class ForecastingDatasetProcessor():
    def __init__(self, train_test_val, root_dir=None, afl=None, avm=None):
        # self.root_dir = '/media/bartosz/hdd1TB/workspace_hdd/datasets/argodataset/argoverse-forecasting/train/data' if root_dir is None else root_dir
        self.root_dir = f"/media/bartosz/hdd1TB/workspace_hdd/datasets/argodataset/argoverse-forecasting/forecasting_{train_test_val}_v1.1/{train_test_val}/data" if root_dir is None else root_dir
        self.pickle_path = "/media/bartosz/hdd1TB/workspace_hdd/SS-LSTM/data/argoverse/ss_lstm_format_argo_forecasting_v11_{train_test_val}.pickle"
        self.pickle_cache_path = "/media/bartosz/hdd1TB/workspace_hdd/SS-LSTM/data/argoverse/cacheio_v11/ss_lstm_format_argo_forecasting_v11_{train_test_val}_{range}.pickle"
        self.img_dataset_dir = "/media/bartosz/hdd1TB/workspace_hdd/SS-LSTM/data/argoverse/imgs_ds_forecasting_v11"
        self.obs, self.pred = 20, 30
        self.afl = ArgoverseForecastingLoader(self.root_dir) if afl is None else afl
        self.avm = ArgoverseMap() if avm is None else avm
        self.scene_input, self.social_input, self.person_input, self.expected_output = None, None, None, None
        self.total_nb_of_segments = len(self.afl)
        self.train_test_val = train_test_val
        # print('Loaded total number of sequences:', len(afl))

    @staticmethod
    def get_plot(map_range, return_ready_to_save=False):
        my_dpi = 96.0
        if return_ready_to_save:
            fig = plt.figure(figsize=(72 / my_dpi, 72 / my_dpi), dpi=my_dpi)
            # fig = plt.figure(figsize=(500 / my_dpi, 500 / my_dpi), dpi=my_dpi)
        else:
            fig = plt.figure(figsize=(5, 5), dpi=my_dpi)

        ax = fig.add_axes([0., 0., 1., 1.])
        ax.set_xlim([map_range[0], map_range[1]])
        ax.set_ylim([map_range[2], map_range[3]])

        if return_ready_to_save:
            fig.tight_layout(pad=0)
            ax.axis('off')

        return fig, ax

    @staticmethod
    def rgb2gray(rgb):
        r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
        gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
        return gray

    @staticmethod
    def get_map_range(point, r=40):
        [xcenter, ycenter] = point
        xmin = xcenter - r
        xmax = xcenter + r
        ymin = ycenter - r
        ymax = ycenter + r

        return [xcenter, ycenter], [xmin, xmax, ymin, ymax]

    def add_map(self, ax, map_range, city_name):
        map_polygons = self.avm.find_local_lane_polygons(map_range, city_name)

        # ax.set_facecolor("black")
        for i in range(0, len(map_polygons)):
            poly = map_polygons[i]
            ax.add_patch(Polygon(poly[:, 0:2], facecolor="black", alpha=1))

        return ax

    @staticmethod
    def add_trajectory(ax, agent_obs_traj, agent_pred_traj=None, color="g"):
        ax.scatter(agent_obs_traj[:, 0], agent_obs_traj[:, 1], c=color, zorder=20)
        if agent_pred_traj is not None:
            ax.scatter(agent_pred_traj[:, 0], agent_pred_traj[:, 1], c='b', zorder=20)
        return ax

    def _get_circle_occupancy_map_single(self, target_object, traj_start_idx):
        neighborhood_radius, grid_radius, grid_angle = 32, 4, 45

        object_starting_frame = target_object['start']
        other_vehicles = target_object['other_vehicles']
        map_range = target_object['map_range']
        [xmin, xmax, ymin, ymax] = map_range

        width, height = xmax - xmin, ymax - ymin
        neighborhood_bound = neighborhood_radius / (min(width, height) * 1.0)
        grid_bound = grid_radius / (min(width, height) * 1.0)
        o_map = np.zeros((self.observed_frame_num, int(neighborhood_radius / grid_radius), int(360 / grid_angle)))

        for other_vehicle_id, (uuid_other_vehicle, other_vehicle) in enumerate(other_vehicles.items()):
            positions = other_vehicle['positions10Hz']
            other_positions = self._normalize_positions(positions, map_range)

            for frame_id, pos in enumerate(other_positions):
                relative_frame_nb = int(pos[0] - object_starting_frame)

