Beispiel #1
0
def calnod(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
    """
    Do full (but a pair of scans at time) processing of GBT Nod data
    calibration.
    Adopted from  GBTIDL's getnod
    Parameters:
        scantab:     scantable
        scannos:     a pair of scan numbers, or the first scan number of the pair
        smooth:      box car smoothing order
        tsysval:     optional user specified Tsys value
        tauval:      optional user specified tau value (not implemented yet)
        tcalval:     optional user specified Tcal value
        verify:       Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

    # check for the appropriate data
##     s = scantab.get_scan('*_nod*')
##     if s is None:
##         msg = "The input data appear to contain no Nod observing mode data."
##         raise TypeError(msg)
    s = scantab.copy()
    sel = selector()
    sel.set_types( srctype.nod )
    try:
        s.set_selection( sel )
    except Exception, e:
        msg = "The input data appear to contain no Nod observing mode data."
        raise TypeError(msg)
Beispiel #2
0
    def _selected_stats(self,rows=None,regions=None):
        # check for the validity of plotter and get the plotter
        theplotter = self._get_plotter()

        scan = theplotter._data
        if not scan:
            asaplog.post()
            asaplog.push("Invalid scantable")
            asaplog.post("ERROR")
        mathobj = stmath( rcParams['insitu'] )
        statval = {}
        statstr = ['max', 'min', 'mean', 'median', 'sum', 'stddev', 'rms']
        if isinstance(rows, list) and len(rows) > 0:
            for irow in rows:
                for stat in statstr:
                    statval[stat] = mathobj._statsrow(scan,[],stat,irow)[0]
                self._print_stats(scan,irow,statval,statstr=statstr)
            del irow
        if isinstance(regions,dict) and len(regions) > 0:
            for srow, masklist in regions.iteritems():
                if not isinstance(masklist,list) or len(masklist) ==0:
                    msg = "Ignoring invalid region selection for row = "+srow
                    asaplog.post()
                    asaplog.push(msg)
                    asaplog.post("WARN")
                    continue
                irow = int(srow)
                mask = scan.create_mask(masklist,invert=False,row=irow)
                for stat in statstr:
                    statval[stat] = mathobj._statsrow(scan,mask,stat,irow)[0]
                self._print_stats(scan,irow,statval,statstr=statstr,
                                  mask=masklist)
                del irow, mask
            del srow, masklist
        del scan, statval, mathobj
Beispiel #3
0
def _array2dOp(scan,
               value,
               mode="ADD",
               tsys=False,
               insitu=None,
               skip_flaggedrow=False):
    """
    This function is workaround on the basic operation of scantable
    with 2 dimensional float list.

    scan:    scantable operand
    value:   float list operand
    mode:    operation mode (ADD, SUB, MUL, DIV)
    tsys:    if True, operate tsys as well
    insitu:  if False, a new scantable is returned.
             Otherwise, the array operation is done in-sitsu.
    skip_flaggedrow: skip operation for row-flagged spectra.
    """
    if insitu is None: insitu = rcParams['insitu']
    nrow = scan.nrow()
    s = None
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(insitu)
    if len(value) == 1:
        s = scantable(stm._arrayop(scan, value[0], mode, tsys,
                                   skip_flaggedrow))
    elif len(value) != nrow:
        raise ValueError('len(value) must be 1 or conform to scan.nrow()')
    else:
        from asap._asap import stmath
        if not insitu:
            s = scan.copy()
        else:
            s = scan
        # insitu must be True as we go row by row on the same data
        stm._setinsitu(True)
        basesel = s.get_selection()
        # generate a new selector object based on basesel
        sel = selector(basesel)
        for irow in range(nrow):
            sel.set_rows(irow)
            s.set_selection(sel)
            if len(value[irow]) == 1:
                stm._unaryop(s, value[irow][0], mode, tsys, skip_flaggedrow)
            else:
                #stm._arrayop( s, value[irow], mode, tsys, 'channel' )
                stm._arrayop(s, value[irow], mode, tsys, skip_flaggedrow)
        s.set_selection(basesel)
    return s
Beispiel #4
0
def dototalpower(calon, caloff, tcalval=0.0):
    """
    Do calibration for CAL on,off signals.
    Adopted from GBTIDL dototalpower
    Parameters:
        calon:         the 'cal on' subintegration
        caloff:        the 'cal off' subintegration
        tcalval:       user supplied Tcal value
    """
    varlist = vars()
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(False)
    s = scantable(stm._dototalpower(calon, caloff, tcalval))
    s._add_history("dototalpower", varlist)
    return s
Beispiel #5
0
def dototalpower(calon, caloff, tcalval=0.0):
    """
    Do calibration for CAL on,off signals.
    Adopted from GBTIDL dototalpower
    Parameters:
        calon:         the 'cal on' subintegration
        caloff:        the 'cal off' subintegration
        tcalval:       user supplied Tcal value
    """
    varlist = vars()
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(False)
    s = scantable(stm._dototalpower(calon, caloff, tcalval))
    s._add_history("dototalpower",varlist)
    return s
Beispiel #6
0
def dosigref(sig, ref, smooth, tsysval=0.0, tauval=0.0):
    """
    Calculate a quotient (sig-ref/ref * Tsys)
    Adopted from GBTIDL dosigref
    Parameters:
        sig:         on source data
        ref:         reference data
        smooth:      width of box car smoothing for reference
        tsysval:     user specified Tsys (scalar only)
        tauval:      user specified Tau (required if tsysval is set)
    """
    varlist = vars()
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(False)
    s = scantable(stm._dosigref(sig, ref, smooth, tsysval, tauval))
    s._add_history("dosigref", varlist)
    return s
Beispiel #7
0
def dosigref(sig, ref, smooth, tsysval=0.0, tauval=0.0):
    """
    Calculate a quotient (sig-ref/ref * Tsys)
    Adopted from GBTIDL dosigref
    Parameters:
        sig:         on source data
        ref:         reference data
        smooth:      width of box car smoothing for reference
        tsysval:     user specified Tsys (scalar only)
        tauval:      user specified Tau (required if tsysval is set)
    """
    varlist = vars()
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(False)
    s = scantable(stm._dosigref(sig, ref, smooth, tsysval, tauval))
    s._add_history("dosigref",varlist)
    return s
Beispiel #8
0
def _array2dOp( scan, value, mode="ADD", tsys=False, insitu=None, skip_flaggedrow=False):
    """
    This function is workaround on the basic operation of scantable
    with 2 dimensional float list.

