Beispiel #1
0
def hopskipjump(
    data,
    query,
    query_limit,
    art_model,
    victim_input_shape,
    substitute_input_shape,
    victim_output_targets,
):
    """Runs the HopSkipJump evasion attack

    Arxiv Paper: https://arxiv.org/abs/1904.02144"""

    internal_limit = int(query_limit * 0.5)
    X, y = copycat(
        data,
        query,
        internal_limit,
        art_model,
        victim_input_shape,
        substitute_input_shape,
        victim_output_targets,
        reshape=False,
    )

    # import pdb; pdb.set_trace()
    X_np = X.detach().clone().numpy()
    # config = set_evasion_model(query, victim_input_shape, victim_input_targets)
    evasion_limit = int(query_limit * 0.5)

    # The initial evaluation number must be lower than the maximum
    lower_bound = 0.01 * evasion_limit
    init_eval = int(lower_bound if lower_bound > 1 else 1)

    # Run attack and process results
    attack = HopSkipJump(
        art_model,
        False,
        norm="inf",
        max_iter=evasion_limit,
        max_eval=evasion_limit,
        init_eval=init_eval,
    )
    result = attack.generate(X_np)
    result = (torch.from_numpy(attack.generate(X_np)).clone().detach().float()
              )  # .detach().clone().float()
    y = query(result)
    result = reshape_input(result, substitute_input_shape)
    return result, y
def attack(predictWrapper, x_train, x_test, y_train, y_test, input_shape, datapoint):

    min_pixel_value = x_train.min()
    max_pixel_value = x_train.max()
    print('min_pixel_value ', min_pixel_value)
    print('max_pixel_value ', max_pixel_value)

    print('xtrain shape: ', x_train.shape)
    print('xtest shape: ', x_test.shape)
    print('y_train shape: ', y_train.shape)
    print('ytest shape: ', y_test.shape)

    # Create classifier
    classifier = BlackBoxClassifier(predict=predictWrapper.predict_one_hot,
                                    input_shape=(input_shape, ),
                                    nb_classes=2,
                                    clip_values=(min_pixel_value, max_pixel_value))

    print('----- generate adv data by HopSkipJump attack -----')
    # Generate adversarial test examples
    s = time.time()

    attacker = HopSkipJump(classifier=classifier, targeted=False, norm=2, max_iter=100, max_eval=10000, init_eval=100, init_size=100)
    # attacker = HopSkipJump(classifier=classifier, targeted=False, norm=2, max_iter=2, max_eval=10000, init_eval=100, init_size=100)


    # Input data shape should be 2D
    datapoint = datapoint.reshape((-1, input_shape))
    adv_data = attacker.generate(x=datapoint)

    distortion(datapoint, adv_data)
    print('Generate test adv cost time: ', time.time() - s)

    return adv_data
Beispiel #3
0
def init_hopskipjump(config, data, limit=50):
    """Runs the HopSkipJump evasion attack

    Arxiv Paper: https://arxiv.org/abs/1904.02144"""
    attack = HopSkipJump(config,
                         False,
                         max_iter=limit,
                         max_eval=100,
                         init_eval=10)
    return attack.generate(data)
Beispiel #4
0
    def get(self):
        data = self.parser.parse_args()
        img = data.get('img')
        img_data = img.split(',')
        img = np.array(img_data, np.float32).reshape(28, 28)
        img = img * 255.0
        img_new = np.zeros((1, 32, 32, 1))
        img_new[0] = np.pad(img.reshape(28, 28), [(2, ), (2, )],
                            mode='constant').reshape(32, 32, 1)

        global sess
        global graph
        with graph.as_default():
            set_session(sess)
            attack = HopSkipJump(classifier=classifier,
                                 targeted=False,
                                 max_iter=0,
                                 max_eval=1000,
                                 init_eval=10)
            iter_step = 3
            x_adv = None
            for i in range(iter_step):
                x_adv = attack.generate(x=img_new,
                                        x_adv_init=x_adv,
                                        resume=True)

                #clear_output()
                # print("Adversarial image at step %d." % (i * iter_step),
                #     "and class label %d." % np.argmax(classifier.predict(x_adv)[0]))

                attack.max_iter = iter_step

        sav_img = Image.fromarray(x_adv.reshape(32, 32))
        sav_img = sav_img.convert("L")
        sav_img.save("test.jpg")
        buffer = BytesIO()
        sav_img.save(buffer, format="JPEG")
        myimage = buffer.getvalue()
        res = str(predict(x_adv))
        print("After Attack: ", res)

        return jsonify({
            'res': res,
            'dat': bytes.decode(base64.b64encode(myimage))
        })
Beispiel #5
0
def robust_score(y_true,
                 y_pred,
                 eps=0.1,
                 X=None,
                 y=None,
                 model=None,
                 feature_selector=None,
                 scorer=None):
    all_ids = range(X.shape[0])
    test_ids = y_true.index.values
    train_ids = list(set(all_ids) - set(test_ids))

    y_train = y[train_ids]
    y_test = y[test_ids]