                # process only other vehicles frames that happend within the obs period
                if traj_start_idx <= relative_frame_nb < traj_start_idx + self.observed_frame_num:
                    [current_x, current_y] = self._normalize_positions(target_object['positions10Hz'][relative_frame_nb, 1:3], map_range)
                    [other_x, other_y] = pos[1:3]
                    other_distance = np.sqrt((other_x - current_x) ** 2 + (other_y - current_y) ** 2)
                    angle = self._cal_angle(current_x, current_y, other_x, other_y)

                    if other_distance < neighborhood_bound:
                        cell_x, cell_y = int(np.floor(other_distance / grid_bound)), int(np.floor(angle / grid_angle))

                        o_map[relative_frame_nb - traj_start_idx, cell_x, cell_y] += 1
        return np.reshape(o_map, (self.observed_frame_num, -1))

    def get_city_name(self, forecasting_entry):
        seq_df = forecasting_entry.seq_df
        return seq_df['CITY_NAME'].iloc[0]

    def get_other_vehicles(self, forecasting_entry):
        others_in_timestamps = []

        seq_df = forecasting_entry.seq_df
        timestamps = np.unique(seq_df["TIMESTAMP"].values)
        others_df = seq_df[seq_df["OBJECT_TYPE"] == "OTHERS"]

        for t in timestamps:
            others_in_t_df = others_df[others_df["TIMESTAMP"] == t]

            others_x = others_in_t_df["X"]
            others_y = others_in_t_df["Y"]
            others_positions = np.column_stack((others_x, others_y))

            others_in_timestamps.append(others_positions)

        return others_in_timestamps

    def get_circle_occupancy_map_old(self, target_object, traj_start_idx):
        neighborhood_radius, grid_radius, grid_angle = 32, 4, 45

        object_starting_frame = target_object['start']
        other_vehicles = target_object['other_vehicles']
        map_range = target_object['map_range']
        [xmin, xmax, ymin, ymax] = map_range

        width, height = xmax - xmin, ymax - ymin
        neighborhood_bound = neighborhood_radius / (min(width, height) * 1.0)
        grid_bound = grid_radius / (min(width, height) * 1.0)
        o_map = np.zeros((self.observed_frame_num, int(neighborhood_radius / grid_radius), int(360 / grid_angle)))

        for other_vehicle_id, (uuid_other_vehicle, other_vehicle) in enumerate(other_vehicles.items()):
            positions = other_vehicle['positions10Hz']
            other_positions = self._normalize_positions(positions, map_range)

            for frame_id, pos in enumerate(other_positions):
                relative_frame_nb = int(pos[0] - object_starting_frame)

                # process only other vehicles frames that happend within the obs period
                if traj_start_idx <= relative_frame_nb < traj_start_idx + self.observed_frame_num:
                    [current_x, current_y] = self._normalize_positions(target_object['positions10Hz'][relative_frame_nb, 1:3], map_range)
                    [other_x, other_y] = pos[1:3]
                    other_distance = np.sqrt((other_x - current_x) ** 2 + (other_y - current_y) ** 2)
                    angle = self._cal_angle(current_x, current_y, other_x, other_y)

                    if other_distance < neighborhood_bound:
                        cell_x, cell_y = int(np.floor(other_distance / grid_bound)), int(np.floor(angle / grid_angle))

                        o_map[relative_frame_nb - traj_start_idx, cell_x, cell_y] += 1
        return np.reshape(o_map, (self.observed_frame_num, -1))

    def _cal_angle(self, current, next, other_x, other_y):
        [current_x, current_y] = current
        [next_x, next_y] = next
        p0 = [other_x, other_y]
        p1 = [current_x, current_y]
        # p2 = [current_x + 0.1, current_y]
        p2 = [next_x, next_y]
        v0 = np.array(p0) - np.array(p1)
        v1 = np.array(p2) - np.array(p1)
        angle_degree = np.degrees(np.math.atan2(np.linalg.det([v0, v1]), np.dot(v0, v1)))
        return angle_degree