    scan:    scantable operand
    value:   float list operand
    mode:    operation mode (ADD, SUB, MUL, DIV)
    tsys:    if True, operate tsys as well
    insitu:  if False, a new scantable is returned.
             Otherwise, the array operation is done in-sitsu.
    skip_flaggedrow: skip operation for row-flagged spectra.
    """
    if insitu is None: insitu = rcParams['insitu']
    nrow = scan.nrow()
    s = None
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(insitu)
    if len( value ) == 1:
        s = scantable( stm._arrayop( scan, value[0], mode, tsys, skip_flaggedrow ) )
    elif len( value ) != nrow:
        raise ValueError( 'len(value) must be 1 or conform to scan.nrow()' )
    else:
        from asap._asap import stmath
        if not insitu:
            s = scan.copy()
        else:
            s = scan
        # insitu must be True as we go row by row on the same data
        stm._setinsitu( True )
        basesel = s.get_selection()
        # generate a new selector object based on basesel
        sel = selector(basesel)
        for irow in range( nrow ):
            sel.set_rows( irow )
            s.set_selection( sel )
            if len( value[irow] ) == 1:
                stm._unaryop( s, value[irow][0], mode, tsys, skip_flaggedrow )
            else:
                #stm._arrayop( s, value[irow], mode, tsys, 'channel' )
                stm._arrayop( s, value[irow], mode, tsys, skip_flaggedrow )
        s.set_selection(basesel)
    return s
Beispiel #9
0
def merge(*args, **kwargs):
    """
    Merge a list of scanatables, or comma-sperated scantables into one
    scnatble.
    Parameters:
        A list [scan1, scan2] or scan1, scan2.
        freq_tol: frequency tolerance for merging IFs. numeric values
                  in units of Hz (1.0e6 -> 1MHz) and string ('1MHz')
                  is allowed.
    Example:
        myscans = [scan1, scan2]
        allscans = merge(myscans)
        # or equivalent
        sameallscans = merge(scan1, scan2)
        # with freqtol
        allscans = merge(scan1, scan2, freq_tol=1.0e6)
        # or equivalently
        allscans = merge(scan1, scan2, freq_tol='1MHz')
    """
    varlist = vars()
    if isinstance(args[0], list):
        lst = tuple(args[0])
    elif isinstance(args[0], tuple):
        lst = args[0]
    else:
        lst = tuple(args)
    if kwargs.has_key('freq_tol'):
        freq_tol = str(kwargs['freq_tol'])
        if len(freq_tol) > 0 and re.match('.+[GMk]Hz$', freq_tol) is None:
            freq_tol += 'Hz'
    else:
        freq_tol = ''
    varlist["args"] = "%d scantables" % len(lst)
    # need special formatting her for history...
    from asap._asap import stmath
    stm = stmath()
    for s in lst:
        if not isinstance(s, scantable):
            msg = "Please give a list of scantables"
            raise TypeError(msg)
    s = scantable(stm._merge(lst, freq_tol))
    s._add_history("merge", varlist)
    return s
Beispiel #10
0
def merge(*args, **kwargs):
    """
    Merge a list of scanatables, or comma-sperated scantables into one
    scnatble.
    Parameters:
        A list [scan1, scan2] or scan1, scan2.
        freq_tol: frequency tolerance for merging IFs. numeric values
                  in units of Hz (1.0e6 -> 1MHz) and string ('1MHz')
                  is allowed.
    Example:
        myscans = [scan1, scan2]
        allscans = merge(myscans)
        # or equivalent
        sameallscans = merge(scan1, scan2)
        # with freqtol
        allscans = merge(scan1, scan2, freq_tol=1.0e6)
        # or equivalently
        allscans = merge(scan1, scan2, freq_tol='1MHz')
    """
    varlist = vars()
    if isinstance(args[0],list):
        lst = tuple(args[0])
    elif isinstance(args[0],tuple):
        lst = args[0]
    else:
        lst = tuple(args)
    if kwargs.has_key('freq_tol'):
        freq_tol = str(kwargs['freq_tol'])
        if len(freq_tol) > 0 and re.match('.+[GMk]Hz$', freq_tol) is None:
            freq_tol += 'Hz'
    else:
        freq_tol = ''
    varlist["args"] = "%d scantables" % len(lst)
    # need special formatting her for history...
    from asap._asap import stmath
    stm = stmath()
    for s in lst:
        if not isinstance(s,scantable):
            msg = "Please give a list of scantables"
            raise TypeError(msg)
    s = scantable(stm._merge(lst, freq_tol))
    s._add_history("merge", varlist)
    return s
Beispiel #11
0
def quotient(source, reference, preserve=True):
    """
    Return the quotient of a 'source' (signal) scan and a 'reference' scan.
    The reference can have just one scan, even if the signal has many. Otherwise
    they must have the same number of scans.
    The cursor of the output scan is set to 0
    Parameters:
        source:        the 'on' scan
        reference:     the 'off' scan
        preserve:      you can preserve (default) the continuum or
                       remove it.  The equations used are
                       preserve:  Output = Toff * (on/off) - Toff
                       remove:    Output = Toff * (on/off) - Ton
    """
    varlist = vars()
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(False)
    s = scantable(stm._quotient(source, reference, preserve))
    s._add_history("quotient", varlist)
    return s
Beispiel #12
0
def quotient(source, reference, preserve=True):
    """
    Return the quotient of a 'source' (signal) scan and a 'reference' scan.
    The reference can have just one scan, even if the signal has many. Otherwise
    they must have the same number of scans.
    The cursor of the output scan is set to 0
    Parameters:
        source:        the 'on' scan
        reference:     the 'off' scan
        preserve:      you can preserve (default) the continuum or
                       remove it.  The equations used are
                       preserve:  Output = Toff * (on/off) - Toff
                       remove:    Output = Toff * (on/off) - Ton
    """
    varlist = vars()
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(False)
    s = scantable(stm._quotient(source, reference, preserve))
    s._add_history("quotient",varlist)
    return s
Beispiel #13
0
def almacal(scantab, scannos=[], calmode='none', verify=False):
    """
    Calibrate ALMA data

