Beispiel #1
0
def topographic_radiation(raw_aspect, radiation_output):
    """
    Description: calculates 32-bit float topographic radiation
    Inputs: 'raw_aspect' -- an input raw aspect raster
            'radiation_output' -- an output topographic radiation raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires an input raw aspect raster
    """

    # Import packages
    import arcpy
    from arcpy.sa import Con
    from arcpy.sa import Cos
    from arcpy.sa import Raster

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Calculate topographic radiation aspect index
    print('\t\tCalculating topographic radiation aspect index...')
    numerator = 1 - Cos((3.142 / 180) * (Raster(raw_aspect) - 30))
    radiation_index = numerator / 2

    # Convert negative aspect values
    print('\t\tConverting negative aspect values...')
    out_raster = Con(Raster(raw_aspect) < 0, 0.5, radiation_index)
    out_raster.save(radiation_output)
def topographic_position(elevation_input, position_output):
    """
    Description: calculates 32-bit float topographic position
    Inputs: 'elevation_input' -- an input raster digital elevation model
            'relief_output' -- an output surface relief ratio raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires an input elevation raster
    """

    # Import packages
    import arcpy
    from arcpy.sa import FocalStatistics
    from arcpy.sa import NbrRectangle
    from arcpy.sa import Raster

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Define a neighborhood variable
    neighborhood = NbrRectangle(5, 5, "CELL")

    # Calculate local mean
    print('\t\tCalculating local mean...')
    local_mean = FocalStatistics(elevation_input, neighborhood, 'MEAN', 'DATA')

    # Calculate topographic position
    print('\t\tCalculating topographic position...')
    out_raster = Raster(elevation_input) - local_mean
    out_raster.save(position_output)
def site_exposure(raw_aspect, raw_slope, exposure_output):
    """
    Description: calculates 32-bit float site exposure
    Inputs: 'raw_aspect' -- an input raw aspect raster
            'raw_slope' -- an input raster digital elevation model
            'exposure_output' -- an output exposure raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires an input aspect and slope raster
    """

    # Import packages
    import arcpy
    from arcpy.sa import Cos
    from arcpy.sa import Divide
    from arcpy.sa import Minus
    from arcpy.sa import Raster
    from arcpy.sa import Times

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Calculate cosine of modified aspect
    print('\t\tCalculating cosine of modified aspect...')
    cosine = Cos(Divide(Times(3.142, Minus(Raster(raw_aspect), 180)), 180))

    # Calculate site exposure index and save output
    print('\t\tCalculating site exposure index...')
    out_raster = Times(Raster(raw_slope), cosine)
    out_raster.save(exposure_output)
Beispiel #4
0
def do_score(fire, year, day, p, shp):
    """!
    Calculate score 
    @param fire Fire to calculate score for
    @param year Year fire is from
    @param day Day score is for
    @param p Probability raster to compare to
    @param shp Shapefile for actual perimeter
    @return None
    """
    orig_raster = os.path.join(run_output, fire + ".tif")
    orig_raster = Raster(orig_raster) if os.path.exists(orig_raster) else None
    prob_raster = Raster(p)
    raster = os.path.join(run_output,
                          os.path.splitext(os.path.basename(shp))[0] + '.tif')
    perim, raster = rasterize_perim(run_output, shp, year, fire, raster)
    if perim:
        target = Raster(raster)
        # remove the original raster used to start the simulation
        r = Con(IsNull(orig_raster), prob_raster,
                0.0) if orig_raster is not None else prob_raster
        r = SetNull(r == 0.0, r)
        m = Con(IsNull(orig_raster), target,
                0.0) if orig_raster is not None else target
        m = SetNull(m == 0.0, m)
        hits = Con(IsNull(r), 0.0, r) * Con(IsNull(m), 0.0, 1.0)
        misses = Con(IsNull(r), 1.0, 0.0) * Con(IsNull(m), 0.0, 1.0)
        false_positives = Con(IsNull(r), 0.0, r) * Con(IsNull(m), 1.0, 0.0)
        tp = arcpy.RasterToNumPyArray(hits, nodata_to_value=0).sum()
        fn = arcpy.RasterToNumPyArray(misses, nodata_to_value=0).sum()
        fp = arcpy.RasterToNumPyArray(false_positives, nodata_to_value=0).sum()
        total_score = tp / (tp + fn + fp)
        #~ logging.info("Scores are {} + {} + {} = {}".format(tp, fn, fp, total_score))
        scores.append([fire, year, day, p, shp, tp, fn, fp, total_score])
Beispiel #5
0
def getNullSubstituteGrid(lccObj, inLandCoverGrid, inSubstituteGrid,
                          nullValuesList, cleanupList, timer):
    # Set areas in the inSubstituteGrid to NODATA using the nullValuesList. For areas not in the nullValuesList, substitute
    # the grid values with those from the inLandCoverGrid
    LCGrid = Raster(inLandCoverGrid)
    subGrid = Raster(inSubstituteGrid)

    # find the highest value found in LCC XML file or land cover grid
    lccValuesDict = lccObj.values
    maxValue = LCGrid.maximum
    xmlValues = lccObj.getUniqueValueIdsWithExcludes()
    for v in xmlValues:
        if v > maxValue:
            maxValue = v

    # Add 1 to the highest value and then add it to the list of values to exclude during metric calculations
    valueToExclude = int(maxValue + 1)
    excludedValuesFrozen = lccValuesDict.getExcludedValueIds()
    excludedValues = [item for item in excludedValuesFrozen]
    excludedValues.append(valueToExclude)