    @staticmethod
    def is_within(map_range, pos):
        [xmin, xmax, ymin, ymax] = map_range
        return xmin < pos[0] < xmax and ymin < pos[1] < ymax

    def get_circle_occupancy_map(self, other_vehicles, obs_traj, map_range, frame_number=None, ax=None):
        grid_radius = 4
        neighborhood_bound, grid_angle = grid_radius * 8, 45
        # [xmin, xmax, ymin, ymax] = map_range
        # width, height = xmax - xmin, ymax - ymin
        # neighborhood_bound = neighborhood_radius / (min(width, height) * 1.0)
        # grid_bound = grid_radius / (min(width, height) * 1.0)
        o_map = np.zeros((self.obs, int(neighborhood_bound / grid_radius), int(360 / grid_angle)))
        # print(f"o_map shape: {o_map.shape}")

        rang = range(self.obs) if frame_number is None else range(frame_number, frame_number + 1)

        for frame_nb in rang:
            for other_vehicle in other_vehicles[frame_nb]:
                [current_x, current_y] = obs_traj[frame_nb]
                [other_x, other_y] = other_vehicle
                other_distance = np.sqrt((other_x - current_x) ** 2 + (other_y - current_y) ** 2)

                if frame_nb + 1 < self.obs:  # special case: last frame. Use two frames before to calculate angels
                    # [next_x, next_y] = obs_traj[frame_nb+1] if frame_nb+1 < self.obs else [current_x + 0.1, current_y]
                    angle = self._cal_angle(obs_traj[frame_nb], obs_traj[frame_nb + 1], other_x, other_y)
                else:
                    angle = self._cal_angle(obs_traj[frame_nb - 1], obs_traj[frame_nb], other_x, other_y)

                cell_x, cell_y = int(np.floor(other_distance / grid_radius)), int(np.floor(angle / grid_angle))

                is_inbound = other_distance < neighborhood_bound
                if ax is not None and self.is_within(map_range, [other_x, other_y]):  # and is_inbound:
                    text_pos_x, text_pos_y = other_x + np.random.randint(-10, 10), other_y + np.random.randint(-10, 10)
                    ax.arrow(other_x, other_y, text_pos_x - other_x, text_pos_y - other_y, color="b")
                    ax.text(text_pos_x, text_pos_y, f"a:{int(angle)}, d:{int(other_distance)} -> {cell_x}, {cell_y} -> {is_inbound}", color="magenta", zorder=200)
                    ax.scatter(other_x, other_y, c="gray")
                    # print(f"{other_distance} < {neighborhood_bound} -> {other_distance < neighborhood_bound}")

                if is_inbound:
                    o_map[frame_nb, cell_x, cell_y] += 1

        return o_map, ax

    # def get_data(self):
    #     if self.scene_input is None or self.social_input is None or self.person_input is None or self.expected_output:
    #         self.scene_input, self.social_input, self.person_input, self.expected_output = self.generate_network_data(dev_mode=False)
    #     return self.scene_input, self.social_input, self.person_input, self.expected_output

    def save_data_to_pickle(self, data, range=None):
        if range is None:
            path = self.pickle_path.format(train_test_val=self.train_test_val)
        else:
            path = self.pickle_cache_path.format(train_test_val=self.train_test_val, range=f"{range[0]}_{range[-1]}")

        pickle_out = open(path, "wb")
        pickle.dump(data, pickle_out, protocol=2)
        pickle_out.close()
        print("Saved to pickle {}".format(path))

    def get_social_input_single(self, forecasting_entry, agent_obs_traj, map_range):
        other_vehicles = self.get_other_vehicles(forecasting_entry)
        o_map, _ = self.get_circle_occupancy_map(other_vehicles, agent_obs_traj, map_range)
        return o_map

    def get_scene_input_single(self, map_range, seq_id, city_name):
        img_path = os.path.join(self.img_dataset_dir, 'scene_{}_{}.npy'.format(self.train_test_val, seq_id))
        if not os.path.exists(img_path):
            fig, ax = self.get_plot(map_range, return_ready_to_save=True)
            ax = self.add_map(ax, map_range, city_name)
            fig.canvas.draw()
            data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
            data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
            data = np.rot90(data.transpose(1, 0, 2))
            data = self.rgb2gray(data)
            data = 1 - data
            np.save(img_path, data)
            plt.close(fig)
        #     print(f"Scene saved to   {img_path}")
        # else:
        #     print(f"Scene existed in {img_path}")

        return img_path

    @staticmethod
    def normalize_positions(positions, map_range):
        [xmin, xmax, ymin, ymax] = map_range
        p_copy = np.copy(positions)
        p_copy[..., 0] = (p_copy[..., 0] - xmin) / (xmax - xmin)
        p_copy[..., 1] = (p_copy[..., 1] - ymin) / (ymax - ymin)
        return p_copy

