BUY)
                            if no_of_shares == 0:
                                continue

                            trans: Transaction = Transaction()
                            trans.symbol_master = symbol
                            trans.action = action
                            trans.start_date = next_date
                            trans.start_price = next_price.loc[
                                AppConsts.PRICE_COL_OPEN]
                            trans.no_of_shares = no_of_shares

                            trans_amount: float = NumberUtils.round(
                                trans.start_price * no_of_shares)
                            strategy_item.capital_available[
                                current_date_str] -= trans_amount

                            # Add to portfolio
                            portfolio[symbol.id] = trans

                    elif is_in_position:

                        has_exit_conditions: bool = strategy_service._has_exit_conditions(
                            symbol.id, current_date)
                        has_next_next_price: bool = (
                            symbol.id, next_next_date) in prices.index
                        if next_date == end_date or not has_next_next_price or has_exit_conditions:

                            next_price: Series = prices.loc[symbol.id,
                                                            next_date]
                            next_open_price: float = next_price.loc[
                                AppConsts.PRICE_COL_OPEN]
                            slippage_price: float = 0
                            if action == AppConsts.ACTION_BUY:
                                slippage_price: float = NumberUtils.round(
                                    next_open_price -
                                    (next_open_price * AppConsts.BASIS_POINT *
                                     req.slippage))
                            else:
                                slippage_price: float = NumberUtils.round(
                                    next_open_price +
                                    (next_open_price * AppConsts.BASIS_POINT *
                                     req.slippage))
                            trans: Transaction = portfolio.get(symbol.id)
                            trans.end_date = next_date
                            trans.end_price = slippage_price
                            trans.set_readonly_props()
                            strategy_item.transactions.append(trans)

                            if action == AppConsts.ACTION_BUY:
                                trans_amount = NumberUtils.round(
                                    trans.end_price * trans.no_of_shares)
                                strategy_item.capital_available[
                                    current_date_str] += trans_amount
                            else:
                                init_trans_amount = NumberUtils.round(
                                    trans.start_price * trans.no_of_shares)
                                strategy_item.capital_available[
                                    current_date_str] += init_trans_amount
                                strategy_item.capital_available[
                                    current_date_str] += trans.change_in_capital

                            # Remove from portfolio
                            portfolio.pop(symbol.id, None)

                    # endregion

            # capital = capital available + capital in portfolio
            capital: float = strategy_item.capital_available[current_date_str]
            for key, val in portfolio.items():
                price: Series = prices.loc[key, current_date]
                capital += price.loc[
                    AppConsts.PRICE_COL_CLOSE] * val.no_of_shares
            strategy_item.capital[current_date_str] = NumberUtils.round(
                capital)
            strategy_item.ttl_no_days += 1
            strategy_item.capital[next_date_str] = strategy_item.capital[
                current_date_str]
            strategy_item.capital_available[
                next_date_str] = strategy_item.capital_available[
                    current_date_str]

        # endregion

        for result_item in response.back_test_result_items:
            result_item.set_readonly_props()
        return response