    X_train = X[train_ids, :]
    X_test = X[test_ids, :]

    if type(feature_selector) != type(None):
        X_train = feature_selector.fit_transform(X_train)
        X_test = feature_selector.transform(X_test)

    #tuned_parameters = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}
    #cv = GridSearchCV(model, tuned_parameters)
    #cv.fit(X_train, y_train)
    #best_model = cv.best_estimator_
    best_model = copy.deepcopy(model)
    best_model.fit(X_train, y_train)

    classifier = SklearnClassifier(model=best_model)
    attack = HopSkipJump(classifier=classifier,
                         max_iter=1,
                         max_eval=10,
                         init_eval=5,
                         init_size=1)

    X_test_adv = attack.generate(X_test)

    diff = scorer(best_model, X_test, y_test) - scorer(best_model, X_test_adv,
                                                       y_test)
    return diff
Beispiel #6
0
def robust_score_test(eps=0.1,
                      X_test=None,
                      y_test=None,
                      model=None,
                      feature_selector=None,
                      scorer=None):
    X_test_filtered = feature_selector.transform(X_test)

    best_model = copy.deepcopy(model)

    classifier = SklearnClassifier(model=best_model)
    attack = HopSkipJump(classifier=classifier,
                         max_iter=1,
                         max_eval=10,
                         init_eval=5,
                         init_size=1)

    X_test_adv = attack.generate(X_test_filtered)

    score_original_test = scorer(best_model, X_test_filtered, y_test)
    score_corrupted_test = scorer(best_model, X_test_adv, y_test)

    diff = score_original_test - score_corrupted_test
    return diff
Beispiel #7
0
# Create a query function for a PyTorch Lightning model
model = train_mnist_victim()


def query_mnist(input_data):
    input_data = torch.from_numpy(input_data)
    return get_target(model, input_data)


emnist_train, emnist_test = get_emnist_data()

test = BlackBoxClassifier(
    predict=query_mnist,
    input_shape=(1, 28, 28, 1),
    nb_classes=10,
    clip_values=(0, 255),
    preprocessing_defences=None,
    postprocessing_defences=None,
    preprocessing=None,
)

attack = HopSkipJump(test, False, max_iter=50, max_eval=100, init_eval=10)

X, y = emnist_train.data, emnist_train.targets

X = X.to(torch.float32)

X = X.unsqueeze(3)

attack.generate(X)
Beispiel #8
0
target_image = x_train[0]

# Generate HopSkipJump attack against black box classifier
attack = HopSkipJump(classifier=classifier,
                     targeted=True,
                     max_iter=0,
                     max_eval=1000,
                     init_eval=10)
iter_step = 10
stop = Image.open(curr_path + "../danny-machine/machine.jpg")
stop = np.array([np.array(stop)]).astype(float)
x_adv = stop
errors = []
for i in range(100):
    x_adv = attack.generate(x=np.array([target_image]),
                            y=[1],
                            x_adv_init=x_adv)

    l2_err = np.linalg.norm(np.reshape(x_adv[0] - target_image, [-1]))
    print("Adversarial image at step %d." % (i * iter_step), "L2 error",
          np.linalg.norm(np.reshape(x_adv[0] - target_image, [-1])),
          "and class label %d." % np.argmax(classifier.predict(x_adv)[0]))
    errors.append((i * iter_step, l2_err))

    im = Image.fromarray(np.reshape(x_adv[0].astype(np.uint8), SHAPE))
    im.save(curr_path + f"../danny-machine/step{i}.png")
    #plt.imshow(np.reshape(x_adv[0].astype(np.float32), (400, 400)))
    #plt.show(block=False)

    attack.max_iter = iter_step
print(errors)
Beispiel #9
0
    print('max_pixel_value ', max_pixel_value)

    # Create classifier
    classifier = BlackBoxClassifier(predict=predictWrapper.predict_one_hot,
                                    input_shape=input_shape,
                                    nb_classes=args.n_classes,
                                    clip_values=(min_pixel_value,
                                                 max_pixel_value))

    print('----- generate adv data by HopSkipJump attack -----')
    # Generate adversarial test examples

    attacker = HopSkipJump(classifier=classifier,
                           targeted=False,
                           norm=2,
                           max_iter=40,
                           max_eval=10000,
                           init_eval=100,
                           init_size=100)
    # attacker = HopSkipJump(classifier=classifier, targeted=False, norm=2, max_iter=2, max_eval=10000, init_eval=100, init_size=100)