    def generate_network_data(self, dev_mode=True, save_to_pickle=False, desired_range=None):
        scene_input, social_input, person_input, expected_output = np.zeros((0, 1)), np.zeros((0, self.obs, 64)), np.zeros((0, self.obs, 2)), np.zeros((0, self.pred, 2))

        full_trajectories_len = self.total_nb_of_segments
        if desired_range is not None:
            selected_range = desired_range
        else:
            selected_range = range(0, 10) if dev_mode else range(full_trajectories_len)

        print(f"Processing range {selected_range}")

        for seq_id in selected_range:
            forecasting_entry = self.afl[seq_id]
            traj = forecasting_entry.agent_traj
            agent_obs_traj = traj[:self.obs]
            agent_pred_traj = traj[self.obs:]
            # city_name = forecasting_entry.city
            city_name = self.get_city_name(forecasting_entry)
            center, map_range = self.get_map_range(agent_obs_traj[-1], r=40)

            agent_obs_traj_norm, agent_pred_traj_norm = self.normalize_positions(agent_obs_traj, map_range), self.normalize_positions(agent_pred_traj, map_range)
            person_input = np.vstack((person_input, np.expand_dims(agent_obs_traj_norm, axis=0)))
            if self.train_test_val != "test":
                expected_output = np.vstack((expected_output, np.expand_dims(agent_pred_traj_norm, axis=0)))

            social_input_single = self.get_social_input_single(forecasting_entry, agent_obs_traj, map_range)
            social_input = np.vstack((social_input, np.reshape(social_input_single, (1, self.obs, -1))))

            scene_input_single = self.get_scene_input_single(map_range, seq_id, city_name)
            scene_input = np.vstack((scene_input, np.reshape(np.array(scene_input_single).astype('object'), (1, 1))))

            # log checkpoint
            log_every = 100
            if (seq_id) % log_every == 0:
                print("Progress: {}% // ".format(int((seq_id - selected_range[0]) / (selected_range[-1] - selected_range[0]) * 100)))

        print("Generated shapes: {}".format((scene_input.shape, social_input.shape, person_input.shape, expected_output.shape)))
        if save_to_pickle:
            if self.train_test_val != "test":
                self.save_data_to_pickle([scene_input, social_input, person_input, expected_output], range=desired_range)
            else:
                self.save_data_to_pickle([scene_input, social_input, person_input], range=desired_range)


        return scene_input, social_input, person_input, expected_output

    def get_cache_path(self, desired_range):
        return self.pickle_cache_path.format(train_test_val=self.train_test_val, range=f"{desired_range[0]}_{desired_range[-1]}")

    def get_range_from_segment(self, segment_nb):
        split_every = 10000
        total_nb_of_segments = self.total_nb_of_segments
        print(f"Total number: {self.total_nb_of_segments}")
        range_start = segment_nb * split_every
        if range_start >= total_nb_of_segments:
            print("Alrighty, that's too much")
            return 0

        range_end = min(range_start + split_every, total_nb_of_segments)
        desired_range = range(range_start, range_end)
        return desired_range

    def merge_cache(self):
        scene_input, social_input, person_input, expected_output = np.zeros((0, 1)), np.zeros((0, self.obs, 64)), np.zeros((0, self.obs, 2)), np.zeros((0, self.pred, 2))
        if self.train_test_val == "test":
            r = range(0,8)
        elif self.train_test_val == "val":
            r = range(0,4)
        elif self.train_test_val == "train":
            r =range(0,21)
            
        for i in r:
            pckl_path = self.get_cache_path(self.get_range_from_segment(i))
            pickle_in = open(pckl_path, "rb")
            if self.train_test_val != "test":
                [scene_input_pckl, social_input_pckl, person_input_pckl, expected_output_pckl] = pickle.load(pickle_in)
            else:
                [scene_input_pckl, social_input_pckl, person_input_pckl] = pickle.load(pickle_in)

