Beispiel #1
0
    def setUpClass(cls):
        # Get MNIST
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:NB_TRAIN], y_train[:NB_TRAIN]
        x_test, y_test = x_test[:NB_TEST], y_test[:NB_TEST]
        x_train = np.swapaxes(x_train, 1, 3)
        x_test = np.swapaxes(x_test, 1, 3)
        cls.mnist = (x_train, y_train), (x_test, y_test)

        # Define the network
        model = nn.Sequential(nn.Conv2d(1, 16, 5),
                              nn.ReLU(), nn.MaxPool2d(2, 2), Flatten(),
                              nn.Linear(2304, 10))

        # Define a loss function and optimizer
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)
        classifier = PyTorchClassifier((0, 1), model, loss_fn, optimizer,
                                       (1, 28, 28), 10)
        classifier.fit(x_train, y_train, batch_size=100, nb_epochs=2)
        cls.seq_classifier = classifier

        # Define the network
        model = Model()
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)
        classifier2 = PyTorchClassifier((0, 1), model, loss_fn, optimizer,
                                        (1, 28, 28), 10)
        classifier2.fit(x_train, y_train, batch_size=100, nb_epochs=2)
        cls.module_classifier = classifier2
    def test_ptclassifier(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        # Get MNIST
        batch_size, nb_train, nb_test = 100, 1000, 10
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:nb_train], np.argmax(y_train[:nb_train],
                                                         axis=1)
        x_test, y_test = x_test[:nb_test], np.argmax(y_test[:nb_test], axis=1)
        x_train = np.swapaxes(x_train, 1, 3)
        x_test = np.swapaxes(x_test, 1, 3)

        # Create simple CNN
        # Define the network
        model = Model()

        # Define a loss function and optimizer
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)

        # Get classifier
        ptc = PyTorchClassifier((0, 1), model, loss_fn, optimizer, (1, 28, 28),
                                (10, ))
        ptc.fit(x_train, y_train, batch_size=batch_size, nb_epochs=1)

        # Attack
        # TODO Launch with all possible attacks
        attack_params = {
            "attacker": "newtonfool",
            "attacker_params": {
                "max_iter": 20
            }
        }
        up = UniversalPerturbation(ptc)
        x_train_adv = up.generate(x_train, **attack_params)
        self.assertTrue((up.fooling_rate >= 0.2) or not up.converged)

        x_test_adv = x_test + up.v
        self.assertFalse((x_test == x_test_adv).all())

        train_y_pred = np.argmax(ptc.predict(x_train_adv), axis=1)
        test_y_pred = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertFalse((y_test == test_y_pred).all())
        self.assertFalse((y_train == train_y_pred).all())
    def test_fit_predict(self):
        # Get MNIST
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:NB_TRAIN], np.argmax(y_train[:NB_TRAIN],
                                                         axis=1)
        x_test, y_test = x_test[:NB_TEST], np.argmax(y_test[:NB_TEST], axis=1)
        x_train = np.swapaxes(x_train, 1, 3)
        x_test = np.swapaxes(x_test, 1, 3)

        # Test fit and predict
        ptc = PyTorchClassifier(None, self._model, self._loss_fn,
                                self._optimizer, (1, 28, 28), (10, ))

        ptc.fit(x_train, y_train, batch_size=100, nb_epochs=1)
        preds = ptc.predict(x_test)
        preds_class = np.argmax(preds, axis=1)
        acc = np.sum(preds_class == y_test) / len(y_test)
        print("\nAccuracy: %.2f%%" % (acc * 100))
        self.assertGreater(acc, 0.1)
Beispiel #4
0
    def test_fit_predict(self):
        # Get MNIST
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:NB_TRAIN], y_train[:NB_TRAIN]
        x_test, y_test = x_test[:NB_TEST], y_test[:NB_TEST]
        x_train = np.swapaxes(x_train, 1, 3)
        x_test = np.swapaxes(x_test, 1, 3)

        # Create model
        model, loss_fn, optimizer = self._model_setup_module()

        # Test fit and predict
        ptc = PyTorchClassifier((0, 1), model, loss_fn, optimizer, (1, 28, 28),
                                10)

        ptc.fit(x_train, y_train, batch_size=100, nb_epochs=1)
        preds = ptc.predict(x_test)
        acc = np.sum(np.argmax(preds, axis=1) == np.argmax(
            y_test, axis=1)) / len(y_test)
        print("\nAccuracy: %.2f%%" % (acc * 100))
        self.assertGreater(acc, 0.1)
Beispiel #5
0
    def setUpClass(cls):
        # Get MNIST
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:NB_TRAIN], y_train[:NB_TRAIN]
        x_test, y_test = x_test[:NB_TEST], y_test[:NB_TEST]
        x_train = np.swapaxes(x_train, 1, 3)
        x_test = np.swapaxes(x_test, 1, 3)
        cls.mnist = (x_train, y_train), (x_test, y_test)