    # build whereClause string (e.g. "VALUE" <> 11 or "VALUE" <> 12") to identify areas to substitute the valueToExclude
    delimitedVALUE = arcpy.AddFieldDelimiters(subGrid, "VALUE")
    stringStart = delimitedVALUE + " <> "
    stringSep = " or " + delimitedVALUE + " <> "
    whereClause = stringStart + stringSep.join(
        [str(item) for item in nullValuesList])
    AddMsg(timer.split() + " Generating land cover in floodplain grid...")
    nullSubstituteGrid = Con(subGrid, LCGrid, valueToExclude, whereClause)

    return nullSubstituteGrid, excludedValues
Beispiel #6
0
def combineProposedWithCurrentDebit(anthroPath, uniqueProposedSubtypes):
    for subtype in uniqueProposedSubtypes:
        # Merge proposed and current feature rasters
        currentAnthroFeature = Raster(os.path.join(anthroPath, subtype))
        proposedAnthroFeature = Raster("Proposed_" + subtype)
        postAnthroFeature = Con(IsNull(proposedAnthroFeature),
                                currentAnthroFeature, proposedAnthroFeature)
        postAnthroFeature.save(os.path.join("Post_" + subtype))
Beispiel #7
0
def combineProposedWithCurrentCredit(anthroPath, uniqueProposedSubtypes):
    for subtype in uniqueProposedSubtypes:
        # Merge proposed and current feature rasters
        currentAnthroFeature = Raster(os.path.join(anthroPath, subtype))
        proposedAnthroFeature = Raster("Proposed_" + subtype)
        postAnthroFeature = SetNull(proposedAnthroFeature,
                                    currentAnthroFeature, "Value = 1")
        postAnthroFeature.save(os.path.join("Post_" + subtype))
def make_weightrasters():
    ap.Project_management(INPUTPOLYS,TMPPOLYS,ap.SpatialReference(OUTCOORDS))
    ap.AddField_management(TMPPOLYS,"__area","DOUBLE")
    ap.AddField_management(TMPPOLYS,"__normalized","DOUBLE")
    ap.CalculateField_management(TMPPOLYS,"__area","!shape.area@kilometers!","PYTHON")
    ret = []
    for f in RASTERFIELDS:
        ap.CalculateField_management(TMPPOLYS,"__normalized","!%s!/!__area!"%f,"PYTHON")
        ap.PolygonToRaster_conversion(TMPPOLYS,"__normalized",f,cellsize=OUTRES)
        distributed = Raster(f) * Raster(DISTRASTERS[f])
        out = "d%s"%f
        distributed.save(out)
        ret.append(out)
    
    return ret
def reclassify_lulc(reclass_numbers, out_file_name):
    lulc_rast = Raster('nor_lulc_ext_prj.tif')
    remap_list = [[str(i), 1] for i in reclass_numbers]
    remap = RemapValue(remap_list)
    reclass_field = "VALUE"
    water_rast = Reclassify(lulc_rast, reclass_field, remap, "NODATA")
    water_rast.save(out_file_name)
Beispiel #10
0
    def calcSubtypeDisturbance(AnthroFeatures, subtype, AnthroDisturbanceType):
        """calculate disturbance associated with each subtype"""
        distance = distanceDict[subtype]
        weight = weightDict[subtype]

        AnthroFeatures = Raster(AnthroFeatures)

        if distance > 0:
            arcpy.AddMessage("  Calculating direct and indirect effects of "
                             + str(subtype))
            outEucDist = EucDistance(AnthroFeatures, distance, cellSize)
            tmp1 = 100 - (1/(1 + Exp(((outEucDist / (distance/2))-1)*5))) * weight  # sigmoidal
            # tmp1 = (100 - (weight * Power((1 - outEucDist/distance), 2)))  # exponential
            # tmp1 = 100 - (weight - (outEucDist / distance) * weight)  # linear
            tmp2 = Con(IsNull(tmp1), 100, tmp1)
            subtypeRaster = tmp2
            subtypeRaster.save(AnthroDisturbanceType + "_" + subtype
                               + "_Subtype_Disturbance")
        elif weight > 0:
            arcpy.AddMessage("  Calculating direct effects of "
                             + str(subtype))
            tmp3 = Con(IsNull(AnthroFeatures), 0, AnthroFeatures)
            subtypeRaster = 100 - (tmp3 * weight)
            subtypeRaster.save(AnthroDisturbanceType + "_" + subtype
                               + "_Subtype_Disturbance")
        else:
            subtypeRaster = None

        return subtypeRaster
Beispiel #11
0
def clipGridByBuffer(inReportingUnitFeature,
                     outName,
                     inLandCoverGrid,
                     inBufferDistance=None):
    if arcpy.Exists(outName):
        arcpy.Delete_management(outName)

    if inBufferDistance:
        # Buffering Reporting unit features...
        cellSize = Raster(inLandCoverGrid).meanCellWidth
        linearUnits = arcpy.Describe(
            inLandCoverGrid).spatialReference.linearUnitName
        bufferFloat = cellSize * (int(inBufferDistance) + 1)
        bufferDistance = "%s %s" % (bufferFloat, linearUnits)
        arcpy.Buffer_analysis(inReportingUnitFeature, "in_memory/ru_buffer",
                              bufferDistance, "#", "#", "ALL")

    # Clipping input grid to desired extent...
    if inBufferDistance:
        clippedGrid = arcpy.Clip_management(inLandCoverGrid, "#", outName,
                                            "in_memory/ru_buffer", "", "NONE")
        arcpy.Delete_management("in_memory")
    else:
        clippedGrid = arcpy.Clip_management(inLandCoverGrid, "#", outName,
                                            inReportingUnitFeature, "", "NONE")

    arcpy.BuildRasterAttributeTable_management(clippedGrid, "Overwrite")

    return clippedGrid
def roughness(elevation_input, roughness_output):
    """
    Description: calculates 32-bit float roughness
    Inputs: 'elevation_input' -- an input raster digital elevation model
            'roughness_output' -- an output roughness raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires an input elevation raster
    """

    # Import packages
    import arcpy
    from arcpy.sa import FocalStatistics
    from arcpy.sa import NbrRectangle
    from arcpy.sa import Raster
    from arcpy.sa import Square

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Define a neighborhood variable
    neighborhood = NbrRectangle(5, 5, "CELL")

    # Calculate the elevation standard deviation
    print('\t\tCalculating standard deviation...')
    standard_deviation = FocalStatistics(Raster(elevation_input), neighborhood,
                                         'STD', 'DATA')

    # Calculate the square of standard deviation
    print('\t\tCalculating squared standard deviation...')
    out_raster = Square(standard_deviation)
    out_raster.save(roughness_output)
def compound_topographic(elevation_input, flow_accumulation, raw_slope,
                         cti_output):
    """
    Description: calculates 32-bit float compound topographic index
    Inputs: 'elevation_input' -- an input raster digital elevation model
            'flow_accumulation' -- an input flow accumulation raster with the same spatial reference as the elevation raster
            'raw_slope' -- an input raw slope raster in degrees with the same spatial reference as the elevation raster
            'cti_output' -- an output compound topographic index raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires input elevation, flow accumulation, and raw slope raster
    """