            # if i == 20:  # split last segment and use for val dataset
            #     scene_input_pckl, scene_input_val, social_input_pckl, social_input_val, person_input_pckl, person_input_val, expected_output_pckl, expected_output_val = train_test_split(
            #         scene_input_pckl, social_input_pckl, person_input_pckl, expected_output_pckl, test_size=0.2, random_state=42)
            #     print("Generated val shapes: {}".format((scene_input_val.shape, social_input_val.shape, person_input_val.shape, expected_output_val.shape)))
            #     self.save_data_to_pickle([scene_input_val, social_input_val, person_input_val, expected_output_val], is_validation=True, range=None)

            scene_input = np.vstack((scene_input, scene_input_pckl))
            social_input = np.vstack((social_input, social_input_pckl))
            person_input = np.vstack((person_input, person_input_pckl))
            if self.train_test_val != "test":
                expected_output = np.vstack((expected_output, expected_output_pckl))

            print(f"Segment {i} done")

        print("Generated shapes: {}".format((scene_input.shape, social_input.shape, person_input.shape)))
        if self.train_test_val != "test":
            self.save_data_to_pickle([scene_input, social_input, person_input, expected_output], range=None)
        else:
            self.save_data_to_pickle([scene_input, social_input, person_input], range=None)
Beispiel #2
0
    def plot_log_one_at_a_time(self,
                               log_id="",
                               idx=-1,
                               save_video=True,
                               city=""):
        """
        Playback a log in the static context of a map.
        In the far left frame, we show the car moving in the map. In the middle frame, we show
        the car's LiDAR returns (in the map frame). In the far right frame, we show the front camera's
        RGB image.
        """
        avm = ArgoverseMap()
        for city_name, trajs in self.per_city_traj_dict.items():
            if city != "":
                if city != city_name:
                    continue
            if city_name not in ["PIT", "MIA"]:
                logger.info("Unknown city")
                continue

            log_ids = []
            logger.info(f"{city_name} has {len(trajs)} tracks")

            if log_id == "":
                # first iterate over the instance axis
                for traj_idx, (traj, log_id) in enumerate(trajs):
                    log_ids += [log_id]
            else:
                log_ids = [log_id]

            # eliminate the duplicates
            for log_id in set(log_ids):
                logger.info(f"Log: {log_id}")

                ply_fpaths = sorted(
                    glob.glob(f"{self.dataset_dir}/{log_id}/lidar/PC_*.ply"))

                # then iterate over the time axis
                for i, ply_fpath in enumerate(ply_fpaths):
                    if idx != -1:
                        if i != idx:
                            continue
                    if i % 500 == 0:
                        logger.info(f"\tOn file {i} of {log_id}")
                    lidar_timestamp = ply_fpath.split("/")[-1].split(
                        ".")[0].split("_")[-1]
                    lidar_timestamp = int(lidar_timestamp)
                    print("Lidar timestamp = ",
                          lidar_timestamp)  # added by Yike
                    print("Log Egopose Dict = ", self.log_egopose_dict)

                    if lidar_timestamp not in self.log_egopose_dict[log_id]:
                        all_available_timestamps = sorted(
                            self.log_egopose_dict[log_id].keys())
                        diff = (all_available_timestamps[0] -
                                lidar_timestamp) / 1e9
                        logger.info(
                            f"{diff:.2f} sec before first labeled sweep")
                        continue

                    logger.info(f"\tt={lidar_timestamp}")
                    if self.plot_lidar_bev:
                        fig = plt.figure(figsize=(15, 15))
                        plt.title(
                            f"Log {log_id} @t={lidar_timestamp} in {city_name}"
                        )
                        plt.axis("off")
                        # ax_map = fig.add_subplot(131)
                        ax_3d = fig.add_subplot(111)
                        # ax_rgb = fig.add_subplot(133)
                        plt.ion()  # added by Yike

                    # need the ego-track here
                    pose_city_to_ego = self.log_egopose_dict[log_id][
                        lidar_timestamp]
                    xcenter = pose_city_to_ego["translation"][0]
                    ycenter = pose_city_to_ego["translation"][1]
                    ego_center_xyz = np.array(pose_city_to_ego["translation"])

                    city_to_egovehicle_se3 = SE3(
                        rotation=pose_city_to_ego["rotation"],
                        translation=ego_center_xyz)

                    if self.plot_lidar_bev:
                        xmin = xcenter - 80  # 150
                        xmax = xcenter + 80  # 150
                        ymin = ycenter - 80  # 150
                        ymax = ycenter + 80  # 150
                        # ax_map.scatter(xcenter, ycenter, 200, color="g", marker=".", zorder=2)
                        # ax_map.set_xlim([xmin, xmax])
                        # ax_map.set_ylim([ymin, ymax])
                        local_lane_polygons = avm.find_local_lane_polygons(
                            [xmin, xmax, ymin, ymax], city_name)
                        local_das = avm.find_local_driveable_areas(
                            [xmin, xmax, ymin, ymax], city_name)