        # Define the internal classifier
        model = Model()
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)
        classifier = PyTorchClassifier(model=model,
                                       loss=loss_fn,
                                       optimizer=optimizer,
                                       input_shape=(1, 28, 28),
                                       nb_classes=10,
                                       clip_values=(0, 1))
        classifier.fit(x_train, y_train, batch_size=100, nb_epochs=2)

        # Define the internal detector
        conv = nn.Conv2d(1, 16, 5)
        linear = nn.Linear(2304, 1)
        torch.nn.init.xavier_uniform_(conv.weight)
        torch.nn.init.xavier_uniform_(linear.weight)
        model = nn.Sequential(conv, nn.ReLU(), nn.MaxPool2d(2, 2), Flatten(),
                              linear)
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)
        detector = PyTorchClassifier(model=model,
                                     loss=loss_fn,
                                     optimizer=optimizer,
                                     input_shape=(1, 28, 28),
                                     nb_classes=1,
                                     clip_values=(0, 1))

        # Define the detector-classifier
        cls.detector_classifier = DetectorClassifier(classifier=classifier,
                                                     detector=detector)
Beispiel #6
0
    def test_layers(self):
        # Get MNIST
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:NB_TRAIN], y_train[:NB_TRAIN]
        x_test, y_test = x_test[:NB_TEST], y_test[:NB_TEST]
        x_test = np.swapaxes(x_test, 1, 3)
        x_train = np.swapaxes(x_train, 1, 3)

        # Create model
        model, loss_fn, optimizer = self._model_setup_sequential()

        # Test and get layers
        ptc = PyTorchClassifier((0, 1), model, loss_fn, optimizer, (1, 28, 28),
                                10)
        ptc.fit(x_train, y_train, batch_size=100, nb_epochs=1)

        layer_names = ptc.layer_names
        self.assertTrue(layer_names == [
            '0_Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1))', '1_ReLU()',
            '2_MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)',
            '3_Flatten()',
            '4_Linear(in_features=2304, out_features=10, bias=True)'
        ])

        for i, name in enumerate(layer_names):
            act_i = ptc.get_activations(x_test, i)
            act_name = ptc.get_activations(x_test, name)
            self.assertTrue(np.sum(act_name - act_i) == 0)

        self.assertTrue(
            ptc.get_activations(x_test, 0).shape == (20, 16, 24, 24))
        self.assertTrue(
            ptc.get_activations(x_test, 1).shape == (20, 16, 24, 24))
        self.assertTrue(
            ptc.get_activations(x_test, 2).shape == (20, 16, 12, 12))
        self.assertTrue(ptc.get_activations(x_test, 3).shape == (20, 2304))
        self.assertTrue(ptc.get_activations(x_test, 4).shape == (20, 10))
Beispiel #7
0
    def test_ptclassifier(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        # Get MNIST
        batch_size, nb_train, nb_test = 100, 1000, 10
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:nb_train], np.argmax(y_train[:nb_train], axis=1)
        x_test, y_test = x_test[:nb_test], np.argmax(y_test[:nb_test], axis=1)
        x_train = np.swapaxes(x_train, 1, 3)
        x_test = np.swapaxes(x_test, 1, 3)

        # Create simple CNN
        # Define the network
        model = Model()

        # Define a loss function and optimizer
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)

        # Get classifier
        ptc = PyTorchClassifier((0, 1), model, loss_fn, optimizer, (1, 28, 28), (10,))
        ptc.fit(x_train, y_train, batch_size=batch_size, nb_epochs=1)

        # Attack
        nf = NewtonFool(ptc)
        nf.set_params(max_iter=5)
        x_test_adv = nf.generate(x_test)
        self.assertFalse((x_test == x_test_adv).all())

        y_pred = ptc.predict(x_test)
        y_pred_adv = ptc.predict(x_test_adv)
        y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred
        y_pred_max = y_pred.max(axis=1)
        y_pred_adv_max = y_pred_adv[y_pred_bool]
        self.assertTrue((y_pred_max >= y_pred_adv_max).all())
Beispiel #8
0
model = Net()