    # Import packages
    import arcpy
    from arcpy.sa import Con
    from arcpy.sa import Divide
    from arcpy.sa import Ln
    from arcpy.sa import Plus
    from arcpy.sa import Raster
    from arcpy.sa import Times
    from arcpy.sa import Tan

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Get spatial properties for the input elevation raster
    description = arcpy.Describe(elevation_input)
    cell_size = description.meanCellHeight

    # Convert degree slope to radian slope
    print('\t\tConverting degree slope to radians...')
    slope_radian = Divide(Times(Raster(raw_slope), 1.570796), 90)

    # Calculate slope tangent
    print('\t\tCalculating slope tangent...')
    slope_tangent = Con(slope_radian > 0, Tan(slope_radian), 0.001)

    # Correct flow accumulation
    print('\t\tModifying flow accumulation...')
    accumulation_corrected = Times(Plus(Raster(flow_accumulation), 1),
                                   cell_size)

    # Calculate compound topographic index as natural log of corrected flow accumulation divided by slope tangent
    print('\t\tCalculating compound topographic index...')
    out_raster = Ln(Divide(accumulation_corrected, slope_tangent))
    out_raster.save(cti_output)
Beispiel #14
0
def imperviousness_raster():
    out_file_name = 'neigh_imp.tif'
    imp_rast = Raster('nor_imperv.tif')
    neighborhood = NbrRectangle(width=1500, height=1500, units="MAP")
    neigh_imp = FocalStatistics(imp_rast, neighborhood=neighborhood, statistics_type="SUM",
                                ignore_nodata="DATA")
    neigh_imp.save(out_file_name)
    return out_file_name
Beispiel #15
0
def path_allocation_basins():
    src_raster = '{}/Stormwater Infrastructure/sw_struct_basins.shp'.format(gis_proj_dir)
    elev_raster = Raster(elev_raster)
    out_file_name = 'path_allo_basins.tif'
    pth_all = PathAllocation(src_raster, source_field="FID", in_surface_raster=elev_raster,
                             in_vertical_raster=elev_raster)
    pth_all.save(out_file_name)
    return out_file_name
Beispiel #16
0
def calculate_dist_to_src(src_raster, out_file_name):
    """
    uses water raster as source should have run reclassify_lulc_for_water first
    :return: 
    """
    elev_raster = Raster(elev_raster)
    path_dist = PathDistance(in_source_data=src_raster, in_surface_raster=elev_raster,
                             in_vertical_raster=elev_raster)
    path_dist.save(out_file_name)
Beispiel #17
0
def extract_values_to_points():
    target_shapefile = 'fld_nfld_pts.shp'
    elev_raster = Raster(elev_raster)
    raster_list = [['twi.tif', 'twi'],
                   [elev_raster, 'elev'],
                   ['path_dist_basins.tif', 'dist_to_basin'],
                   ['path_allo_basins.tif', 'basin_id'],
                   ['neigh_imp.tif', 'imp'],
                   ['pth_dist_to_wat.tif', 'dist_to_wat']]
    ExtractMultiValuesToPoints(target_shapefile, raster_list, "NONE")
Beispiel #18
0
def getIntersectOfGrids(lccObj, inLandCoverGrid, inSlopeGrid,
                        inSlopeThresholdValue, timer):

    # Generate the slope X land cover grid where areas below the threshold slope are
    # set to the value 'Maximum Land Cover Class Value + 1'.
    LCGrid = Raster(inLandCoverGrid)
    SLPGrid = Raster(inSlopeGrid)

    # find the highest value found in LCC XML file or land cover grid
    lccValuesDict = lccObj.values
    maxValue = LCGrid.maximum
    xmlValues = lccObj.getUniqueValueIdsWithExcludes()
    for v in xmlValues:
        if v > maxValue:
            maxValue = v

    AddMsg(timer.split() +
           " Generating land cover above slope threshold grid...")
    AreaBelowThresholdValue = int(maxValue + 1)
    delimitedVALUE = arcpy.AddFieldDelimiters(SLPGrid, "VALUE")
    whereClause = delimitedVALUE + " >= " + inSlopeThresholdValue
    SLPxLCGrid = Con(SLPGrid, LCGrid, AreaBelowThresholdValue, whereClause)

    # determine if a grid code is to be included in the effective reporting unit area calculation
    # get the frozenset of excluded values (i.e., values not to use when calculating the reporting unit effective area)
    excludedValues = lccValuesDict.getExcludedValueIds()

    # if certain land cover codes are tagged as 'excluded = TRUE', generate grid where land cover codes are
    # preserved for areas coincident with steep slopes, areas below the slope threshold are coded with the
    # AreaBelowThresholdValue except for where the land cover code is included in the excluded values list.
    # In that case, the excluded land cover values are maintained in the low slope areas.
    if excludedValues:
        # build a whereClause string (e.g. "VALUE" = 11 or "VALUE" = 12") to identify where on the land cover grid excluded values occur
        AddMsg(
            timer.split() +
            " Inserting EXCLUDED values into areas below slope threshold...")
        stringStart = delimitedVALUE + " = "
        stringSep = " or " + delimitedVALUE + " = "
        whereExcludedClause = stringStart + stringSep.join(
            [str(item) for item in excludedValues])
        SLPxLCGrid = Con(LCGrid, LCGrid, SLPxLCGrid, whereExcludedClause)

    return SLPxLCGrid
Beispiel #19
0
def linear_aspect(raw_aspect, aspect_output):
    """
    Description: calculates 32-bit float linear aspect
    Inputs: 'raw_aspect' -- an input raw aspect raster
            'aspect_output' -- an output linear aspect raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires an input DEM
    """

    # Import packages
    import arcpy
    from arcpy.sa import ATan2
    from arcpy.sa import Con
    from arcpy.sa import Cos
    from arcpy.sa import FocalStatistics
    from arcpy.sa import Mod
    from arcpy.sa import NbrRectangle
    from arcpy.sa import Raster
    from arcpy.sa import SetNull
    from arcpy.sa import Sin

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Define a neighborhood variable
    neighborhood = NbrRectangle(3, 3, "CELL")

