Beispiel #1
0
 def predict_proba1(self, X):
     near_locs, near_dists = af.vision.nearest_neighbour(X, self._data, self._dim, \
                                                         self._num_nearest, self._match_type)
     weights = self._get_neighbor_weights(near_dists)
     top_labels = af.moddims(self._labels[near_locs], \
                             get_dims(near_locs)[0], get_dims(near_locs)[1])
     accum_weights = af.scan_by_key(
         top_labels, weights)  # reduce by key would be more ideal
     probs, _ = af.imax(accum_weights, dim=0)
     return probs.T
Beispiel #2
0
 def _predict_proba(self, query, train_feats, train_labels, k, dist_type,
                    weight_by_dist):
     near_locs, near_dists = af.vision.nearest_neighbour(query, train_feats, 1, \
                                                         k, dist_type)
     weights = self._get_neighbor_weights(near_dists, weight_by_dist, k)
     top_labels = af.moddims(train_labels[near_locs], \
                             near_locs.dims()[0], near_locs.dims()[1])
     accum_weights = af.scan_by_key(
         top_labels, weights)  # reduce by key would be more ideal
     probs, _ = af.imax(accum_weights, dim=0)
     return probs.T
Beispiel #3
0
 def predict(self, X):
     near_locs, near_dists = af.vision.nearest_neighbour(X, self._data, self._dim, \
                                                         self._num_nearest, self._match_type)
     weights = self._get_neighbor_weights(near_dists)
     top_labels = af.moddims(self._labels[near_locs], \
                             get_dims(near_locs)[0], get_dims(near_locs)[1])
     accum_weights = af.scan_by_key(
         top_labels, weights)  # reduce by key would be more ideal
     _, max_weight_locs = af.imax(accum_weights, dim=0)
     pred_idxs = af.range(get_dims(accum_weights)[1]) * get_dims(
         accum_weights)[0] + max_weight_locs.T
     top_labels_flat = af.flat(top_labels)
     pred_classes = top_labels_flat[pred_idxs]
     return pred_classes
Beispiel #4
0
 def _predict(self, query, train_feats, train_labels, k, dist_type,
              weight_by_dist):
     near_locs, near_dists = af.vision.nearest_neighbour(query, train_feats, 1, \
                                                         k, dist_type)
     weights = self._get_neighbor_weights(near_dists, weight_by_dist, k)
     top_labels = af.moddims(train_labels[near_locs], \
                             near_locs.dims()[0], near_locs.dims()[1])
     accum_weights = af.scan_by_key(
         top_labels, weights)  # reduce by key would be more ideal
     _, max_weight_locs = af.imax(accum_weights, dim=0)
     pred_idxs = af.range(accum_weights.dims()
                          [1]) * accum_weights.dims()[0] + max_weight_locs.T
     top_labels_flat = af.flat(top_labels)
     pred_classes = top_labels_flat[pred_idxs]
     return pred_classes
def histogram_deposition(current_indices_flat, currents_flat, grid_elements):
    '''
    function: histogram_deposition(current_indices_flat, currents_flat, grid)
    
    inputs: current_indices_flat, currents_flat, grid_elements
    
    current_indices_flat, currents_flat: They denote the indices and the currents
    to be deposited on the flattened current vector.
    
    grid_elements: The number of elements present the matrix/vector representing the 
    currents.   
    
    
    '''

    # setting default indices and current for histogram deposition
    indices_fix = af.data.range(grid_elements + 1, dtype=af.Dtype.s64)
    currents_fix = 0 * af.data.range(grid_elements + 1, dtype=af.Dtype.f64)

    # Concatenating the indices and currents in a single vector

    combined_indices_flat = af.join(0, indices_fix, current_indices_flat)
    combined_currents_flat = af.join(0, currents_fix, currents_flat)

    # Sort by key operation
    indices, currents = af.sort_by_key(combined_indices_flat,
                                       combined_currents_flat,
                                       dim=0)

    # scan by key operation with default binary addition operation which sums up currents
    # for the respective indices

    Histogram_scan = af.scan_by_key(indices, currents)

    # diff1 operation to determine the uniques indices in the current
    diff1_op = af.diff1(indices, dim=0)

    # Determining the uniques indices for current deposition
    indices_unique = af.where(diff1_op > 0)

    # Determining the current vector

    J_flat = Histogram_scan[indices_unique]

    af.eval(J_flat)

    return J_flat
def simple_algorithm(verbose = False):
    display_func = _util.display_func(verbose)
    print_func   = _util.print_func(verbose)

    a = af.randu(3, 3)
    k = af.constant(1, 3, 3, dtype=af.Dtype.u32)
    af.eval(k)

    print_func(af.sum(a), af.product(a), af.min(a), af.max(a),
               af.count(a), af.any_true(a), af.all_true(a))

    display_func(af.sum(a, 0))
    display_func(af.sum(a, 1))