# Define the loss function and the optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# Initialize the classifier
cifar_classifier = PyTorchClassifier(clip_values=(0, 1),
                                     model=model,
                                     loss=criterion,
                                     optimizer=optimizer,
                                     input_shape=(1, 28, 28),
                                     nb_classes=10)

# Train the classifier
cifar_classifier.fit(x_train, y_train, batch_size=64, nb_epochs=10)

# Test the classifier
predictions = cifar_classifier.predict(x_test)
accuracy = np.sum(
    np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print('Accuracy before attack: {}%'.format(accuracy * 100))

# Craft the adversarial examples
epsilon = 0.2  # Maximum perturbation
adv_crafter = FastGradientMethod(cifar_classifier, eps=epsilon)
x_test_adv = adv_crafter.generate(x=x_test)

# Test the classifier on adversarial exmaples
predictions = cifar_classifier.predict(x_test_adv)
accuracy = np.sum(
Beispiel #9
0
model = Net()

# Define the loss function and the optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# Initialize the classifier
mnist_classifier = PyTorchClassifier(clip_values=(0, 1),
                                     model=model,
                                     loss=criterion,
                                     optimizer=optimizer,
                                     input_shape=(1, 28, 28),
                                     nb_classes=10)

# Train the classifier
mnist_classifier.fit(x_train, y_train, batch_size=64, nb_epochs=10)

# Test the classifier
predictions = mnist_classifier.predict(x_test)
accuracy = np.sum(
    np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print('Accuracy before attack: {}%'.format(accuracy * 100))

# Craft the adversarial examples
epsilon = 0.2  # Maximum perturbation
adv_crafter = FastGradientMethod(mnist_classifier, eps=epsilon)
x_test_adv = adv_crafter.generate(x=x_test)

# Test the classifier on adversarial exmaples
predictions = mnist_classifier.predict(x_test_adv)
accuracy = np.sum(
    def test_ptclassifier(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        # Get MNIST
        batch_size, nb_train, nb_test = 100, 5000, 10
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:nb_train], y_train[:nb_train]
        x_test, y_test = x_test[:nb_test], y_test[:nb_test]
        x_train = np.swapaxes(x_train, 1, 3)
        x_test = np.swapaxes(x_test, 1, 3)

        # Create simple CNN
        # Define the network
        model = Model()

        # Define a loss function and optimizer
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)

        # Get classifier
        ptc = PyTorchClassifier((0, 1), model, loss_fn, optimizer, (1, 28, 28),
                                10)
        ptc.fit(x_train, y_train, batch_size=batch_size, nb_epochs=10)

        # First attack
        cl2m = CarliniL2Method(classifier=ptc,
                               targeted=True,
                               max_iter=100,
                               binary_search_steps=1,
                               learning_rate=1,
                               initial_const=10,
                               decay=0)
        params = {'y': random_targets(y_test, ptc.nb_classes)}
        x_test_adv = cl2m.generate(x_test, **params)
        self.assertFalse((x_test == x_test_adv).all())
        self.assertTrue((x_test_adv <= 1.0001).all())
        self.assertTrue((x_test_adv >= -0.0001).all())
        target = np.argmax(params['y'], axis=1)
        y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertTrue((target == y_pred_adv).any())

        # Second attack
        cl2m = CarliniL2Method(classifier=ptc,
                               targeted=False,
                               max_iter=100,
                               binary_search_steps=1,
                               learning_rate=1,
                               initial_const=10,
                               decay=0)
        params = {'y': random_targets(y_test, ptc.nb_classes)}
        x_test_adv = cl2m.generate(x_test, **params)
        self.assertFalse((x_test == x_test_adv).all())
        self.assertTrue((x_test_adv <= 1.0001).all())
        self.assertTrue((x_test_adv >= -0.0001).all())
        target = np.argmax(params['y'], axis=1)
        y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertTrue((target != y_pred_adv).any())

        # Third attack
        cl2m = CarliniL2Method(classifier=ptc,
                               targeted=False,
                               max_iter=100,
                               binary_search_steps=1,
                               learning_rate=1,
                               initial_const=10,
                               decay=0)
        params = {}
        x_test_adv = cl2m.generate(x_test, **params)
        self.assertFalse((x_test == x_test_adv).all())
        self.assertTrue((x_test_adv <= 1.0001).all())
        self.assertTrue((x_test_adv >= -0.0001).all())
        y_pred = np.argmax(ptc.predict(x_test), axis=1)
        y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertTrue((y_pred != y_pred_adv).any())