    # Calculate aspect transformations
    print('\t\tTransforming raw aspect to linear aspect...')
    setNull_aspect = SetNull(
        Raster(raw_aspect) < 0, (450.0 - Raster(raw_aspect)) / 57.296)
    sin_aspect = Sin(setNull_aspect)
    cos_aspect = Cos(setNull_aspect)
    sum_sin = FocalStatistics(sin_aspect, neighborhood, "SUM", "DATA")
    sum_cos = FocalStatistics(cos_aspect, neighborhood, "SUM", "DATA")
    mod_aspect = Mod(
        ((450 - (ATan2(sum_sin, sum_cos) * 57.296)) * 100), 36000
    ) / 100  # The *100 and 36000(360*100) / 100 allow for two decimal points since Fmod appears to be gone
    out_raster = Con((sum_sin == 0) & (sum_cos == 0), -1, mod_aspect)

    # Save output raster file
    out_raster.save(aspect_output)
Beispiel #20
0
def function(DEM, streamNetwork, smoothDropBuffer, smoothDrop, streamDrop, outputReconDEM):

    try:
        # Set environment variables
        arcpy.env.extent = DEM
        arcpy.env.mask = DEM
        arcpy.env.cellSize = DEM

        # Set temporary variables
        prefix = "recon_"
        streamRaster = prefix + "streamRaster"

        # Determine DEM cell size and OID column name
        size = arcpy.GetRasterProperties_management(DEM, "CELLSIZEX")
        OIDField = arcpy.Describe(streamNetwork).OIDFieldName

        # Convert stream network to raster
        arcpy.PolylineToRaster_conversion(streamNetwork, OIDField, streamRaster, "", "", size)

        # Work out distance of cells from stream
        distanceFromStream = EucDistance(streamRaster, "", size)

        # Elements within a buffer distance of the stream are smoothly dropped
        intSmoothDrop = Con(distanceFromStream > float(smoothDropBuffer), 0,
                            (float(smoothDrop) / float(smoothDropBuffer)) * (float(smoothDropBuffer) - distanceFromStream))
        del distanceFromStream

        # Burn this smooth drop into DEM. Cells in stream are sharply dropped by the value of "streamDrop"
        binaryStream = Con(IsNull(Raster(streamRaster)), 0, 1)
        reconDEMTemp = Raster(DEM) - intSmoothDrop - (float(streamDrop) * binaryStream)
        del intSmoothDrop
        del binaryStream
        
        reconDEMTemp.save(outputReconDEM)
        del reconDEMTemp

        log.info("Reconditioned DEM generated")

    except Exception:
        log.error("DEM reconditioning function failed")
        raise
Beispiel #21
0
def integrated_moisture(elevation_input, flow_accumulation, zFactor,
                        imi_output):
    """
    Description: calculates 32-bit float integrated moisture index
    Inputs: elevation_input' -- an input raster digital elevation model
            'flow_accumulation' -- an input flow accumulation raster with the same spatial reference as the elevation raster
            'zFactor' -- a unit scaling factor for calculations that involve comparisons of xy to z
            'imi_output' -- an output compound topographic index raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires input elevation,
    """

    # Import packages
    import arcpy
    from arcpy.sa import Curvature
    from arcpy.sa import Hillshade
    from arcpy.sa import Plus
    from arcpy.sa import Times
    from arcpy.sa import Raster

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Adjust flow accumulation
    print('\t\tScaling flow accumulation...')
    adjusted_accumulation = Times(Raster(flow_accumulation), 0.35)

    # Calculate and adjust curvature
    print('\t\tCalculating curvature...')
    curvature = Curvature(Raster(elevation_input), zFactor)
    adjusted_curvature = Times(curvature, 0.15)

    # Calculate and adjust hillshade
    print('\t\tCalculating hillshade...')
    hillshade = Hillshade(Raster(elevation_input), "#", "#", "#", zFactor)
    adjusted_hillshade = Times(hillshade, 0.5)

    # Calculate integrated moisture index
    out_raster = Plus(Plus(adjusted_accumulation, adjusted_curvature),
                      adjusted_hillshade)
    out_raster.save(imi_output)
def extract_raster(**kwargs):
    """
    Description: extracts a raster to a mask
    Inputs: 'work_geodatabase' -- path to a file geodatabase that will serve as the workspace
            'input_array' -- an array containing the target raster to extract (must be first) and the mask raster (must be second)
            'output_array' -- an array containing the output raster
    Returned Value: Returns a raster dataset
    Preconditions: the initial raster must be created from other scripts and the study area raster must be created manually
    """

    # Import packages
    import arcpy
    from arcpy.sa import ExtractByMask
    from arcpy.sa import Raster
    import datetime
    import time

    # Parse key word argument inputs
    work_geodatabase = kwargs['work_geodatabase']
    input_raster = kwargs['input_array'][0]
    mask_raster = kwargs['input_array'][1]
    output_raster = kwargs['output_array'][0]

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Set workspace
    arcpy.env.workspace = work_geodatabase

    # Set snap raster and extent
    arcpy.env.snapRaster = mask_raster
    arcpy.env.extent = Raster(mask_raster).extent

    # Extract raster to study area
    print('\t\tPerforming extraction to study area...')
    iteration_start = time.time()
    extract_raster = ExtractByMask(input_raster, mask_raster)
    arcpy.management.CopyRaster(extract_raster, output_raster, '', '',
                                '-32768', 'NONE', 'NONE', '16_BIT_SIGNED',
                                'NONE', 'NONE', 'TIFF', 'NONE',
                                'CURRENT_SLICE', 'NO_TRANSPOSE')
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success
    print(
        f'\t\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
    )
    print('\t\t----------')
    out_process = f'\tSuccessfully extracted raster data to mask.'
    return out_process
Beispiel #23
0
def mp_land_temperature(file):
    path_thermal = file + "\\" + file[-40:] + "_B10.tif"
    location = file[-30:-24]
    date = file[-24:-15]
    name = date + "_" + location
    print(name)

    arcpy.env.scratchWorkspace = os.path.join(
        arcpy.env.workspace,
        name)  # r'C:\Users\yourname\PSU_LiDAR\f'+raster.replace(".img","")

    if not os.path.exists(arcpy.env.scratchWorkspace):
        os.makedirs(arcpy.env.scratchWorkspace)

        path_thermal = file + "\\" + file[-40:] + "_B10.tif"

    thermal_band = Raster(path_thermal)
    print thermal_band
    print "band condirmed"