    display_func(af.product(a, 0))
    display_func(af.product(a, 1))

    display_func(af.min(a, 0))
    display_func(af.min(a, 1))

    display_func(af.max(a, 0))
    display_func(af.max(a, 1))

    display_func(af.count(a, 0))
    display_func(af.count(a, 1))

    display_func(af.any_true(a, 0))
    display_func(af.any_true(a, 1))

    display_func(af.all_true(a, 0))
    display_func(af.all_true(a, 1))

    display_func(af.accum(a, 0))
    display_func(af.accum(a, 1))

    display_func(af.scan(a, 0, af.BINARYOP.ADD))
    display_func(af.scan(a, 1, af.BINARYOP.MAX))

    display_func(af.scan_by_key(k, a, 0, af.BINARYOP.ADD))
    display_func(af.scan_by_key(k, a, 1, af.BINARYOP.MAX))

    display_func(af.sort(a, is_ascending=True))
    display_func(af.sort(a, is_ascending=False))

    b = (a > 0.1) * a
    c = (a > 0.4) * a
    d = b / c
    print_func(af.sum(d));
    print_func(af.sum(d, nan_val=0.0));
    display_func(af.sum(d, dim=0, nan_val=0.0));

    val,idx = af.sort_index(a, is_ascending=True)
    display_func(val)
    display_func(idx)
    val,idx = af.sort_index(a, is_ascending=False)
    display_func(val)
    display_func(idx)

    b = af.randu(3,3)
    keys,vals = af.sort_by_key(a, b, is_ascending=True)
    display_func(keys)
    display_func(vals)
    keys,vals = af.sort_by_key(a, b, is_ascending=False)
    display_func(keys)
    display_func(vals)

    c = af.randu(5,1)
    d = af.randu(5,1)
    cc = af.set_unique(c, is_sorted=False)
    dd = af.set_unique(af.sort(d), is_sorted=True)
    display_func(cc)
    display_func(dd)

    display_func(af.set_union(cc, dd, is_unique=True))
    display_func(af.set_union(cc, dd, is_unique=False))

    display_func(af.set_intersect(cc, cc, is_unique=True))
    display_func(af.set_intersect(cc, cc, is_unique=False))
Beispiel #7
0
def simple_algorithm(verbose=False):
    display_func = _util.display_func(verbose)
    print_func = _util.print_func(verbose)

    a = af.randu(3, 3)
    k = af.constant(1, 3, 3, dtype=af.Dtype.u32)
    af.eval(k)

    print_func(af.sum(a), af.product(a), af.min(a), af.max(a), af.count(a),
               af.any_true(a), af.all_true(a))

    display_func(af.sum(a, 0))
    display_func(af.sum(a, 1))

    display_func(af.product(a, 0))
    display_func(af.product(a, 1))

    display_func(af.min(a, 0))
    display_func(af.min(a, 1))

    display_func(af.max(a, 0))
    display_func(af.max(a, 1))

    display_func(af.count(a, 0))
    display_func(af.count(a, 1))

    display_func(af.any_true(a, 0))
    display_func(af.any_true(a, 1))

    display_func(af.all_true(a, 0))
    display_func(af.all_true(a, 1))

    display_func(af.accum(a, 0))
    display_func(af.accum(a, 1))

    display_func(af.scan(a, 0, af.BINARYOP.ADD))
    display_func(af.scan(a, 1, af.BINARYOP.MAX))

    display_func(af.scan_by_key(k, a, 0, af.BINARYOP.ADD))
    display_func(af.scan_by_key(k, a, 1, af.BINARYOP.MAX))

    display_func(af.sort(a, is_ascending=True))
    display_func(af.sort(a, is_ascending=False))

    b = (a > 0.1) * a
    c = (a > 0.4) * a
    d = b / c
    print_func(af.sum(d))
    print_func(af.sum(d, nan_val=0.0))
    display_func(af.sum(d, dim=0, nan_val=0.0))

    val, idx = af.sort_index(a, is_ascending=True)
    display_func(val)
    display_func(idx)
    val, idx = af.sort_index(a, is_ascending=False)
    display_func(val)
    display_func(idx)

    b = af.randu(3, 3)
    keys, vals = af.sort_by_key(a, b, is_ascending=True)
    display_func(keys)
    display_func(vals)
    keys, vals = af.sort_by_key(a, b, is_ascending=False)
    display_func(keys)
    display_func(vals)

    c = af.randu(5, 1)
    d = af.randu(5, 1)
    cc = af.set_unique(c, is_sorted=False)
    dd = af.set_unique(af.sort(d), is_sorted=True)
    display_func(cc)
    display_func(dd)

    display_func(af.set_union(cc, dd, is_unique=True))
    display_func(af.set_union(cc, dd, is_unique=False))

    display_func(af.set_intersect(cc, cc, is_unique=True))
    display_func(af.set_intersect(cc, cc, is_unique=False))