    # Input data shape should be 2D
    datapoint = test[correct_index[:1]]

    s = time.time()
    adv_data = attacker.generate(x=datapoint)

    # distortion(datapoint, adv_data)
    print('Generate test adv cost time: ', time.time() - s)

    # return adv_data
Beispiel #10
0

# A toy example of how to call the class
if __name__ == '__main__':
    from sklearn.datasets import load_breast_cancer
    from sklearn.metrics import f1_score
    diabetes = load_breast_cancer()

    X = diabetes.data
    y = diabetes.target

    model = PrivateRandomForest(n_estimators=100, epsilon=0.1)
    model.fit(X, y)

    print(f1_score(y, model.predict(X)))

    #print(model.predict(X))

    import numpy as np
    from art.classifiers import SklearnClassifier

    import copy
    from art.attacks.evasion import HopSkipJump

    classifier = SklearnClassifier(model=model)
    attack = HopSkipJump(classifier=classifier, max_iter=1, max_eval=100)

    X_test_adv = attack.generate(X)

    print(model.predict(X_test_adv))
Beispiel #11
0
def experiment(dataset_id, folder, n_estimators=500, reps=5, n_attack=50):
    dataset = openml.datasets.get_dataset(dataset_id)
    X, y, is_categorical, _ = dataset.get_data(
        dataset_format="array", target=dataset.default_target_attribute)

    if np.mean(is_categorical) > 0:
        return

    if np.isnan(np.sum(y)):
        return

    if np.isnan(np.sum(X)):
        return

    total_sample = X.shape[0]
    unique_classes, counts = np.unique(y, return_counts=True)

    test_sample = min(counts) // 3

    indx = []
    for label in unique_classes:
        indx.append(np.where(y == label)[0])

    max_sample = min(counts) - test_sample
    train_samples = np.logspace(np.log10(2),
                                np.log10(max_sample),
                                num=10,
                                endpoint=True,
                                dtype=int)

    train_samples = [train_samples[-1]]

    # Only use small data for now
    if train_samples[-1] > 1000:
        return

    l2_kdf_list = []
    l2_rf_list = []
    linf_kdf_list = []
    linf_rf_list = []
    err_adv_rf_list = []
    err_adv_kdf_list = []
    err_rf = []
    err_kdf = []
    mc_rep = []
    samples_attack = []
    samples = []

    for train_sample in train_samples:
        for rep in range(reps):
            indx_to_take_train = []
            indx_to_take_test = []

            for ii, _ in enumerate(unique_classes):
                np.random.shuffle(indx[ii])
                indx_to_take_train.extend(list(indx[ii][:train_sample]))
                indx_to_take_test.extend(
                    list(indx[ii][-test_sample:counts[ii]]))

            # Fit the estimators
            model_kdf = kdf(
                kwargs={
                    "n_estimators":
                    n_estimators,
                    "min_samples_leaf":
                    int(np.ceil(X.shape[1] * 10 / np.log(train_sample))),
                })
            model_kdf.fit(X[indx_to_take_train], y[indx_to_take_train])
            proba_kdf = model_kdf.predict_proba(X[indx_to_take_test])
            proba_rf = model_kdf.rf_model.predict_proba(X[indx_to_take_test])
            predicted_label_kdf = np.argmax(proba_kdf, axis=1)
            predicted_label_rf = np.argmax(proba_rf, axis=1)

            # Initial classification error
            err_rf.append(1 -
                          np.mean(predicted_label_rf == y[indx_to_take_test]))
            err_kdf.append(1 - np.mean(
                predicted_label_kdf == y[indx_to_take_test]))

            ## Adversarial attack ###
            def _predict_kdf(x):
                """Wrapper to query black box"""
                proba_kdf = model_kdf.predict_proba(x)
                predicted_label_kdf = np.argmax(proba_kdf, axis=1)
                return to_categorical(
                    predicted_label_kdf,
                    nb_classes=len(np.unique(y[indx_to_take_train])),
                )

            def _predict_rf(x):
                """Wrapper to query blackbox for rf"""
                proba_rf = model_kdf.rf_model.predict_proba(x)
                predicted_label_rf = np.argmax(proba_rf, axis=1)
                return to_categorical(predicted_label_rf,
                                      nb_classes=len(
                                          np.unique(y[indx_to_take_train])))

            art_classifier_kdf = BlackBoxClassifier(
                _predict_kdf,
                X[indx_to_take_train][0].shape,
                len(np.unique(y[indx_to_take_train])),
            )
            art_classifier_rf = BlackBoxClassifier(
                _predict_rf,
                X[indx_to_take_train][0].shape,
                len(np.unique(y[indx_to_take_train])),
            )
            attack_rf = HopSkipJump(
                classifier=art_classifier_rf,
                targeted=False,
                max_iter=50,
                max_eval=1000,
                init_eval=10,
            )
            attack_kdf = HopSkipJump(
                classifier=art_classifier_kdf,
                targeted=False,
                max_iter=50,
                max_eval=1000,
                init_eval=10,
            )