    Rfloat = Float(thermal_band)
    top_temperature = Rfloat * RADIANCE_MULT_BAND + RADIANCE_ADD - Oi
    temp_tif = "temp{}.tif".format(name)
    top_temperature.save(temp_tif)

    top_temperature = Raster(temp_tif)
    top_temperature = Float(top_temperature)

    divide1 = Divide(K1_CONSTANT_BAND_10, (top_temperature + 1))
    ln1 = Ln(divide1)
    surface_temp = Divide(K2_CONSTANT_BAND_10, ln1) - 273.15

    location = file[-30:-24]
    date = file[-24:-15]
    name = date + "_" + location
    print name
    path = "surface_temp" + name + ".tif"
    print path
    surface_temp.save(path)
Beispiel #24
0
def create_mask(path_to_temp):
    arcpy.CheckOutExtension('Spatial')
    inputrasters = arcpy.GetParameterAsText(1).split(";")
    rasterlist = []
    for elements in inputrasters:
        rasterobject = Raster(elements)
        rasterlist.append(rasterobject)
    rasterlistSum = sum(rasterlist)                     
    outcon = Con(IsNull(rasterlistSum) == 0,1)          # result raster has 1 when value meets value and NoData when value meets NoData
    outcon.save(join(path_to_temp,"mask"))              # filename is 'mask'
    #arcpy.CheckInExtension('Spatial')                  
    path_to_mask = join(path_to_temp,"mask")
    if arcpy.Exists(path_to_mask):
        arcpy.AddMessage("Creating mask.")
    return path_to_mask
Beispiel #25
0
def log4param(inlayer, type, outlayer):
    # set environment settings
    arcpy.env.snapRaster = "Y:/Tahoe/GISdata/Lattice_Clip30m.gdb/Lattice_Clip30m_ProjBound"
    arcpy.env.extent = "Y:/Tahoe/GISdata/Lattice_Clip30m.gdb/Lattice_Clip30m_ProjBound"
    arcpy.env.workspace = "Y:/Tahoe/GISdata/WorkGDBCreated051214.gdb/"

    # Check out the ArcGIS Spatial Analyst extension license
    arcpy.CheckOutExtension("spatial")

    x = inlayer

    if type == "slope":
        left = 1
        right = 0.2
        slope = 0.2
        inflexion = 30

        #rule = "".join([   str(left), "+((", str(right), "-", str(left), ")/(1+Exp(", str(slope), "*(", str(inflexion), "-", x, "))))"])
        #arcpy.RasterCalculator(rule,outlayer)

    if type == "suscTPI":
        left = 0.8
        right = 1.2
        slope = 1
        inflexion = 0

    if type == "suitTPI":
        left = 0.4
        right = 1
        slope = 1
        inflexion = 0

    if type == "roadmech":
        left = 1
        right = 0
        slope = 0.015
        inflexion = 300

    if type == "roadburn":
        left = 1
        right = 0.1
        slope = 0.001
        inflexion = 5000

    outRas = left + ((right - left) / (1 + Exp(slope *
                                               (inflexion - Raster(x)))))
    outRas.save(outlayer)
Beispiel #26
0
def surface_area(raw_slope, area_output):
    """
    Description: calculates 32-bit float surface area ratio
    Inputs: 'raw_slope' -- an input raw slope raster
            'roughness_output' -- an output roughness raster
    Returned Value: Returns a raster dataset on disk
    Preconditions: requires an input elevation raster
    """

    # Import packages
    import arcpy
    from arcpy.sa import Cos
    from arcpy.sa import Float
    from arcpy.sa import Raster
    import math

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Getting info on raster
    description = arcpy.Describe(raw_slope)
    cell_size = description.meanCellHeight

    # Set the cell size environment
    arcpy.env.cellSize = cell_size

    # Calculate cell area
    cell_area = cell_size * cell_size

    # Modify raw slope
    print('\t\tModifying raw slope...')
    modifier = math.pi / 180
    modified_slope = Raster(raw_slope) * modifier

    # Calculate surface area ratio
    print('\t\tCalculating surface area ratio...')
    out_raster = Float(cell_area) / Cos(modified_slope)
    out_raster.save(area_output)
Beispiel #27
0
def calculate_LST(source_dir):
    dir_name = os.path.dirname(source_dir)
    basename = os.path.basename(source_dir)
    print(dir_name, basename)
    workspace = create_dir(basename + ".gdb")
    print workspace
    env.workspace = workspace
    env.overwriteOutput = True
    Band4 = "{}/{}_B4.tif".format(source_dir, basename)
    Band5 = "{}/{}_B5.tif".format(source_dir, basename)
    Band10 = "{}/{}_B10.tif".format(source_dir, basename)

    Band4_R = Raster(Band4)
    Band5_R = Raster(Band5)
    Band5_R.save("{}/{}_bands".format(workspace, basename))

    Band4 = Float(Band4_R)
    Band5 = Float(Band5_R)
    Band10 = Float(Raster(Band10))

    NDVI = Divide((Band5 - Band4), (Band5 + Band4))
    NDVI_path = "{}/{}_ndvi".format(workspace, basename)
    print NDVI_path
    NDVI.save(NDVI_path)

    NDVI_max = GetRasterProperties_management(
        NDVI_path, property_type="MAXIMUM").getOutput(0)
    NDVI_min = GetRasterProperties_management(
        NDVI_path, property_type="MINIMUM").getOutput(0)
    a = Minus(NDVI, -1)
    b = float(NDVI_max) - float(NDVI_min)
    c = Divide(a, b)
    PV = Square(c)
    E = 0.004 * PV + 0.986
    E.save("{}/{}_E".format(workspace, basename))

    TOA = 0.0003342 * Band10 + 0.1
    BT = 1321.08 / Ln((774.89 / TOA) + 1) - 273.15
    d = 1 + (0.00115 * BT / 1.4388) + Ln(E)
    LST = Divide(BT, d)
    print LST, type(LST)
    LST_Path = "{}/{}_LST".format(workspace, basename)
    LST.save(LST_Path)
    print(LST_Path)
Beispiel #28
0
def getViewGrid(classValuesList, excludedValuesList, inLandCoverGrid,
                landCoverValues, viewRadius, conValues, timer):
    # create class (value = 1) / other (value = 0) / excluded grid (value = 0) raster
    # define the reclass values
    classValue = 1
    excludedValue = 0
    otherValue = 0
    newValuesList = [classValue, excludedValue, otherValue]

