Beispiel #1
0
    def make_data(self):
        if self.data is None:
            return
        XU = self.data
        if self.config.predict_difference:
            dtheta = math_utils.angular_diff_batch(XU[1:, 0], XU[:-1, 0])
            dtheta_dt = XU[1:, 1] - XU[:-1, 1]
            Y = torch.cat((dtheta.view(-1, 1), dtheta_dt.view(-1, 1)),
                          dim=1)  # x' - x residual
        else:
            Y = XU[1:, :2]
        XU = XU[:-1]  # make same size as Y

        self.N = XU.shape[0]
        self.config.load_data_info(XU[:, :2], XU[:, 2:], Y)

        if self.preprocessor:
            self.preprocessor.tsf.fit(XU, Y)
            self.preprocessor.update_data_config(self.config)
            self._original_train = XU, Y, None
            self._original_val = self._original_train
            XU, Y, _ = self.preprocessor.tsf.transform(XU, Y)

        self._train = XU, Y, None
        self._val = self._train
Beispiel #2
0
    def __call__(self, X, U=None, terminal=False):
        original_angle = self.oxy - self.rxy
        original_angle = torch.atan2(original_angle[1], original_angle[0])
        Xxy = X[:, :2]
        d = self.oxy - Xxy
        angles = torch.atan2(d[:, 1], d[:, 0])

        angular_diffs = math_utils.angular_diff_batch(original_angle, angles) * torch.norm(d,dim=1)
        return angular_diffs * (1 if self.clockwise else -1)
Beispiel #3
0
    def update_model():
        # recreate prior if necessary (for non-network based priors; since they contain data directly)
        # pm = prior.LSQPrior.from_data(ds)
        # pm = prior.GMMPrior.from_data(ds)
        # ctrl.update_prior(pm)
        # # update model based on database change (for global linear controllers)
        # ctrl.update_model(ds)
        # retrain network (for nn dynamics based controllers)
        mw.train()
        mw.learn_model(TRAIN_EPOCH, batch_N=500)
        mw.eval()

        # evaluate network against true dynamics
        yt = true_dynamics(statev, actionv)
        yp = dynamics(statev, actionv)
        dtheta = math_utils.angular_diff_batch(yp[:, 0], yt[:, 0])
        dtheta_dt = yp[:, 1] - yt[:, 1]
        E = torch.cat((dtheta.view(-1, 1), dtheta_dt.view(-1, 1)),
                      dim=1).norm(dim=1)
        logger.info("Error with true dynamics theta %f theta_dt %f norm %f",
                    dtheta.abs().mean(),
                    dtheta_dt.abs().mean(), E.mean())
        logger.debug("Start next collection sequence")
Beispiel #4
0
    def _process_file_raw_data(self, d):
        x = d['X']
        if x.shape[1] > PushWithForceDirectlyEnv.nx:
            x = x[:, :PushWithForceDirectlyEnv.nx]
        # from testing, it's better if these guys are delayed 1 time step (to prevent breaking causality)
        # ignore force in z
        r = d['reaction'][:, :2]
        if self.config.predict_difference:
            dpos = x[1:, :2] - x[:-1, :2]
            dyaw = math_utils.angular_diff_batch(x[1:, 2], x[:-1, 2])
            dalong = x[1:, 3] - x[:-1, 3]
            dr = r[1:] - r[:-1]
            y = np.concatenate(
                (dpos, dyaw.reshape(-1, 1), dalong.reshape(-1, 1), dr), axis=1)
        else:
            raise RuntimeError(
                "Too hard to predict discontinuous normalized angles; use predict difference"
            )

        x = np.concatenate((x, r), axis=1)
        xu, y, cc = self._apply_masks(d, x, y)

        return xu, y, cc
Beispiel #5
0
def compare_to_goal(state, goal):
    dtheta = math_utils.angular_diff_batch(state[:, 0], goal[:, 0])
    dtheta_dt = state[:, 1] - goal[:, 1]
    return dtheta.reshape(-1, 1), dtheta_dt.reshape(-1, 1)
Beispiel #6
0
 def state_difference(state, other_state):
     dyaw = math_utils.angular_diff_batch(state[:, 2], other_state[:, 2])
     dpos = state[:, :2] - other_state[:, :2]
     dalong = state[:, 3] - other_state[:, 3]
     return dpos, dyaw.reshape(-1, 1), dalong.reshape(-1, 1)
Beispiel #7
0
 def state_difference(state, other_state):
     """Get state - other_state in state space"""
     dyaw = math_utils.angular_diff_batch(state[:, 4], other_state[:, 4])
     dpos = state[:, :4] - other_state[:, :4]
     return dpos, dyaw.reshape(-1, 1)
Beispiel #8
0
 def state_difference(state, other_state):
     dyaw = math_utils.angular_diff_batch(state[:, 2], other_state[:, 2])
     dpos = state[:, :2] - other_state[:, :2]
     dreaction = state[:, 3:5] - other_state[:, 3:5]
     return dpos, dyaw.reshape(-1, 1), dreaction