            ### For computational reasons, attack a random subset that is identified correctly
            # Get indices of correctly classified samples common to both
            selection_idx = indx_to_take_train
            proba_kdf = model_kdf.predict_proba(X[selection_idx])
            proba_rf = model_kdf.rf_model.predict_proba(X[selection_idx])
            predicted_label_kdf = np.argmax(proba_kdf, axis=1)
            predicted_label_rf = np.argmax(proba_rf, axis=1)

            idx_kdf = np.where(predicted_label_kdf == y[selection_idx])[0]
            idx_rf = np.where(predicted_label_rf == y[selection_idx])[0]
            idx_common = list(np.intersect1d(idx_kdf, idx_rf))

            # Randomly sample from the common indices
            if n_attack > len(idx_common):
                n_attack = len(idx_common)
            idx = random.sample(idx_common, n_attack)
            if n_attack == 0:
                return

            ### Generate samples
            x_adv_kdf = attack_kdf.generate(X[selection_idx][idx])
            x_adv_rf = attack_rf.generate(X[selection_idx][idx])

            # Compute norms
            l2_kdf = np.mean(
                np.linalg.norm(X[selection_idx][idx] - x_adv_kdf,
                               ord=2,
                               axis=1))
            l2_rf = np.mean(
                np.linalg.norm(X[selection_idx][idx] - x_adv_rf, ord=2,
                               axis=1))
            linf_rf = np.mean(
                np.linalg.norm(X[selection_idx][idx] - x_adv_rf,
                               ord=np.inf,
                               axis=1))
            linf_kdf = np.mean(
                np.linalg.norm(X[selection_idx][idx] - x_adv_kdf,
                               ord=np.inf,
                               axis=1))

            ### Classification
            # Make adversarial prediction
            proba_rf = model_kdf.rf_model.predict_proba(x_adv_rf)
            predicted_label_rf_adv = np.argmax(proba_rf, axis=1)
            err_adv_rf = 1 - np.mean(
                predicted_label_rf_adv == y[selection_idx][idx])

            proba_kdf = model_kdf.predict_proba(x_adv_kdf)
            predicted_label_kdf_adv = np.argmax(proba_kdf, axis=1)
            err_adv_kdf = 1 - np.mean(
                predicted_label_kdf_adv == y[selection_idx][idx])

            print("l2_rf = {:.4f}, linf_rf = {:.4f}, err_rf = {:.4f}".format(
                l2_rf, linf_rf, err_adv_rf))
            print(
                "l2_kdf = {:.4f}, linf_kdf = {:.4f}, err_kdf = {:.4f}".format(
                    l2_kdf, linf_kdf, err_adv_kdf))

            l2_kdf_list.append(l2_kdf)
            l2_rf_list.append(l2_rf)
            linf_kdf_list.append(linf_kdf)
            linf_rf_list.append(linf_rf)
            err_adv_kdf_list.append(err_adv_kdf)
            err_adv_rf_list.append(err_adv_rf)

            mc_rep.append(rep)
            samples_attack.append(n_attack)
            samples.append(train_sample)

    df = pd.DataFrame()
    df["l2_kdf"] = l2_kdf_list
    df["l2_rf"] = l2_rf_list
    df["linf_kdf"] = linf_kdf_list
    df["linf_rf"] = linf_rf_list
    df["err_kdf"] = err_kdf
    df["err_rf"] = err_rf
    df["err_adv_kdf"] = err_adv_kdf_list
    df["err_adv_rf"] = err_adv_rf_list
    df["rep"] = mc_rep
    df["samples_attack"] = samples_attack
    df["samples"] = samples

    df.to_csv(folder + "/" + "openML_cc18_" + str(dataset_id) + ".csv")
                                                    random_state=42)

model = RandomForestClassifier()
model.fit(X_train, y_train)

print(X_test.shape)

print("trained")

classifier = SklearnClassifier(model=model)
attack = HopSkipJump(classifier=classifier,
                     max_iter=1,
                     max_eval=10,
                     init_eval=10,
                     init_size=1)
X_test_attacked = attack.generate(X_test, y_test)

robustness = empirical_robustness(classifier,
                                  X_test,
                                  'hsj',
                                  attack_params={
                                      'max_iter': 1,
                                      'max_eval': 10,
                                      'init_eval': 10,
                                      'init_size': 1
                                  })
print('Robustness: ' + str(robustness))

print("generated")

y_test_attacked = model.predict(X_test_attacked)