    # generate a reclass list where each item in the list is a two item list: the original grid value, and the reclass value
    reclassPairs = getInOutOtherReclassPairs(landCoverValues, classValuesList,
                                             excludedValuesList, newValuesList)

    AddMsg((
        "{0} Reclassifying selected land cover class to 1. All other values = 0..."
    ).format(timer.split()))
    reclassGrid = Reclassify(inLandCoverGrid, "VALUE",
                             RemapValue(reclassPairs))

    AddMsg((
        "{0} Performing focal SUM on reclassified raster using {1} cell radius neighborhood..."
    ).format(timer.split(), viewRadius))
    neighborhood = arcpy.sa.NbrCircle(int(viewRadius), "CELL")
    focalGrid = arcpy.sa.FocalStatistics(reclassGrid == classValue,
                                         neighborhood, "SUM")

    AddMsg((
        "{0} Reclassifying focal SUM results into view = 0 and no-view = 1 binary raster..."
    ).format(timer.split()))
    #    delimitedVALUE = arcpy.AddFieldDelimiters(focalGrid,"VALUE")
    #    whereClause = delimitedVALUE+" = 0"
    #    viewGrid = Con(focalGrid, 1, 0, whereClause)
    whereValue = conValues[0]
    trueValue = conValues[1]
    viewGrid = Con(Raster(focalGrid) == whereValue, trueValue)
    return viewGrid
def merge_spectral_tiles(**kwargs):
    """
    Description: extracts spectral tiles to an area and mosaics extracted tiles with first data priority
    Inputs: 'cell_size' -- a cell size for the output spectral raster
            'output_projection' -- the machine number for the output projection
            'work_geodatabase' -- a geodatabase to store temporary results
            'input_array' -- an array containing the grid raster (must be first), the study area raster (must be second), and the list of spectral tiles
            'output_array' -- an array containing the output spectral grid raster
    Returned Value: Returns a raster dataset on disk containing the merged spectral grid raster
    Preconditions: requires processed source spectral tiles and predefined grid
    """

    # Import packages
    import arcpy
    from arcpy.sa import ExtractByMask
    from arcpy.sa import IsNull
    from arcpy.sa import Nibble
    from arcpy.sa import Raster
    from arcpy.sa import SetNull
    import datetime
    import os
    import time

    # Parse key word argument inputs
    cell_size = kwargs['cell_size']
    output_projection = kwargs['output_projection']
    work_geodatabase = kwargs['work_geodatabase']
    tile_inputs = kwargs['input_array']
    grid_raster = tile_inputs.pop(0)
    study_area = tile_inputs.pop(0)
    spectral_grid = kwargs['output_array'][0]

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Use two thirds of cores on processes that can be split.
    arcpy.env.parallelProcessingFactor = "75%"

    # Set snap raster and extent
    arcpy.env.snapRaster = study_area
    arcpy.env.extent = Raster(grid_raster).extent

    # Define the output coordinate system
    output_system = arcpy.SpatialReference(output_projection)

    # Define intermediate rasters
    mosaic_raster = os.path.splitext(spectral_grid)[0] + '_mosaic.tif'
    nibble_raster = os.path.splitext(spectral_grid)[0] + '_nibble.tif'
    spectral_area = os.path.splitext(spectral_grid)[0] + '_area.tif'

    # Define folder structure
    grid_title = os.path.splitext(os.path.split(grid_raster)[1])[0]
    mosaic_location, mosaic_name = os.path.split(mosaic_raster)

    # Create source folder within mosaic location if it does not already exist
    source_folder = os.path.join(mosaic_location, 'sources')
    if os.path.exists(source_folder) == 0:
        os.mkdir(source_folder)

    # Create an empty list to store existing extracted source rasters for the grid
    input_length = len(tile_inputs)
    input_rasters = []

    # Identify raster extent of grid
    print(f'\tExtracting {input_length} spectral tiles...')
    grid_extent = Raster(grid_raster).extent
    grid_array = arcpy.Array()
    grid_array.add(arcpy.Point(grid_extent.XMin, grid_extent.YMin))
    grid_array.add(arcpy.Point(grid_extent.XMin, grid_extent.YMax))
    grid_array.add(arcpy.Point(grid_extent.XMax, grid_extent.YMax))
    grid_array.add(arcpy.Point(grid_extent.XMax, grid_extent.YMin))
    grid_array.add(arcpy.Point(grid_extent.XMin, grid_extent.YMin))
    grid_polygon = arcpy.Polygon(grid_array)

    # Save grid polygon
    grid_feature = os.path.join(work_geodatabase, 'grid_polygon')
    arcpy.management.CopyFeatures(grid_polygon, grid_feature)
    arcpy.management.DefineProjection(grid_feature, output_system)

    # Iterate through all input tiles and extract to grid if they overlap
    count = 1
    for raster in tile_inputs:
        output_raster = os.path.join(source_folder, os.path.split(raster)[1])
        if os.path.exists(output_raster) == 0:
            # Identify raster extent of tile
            tile_extent = Raster(raster).extent
            tile_array = arcpy.Array()
            tile_array.add(arcpy.Point(tile_extent.XMin, tile_extent.YMin))
            tile_array.add(arcpy.Point(tile_extent.XMin, tile_extent.YMax))
            tile_array.add(arcpy.Point(tile_extent.XMax, tile_extent.YMax))
            tile_array.add(arcpy.Point(tile_extent.XMax, tile_extent.YMin))
            tile_array.add(arcpy.Point(tile_extent.XMin, tile_extent.YMin))
            tile_polygon = arcpy.Polygon(tile_array)

            # Save tile polygon
            tile_feature = os.path.join(work_geodatabase, 'tile_polygon')
            arcpy.CopyFeatures_management(tile_polygon, tile_feature)
            arcpy.DefineProjection_management(tile_feature, output_system)

            # Select tile extent with grid extent
            selection = int(
                arcpy.GetCount_management(
                    arcpy.management.SelectLayerByLocation(
                        tile_feature, 'INTERSECT', grid_feature, '',
                        'NEW_SELECTION', 'NOT_INVERT')).getOutput(0))