                    lidar_pts = load_ply(ply_fpath)
                    if self.plot_lidar_in_img:
                        draw_ground_pts_in_image(
                            self.sdb,
                            copy.deepcopy(lidar_pts),
                            city_to_egovehicle_se3,
                            avm,
                            log_id,
                            lidar_timestamp,
                            city_name,
                            self.dataset_dir,
                            self.experiment_prefix,
                            plot_ground=True,
                        )

                    if self.plot_lidar_bev:
                        driveable_area_pts = copy.deepcopy(lidar_pts)
                        driveable_area_pts = city_to_egovehicle_se3.transform_point_cloud(
                            driveable_area_pts)  # put into city coords
                        driveable_area_pts = avm.remove_non_driveable_area_points(
                            driveable_area_pts, city_name)
                        driveable_area_pts = avm.remove_ground_surface(
                            driveable_area_pts, city_name)
                        driveable_area_pts = city_to_egovehicle_se3.inverse_transform_point_cloud(
                            driveable_area_pts
                        )  # put back into ego-vehicle coords
                        self.render_bev_labels_mpl(
                            city_name,
                            ax_3d,
                            "ego_axis",
                            lidar_pts,
                            copy.deepcopy(local_lane_polygons),
                            copy.deepcopy(local_das),
                            log_id,
                            lidar_timestamp,
                            city_to_egovehicle_se3,
                            avm,
                        )

                        fig.tight_layout()
                        if not Path(
                                f"{self.experiment_prefix}_per_log_viz/{log_id}"
                        ).exists():
                            os.makedirs(
                                f"{self.experiment_prefix}_per_log_viz/{log_id}"
                            )

                        plt.savefig(
                            f"{self.experiment_prefix}_per_log_viz/{log_id}/{city_name}_{log_id}_{lidar_timestamp}.png",
                            dpi=400,
                        )
                    # plt.show()
                    # plt.close("all")

                # after all frames are processed, write video with saved images
                if save_video:
                    if self.plot_lidar_bev:
                        fps = 10
                        img_wildcard = f"{self.experiment_prefix}_per_log_viz/{log_id}/{city_name}_{log_id}_%*.png"
                        output_fpath = f"{self.experiment_prefix}_per_log_viz/{log_id}_lidar_roi_nonground.mp4"
                        write_nonsequential_idx_video(img_wildcard,
                                                      output_fpath, fps)

                    if self.plot_lidar_in_img:
                        for camera_name in RING_CAMERA_LIST + STEREO_CAMERA_LIST:
                            image_prefix = (
                                f"{self.experiment_prefix}_per_log_viz/{log_id}/{camera_name}/{camera_name}_%d.jpg"
                            )
                            output_prefix = f"{self.experiment_prefix}_per_log_viz/{log_id}_{camera_name}"
                            write_video(image_prefix, output_prefix)
Beispiel #3
0
# %% markdown
# One example is to overlay our label annotations on top of our map information. Here the pink area denotes the `driveable area`
# %%
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
xcenter, ycenter, _ = argoverse_data.get_pose(idx).translation

r = 50
xmin = xcenter - r  # 150
xmax = xcenter + r  # 150
ymin = ycenter - r  # 150
ymax = ycenter + r  # 150
ax.scatter(xcenter, ycenter, 200, color="g", marker=".", zorder=2)
ax.set_xlim([xmin, xmax])
ax.set_ylim([ymin, ymax])
local_lane_polygons = am.find_local_lane_polygons([xmin, xmax, ymin, ymax],
                                                  city_name)
local_das = am.find_local_driveable_areas([xmin, xmax, ymin, ymax], city_name)

domv.render_bev_labels_mpl(
    city_name=city_name,
    ax=ax,
    axis="city_axis",
    lidar_pts=None,
    local_lane_polygons=copy.deepcopy(local_lane_polygons),
    local_das=copy.deepcopy(local_das),
    log_id=log_id,
    timestamp=argoverse_data.lidar_timestamp_list[idx],
    city_to_egovehicle_se3=city_to_egovehicle_se3,
    avm=am,
    vis_other_objects=True)