            # If tile overlaps grid then perform extraction
            if selection == 1:
                # Extract raster to mask
                print(
                    f'\t\tExtracting spectral tile {count} of {input_length}...'
                )
                iteration_start = time.time()
                extract_raster = ExtractByMask(raster, grid_raster)
                # Copy extracted raster to output
                print(f'\t\tSaving spectral tile {count} of {input_length}...')
                arcpy.management.CopyRaster(extract_raster, output_raster, '',
                                            '0', '-32768', 'NONE', 'NONE',
                                            '16_BIT_SIGNED', 'NONE', 'NONE',
                                            'TIFF', 'NONE', 'CURRENT_SLICE',
                                            'NO_TRANSPOSE')
                # End timing
                iteration_end = time.time()
                iteration_elapsed = int(iteration_end - iteration_start)
                iteration_success_time = datetime.datetime.now()
                # Report success
                print(
                    f'\t\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
                )
                print('\t\t----------')
            # If tile does not overlap grid then report message
            else:
                print(
                    f'\t\tSpectral tile {count} of {input_length} does not overlap grid...'
                )
                print('\t\t----------')

            # Remove tile feature class
            if arcpy.Exists(tile_feature) == 1:
                arcpy.management.Delete(tile_feature)

        # If extracted tile already exists then report message
        else:
            print(
                f'\t\tExtracted spectral tile {count} of {input_length} already exists...'
            )
            print('\t\t----------')

        # If the output raster exists then append it to the raster list
        if os.path.exists(output_raster) == 1:
            input_rasters.append(output_raster)
        count += 1

    # Remove grid feature
    if arcpy.Exists(grid_feature) == 1:
        arcpy.management.Delete(grid_feature)
    print(f'\tFinished extracting {input_length} spectral tiles.')
    print('\t----------')

    # Mosaic raster tiles to new raster
    print(f'\tMosaicking the input rasters for {grid_title}...')
    iteration_start = time.time()
    arcpy.management.MosaicToNewRaster(input_rasters, mosaic_location,
                                       mosaic_name, output_system,
                                       '16_BIT_SIGNED', cell_size, '1',
                                       'MAXIMUM', 'FIRST')
    # Enforce correct projection
    arcpy.management.DefineProjection(mosaic_raster, output_system)
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success
    print(
        f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
    )
    print('\t----------')

    # Calculate the missing area
    print('\tCalculating null space...')
    iteration_start = time.time()
    raster_null = SetNull(IsNull(Raster(mosaic_raster)), 1, 'VALUE = 1')
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success
    print(
        f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
    )
    print('\t----------')

    # Impute missing data by nibbling the NoData from the focal mean
    print('\tImputing missing values by geographic nearest neighbor...')
    iteration_start = time.time()
    raster_filled = Nibble(Raster(mosaic_raster), raster_null, 'DATA_ONLY',
                           'PROCESS_NODATA', '')
    # Copy nibble raster to output
    print(f'\tSaving filled raster...')
    arcpy.management.CopyRaster(raster_filled, nibble_raster, '', '0',
                                '-32768', 'NONE', 'NONE', '16_BIT_SIGNED',
                                'NONE', 'NONE', 'TIFF', 'NONE',
                                'CURRENT_SLICE', 'NO_TRANSPOSE')
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success
    print(
        f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
    )
    print('\t----------')

    # Remove overflow fill from the study area
    print('\tRemoving overflow fill from study area...')
    iteration_start = time.time()
    raster_preliminary = ExtractByMask(nibble_raster, study_area)
    # Copy preliminary extracted raster to output
    arcpy.management.CopyRaster(raster_preliminary, spectral_area, '', '0',
                                '-32768', 'NONE', 'NONE', '16_BIT_SIGNED',
                                'NONE', 'NONE', 'TIFF', 'NONE',
                                'CURRENT_SLICE', 'NO_TRANSPOSE')
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success
    print(
        f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
    )
    print('\t----------')

    # Remove overflow fill from the grid
    print('\tRemoving overflow fill from grid...')
    iteration_start = time.time()
    raster_final = ExtractByMask(spectral_area, grid_raster)
    arcpy.management.CopyRaster(raster_final, spectral_grid, '', '0', '-32768',
                                'NONE', 'NONE', '16_BIT_SIGNED', 'NONE',
                                'NONE', 'TIFF', 'NONE', 'CURRENT_SLICE',
                                'NO_TRANSPOSE')
    # Delete intermediate rasters
    if arcpy.Exists(mosaic_raster) == 1:
        arcpy.management.Delete(mosaic_raster)
    if arcpy.Exists(nibble_raster) == 1:
        arcpy.management.Delete(nibble_raster)
    if arcpy.Exists(spectral_area) == 1:
        arcpy.management.Delete(spectral_area)
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success
    print(
        f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
    )
    print('\t----------')
    out_process = f'Successfully created {os.path.split(spectral_grid)[1]}'
    return out_process
def reproject_integer(**kwargs):
    """
    Description: reprojects a raster and converts to integer by a specified multiplicative factor
    Inputs: 'cell_size' -- a cell size for the output DEM
            'input_projection' -- the machine number for the input projection
            'output_projection' -- the machine number for the output projection
            'geographic_transformation -- the string representation of the appropriate geographic transformation (blank if none required)
            'conversion_factor' -- a number that will be multiplied with the original value before being converted to integer
            'input_array' -- an array containing the input raster and the snap raster
            'output_array' -- an array containing the output raster
    """

    # Import packages
    import arcpy
    from arcpy.sa import Int
    from arcpy.sa import Raster
    import datetime
    import os
    import time

    # Parse key word argument inputs
    cell_size = kwargs['cell_size']
    input_projection = kwargs['input_projection']
    output_projection = kwargs['output_projection']
    geographic_transformation = kwargs['geographic_transformation']
    conversion_factor = kwargs['conversion_factor']
    input_raster = kwargs['input_array'][0]
    snap_raster = kwargs['input_array'][1]
    output_raster = kwargs['output_array'][0]

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Set snap raster
    arcpy.env.snapRaster = snap_raster

    # Define the input and output coordinate systems
    input_system = arcpy.SpatialReference(input_projection)
    output_system = arcpy.SpatialReference(output_projection)

    # Project raster to output coordinate system
    print(f'\tReprojecting input raster...')
    iteration_start = time.time()
    # Define intermediate and output raster
    reprojected_raster = os.path.splitext(input_raster)[0] + '_reprojected.tif'
    # Define initial coordinate system
    arcpy.management.DefineProjection(input_raster, input_system)
    # Reproject raster
    arcpy.management.ProjectRaster(input_raster,
                                   reprojected_raster,
                                   output_system,
                                   'BILINEAR',
                                   cell_size,
                                   geographic_transformation,
                                   '',
                                   input_system)
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success for iteration
    print(f'\tProjection completed at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})')
    print('\t----------')

    # Round to integer and store as 16 bit signed raster
    print(f'\tConverting raster to 16 bit integer...')
    iteration_start = time.time()
    integer_raster = Int((Raster(reprojected_raster) * conversion_factor) + 0.5)
    arcpy.management.CopyRaster(integer_raster,
                                output_raster,
                                '',
                                '',
                                '-32768',
                                'NONE',
                                'NONE',
                                '16_BIT_SIGNED',
                                'NONE',
                                'NONE',
                                'TIFF',
                                'NONE')
    # Delete intermediate raster
    arcpy.management.Delete(reprojected_raster)
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success for iteration
    print(f'\tConversion completed at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})')
    print('\t----------')

    # Delete intermediate dataset
    out_process = 'Successful reprojecting and converting raster.'
    return out_process
def create_composite_dem(**kwargs):
    """
    Description: mosaics extracted source rasters with first data priority and extracts to mask
    Inputs: 'cell_size' -- a cell size for the output DEM
            'output_projection' -- the machine number for the output projection
            'work_geodatabase' -- a geodatabase to store temporary results
            'input_array' -- an array containing the grid raster (must be first) and the list of sources DEMs in prioritized order
            'output_array' -- an array containing the output raster
    Returned Value: Returns a raster dataset on disk containing the merged source DEM
    Preconditions: requires source DEMs and predefined grid
    """

    # Import packages
    import arcpy
    from arcpy.sa import ExtractByMask
    from arcpy.sa import Raster
    import datetime
    import os
    import time

    # Parse key word argument inputs
    cell_size = kwargs['cell_size']
    output_projection = kwargs['output_projection']
    elevation_inputs = kwargs['input_array']
    grid_raster = elevation_inputs.pop(0)
    composite_raster = kwargs['output_array'][0]

    # Set overwrite option
    arcpy.env.overwriteOutput = True

    # Use two thirds of cores on processes that can be split.
    arcpy.env.parallelProcessingFactor = "75%"

    # Set snap raster and extent
    arcpy.env.snapRaster = grid_raster
    arcpy.env.extent = Raster(grid_raster).extent

    # Determine input raster value type
    value_number = arcpy.management.GetRasterProperties(
        elevation_inputs[0], "VALUETYPE")[0]
    no_data_value = arcpy.Describe(elevation_inputs[0]).noDataValue
    value_dictionary = {
        0: '1_BIT',
        1: '2_BIT',
        2: '4_BIT',
        3: '8_BIT_UNSIGNED',
        4: '8_BIT_SIGNED',
        5: '16_BIT_UNSIGNED',
        6: '16_BIT_SIGNED',
        7: '32_BIT_UNSIGNED',
        8: '32_BIT_SIGNED',
        9: '32_BIT_FLOAT',
        10: '64_BIT'
    }
    value_type = value_dictionary.get(int(value_number))
    print(f'Output data type will be {value_type}.')
    print(f'Output no data value will be {no_data_value}.')

    # Define the target projection
    composite_projection = arcpy.SpatialReference(output_projection)

    # Define folder structure
    grid_title = os.path.splitext(os.path.split(grid_raster)[1])[0]
    mosaic_location, mosaic_name = os.path.split(composite_raster)
    # Create mosaic location if it does not already exist
    if os.path.exists(mosaic_location) == 0:
        os.mkdir(mosaic_location)

    # Create source folder within mosaic location if it does not already exist
    source_folder = os.path.join(mosaic_location, 'sources')
    if os.path.exists(source_folder) == 0:
        os.mkdir(source_folder)

    # Create an empty list to store existing extracted source rasters for the area of interest
    input_length = len(elevation_inputs)
    input_rasters = []
    count = 1
    # Iterate through all input rasters to extract to grid and append to input list
    for raster in elevation_inputs:
        # Define output raster file path
        output_raster = os.path.join(source_folder, os.path.split(raster)[1])
        # Extract input raster if extracted raster does not already exist
        if os.path.exists(output_raster) == 0:
            try:
                print(
                    f'\tExtracting elevation source {count} of {input_length}...'
                )
                iteration_start = time.time()
                # Extract raster to mask
                extract_raster = ExtractByMask(raster, grid_raster)
                # Copy extracted raster to output
                print(
                    f'\tSaving elevation source {count} of {input_length}...')
                arcpy.management.CopyRaster(extract_raster, output_raster, '',
                                            '', no_data_value, 'NONE', 'NONE',
                                            value_type, 'NONE', 'NONE', 'TIFF',
                                            'NONE')
                # End timing
                iteration_end = time.time()
                iteration_elapsed = int(iteration_end - iteration_start)
                iteration_success_time = datetime.datetime.now()
                # Report success
                print(
                    f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
                )
                print('\t----------')
            except:
                print('\tElevation source does not overlap grid...')
                print('\t----------')
        else:
            print(
                f'\tExtracted elevation source {count} of {input_length} already exists...'
            )
            print('\t----------')
        # Append extracted input raster to inputs list
        if os.path.exists(output_raster) == 1:
            input_rasters.append(output_raster)
        # Increase counter
        count += 1

    # Append the grid raster to the list of input rasters
    input_rasters.append(grid_raster)

    # Report the raster priority order
    raster_order = []
    for raster in input_rasters:
        name = os.path.split(raster)[1]
        raster_order.append(name)
    print(f'\tPriority of input sources for {grid_title}...')
    count = 1
    for raster in raster_order:
        print(f'\t\t{count}. {raster}')
        # Increase the counter
        count += 1

    # Mosaic raster tiles to new raster
    print(f'\tMosaicking the input rasters for {grid_title}...')
    iteration_start = time.time()
    arcpy.management.MosaicToNewRaster(input_rasters, mosaic_location,
                                       mosaic_name, composite_projection,
                                       value_type, cell_size, '1', 'FIRST',
                                       'FIRST')
    # Enforce correct projection
    arcpy.management.DefineProjection(composite_raster, composite_projection)
    # End timing
    iteration_end = time.time()
    iteration_elapsed = int(iteration_end - iteration_start)
    iteration_success_time = datetime.datetime.now()
    # Report success
    print(
        f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})'
    )
    print('\t----------')
    out_process = f'Finished elevation composite for {grid_title}.'
    return out_process