    Parameters:
        scantab:       scantable
        scannos:       list of scan number
        calmode:       calibration mode

        verify:        verify calibration
    """
    from asap._asap import stmath
    stm = stmath()
    selection = selector()
    selection.set_scans(scannos)
    orig = scantab.get_selection()
    scantab.set_selection(orig + selection)
    ##     ssub = scantab.get_scan( scannos )
    ##     scal = scantable( stm.almacal( ssub, calmode ) )
    scal = scantable(stm.almacal(scantab, calmode))
    scantab.set_selection(orig)
    return scal
Beispiel #14
0
def calnod(scantab,
           scannos=[],
           smooth=1,
           tsysval=0.0,
           tauval=0.0,
           tcalval=0.0,
           verify=False):
    """
    Do full (but a pair of scans at time) processing of GBT Nod data
    calibration.
    Adopted from  GBTIDL's getnod
    Parameters:
        scantab:     scantable
        scannos:     a pair of scan numbers, or the first scan number of the pair
        smooth:      box car smoothing order
        tsysval:     optional user specified Tsys value
        tauval:      optional user specified tau value (not implemented yet)
        tcalval:     optional user specified Tcal value
        verify:       Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

    # check for the appropriate data
    ##     s = scantab.get_scan('*_nod*')
    ##     if s is None:
    ##         msg = "The input data appear to contain no Nod observing mode data."
    ##         raise TypeError(msg)
    s = scantab.copy()
    sel = selector()
    sel.set_types(srctype.nod)
    try:
        s.set_selection(sel)
    except Exception, e:
        msg = "The input data appear to contain no Nod observing mode data."
        raise TypeError(msg)
Beispiel #15
0
def almacal( scantab, scannos=[], calmode='none', verify=False ):
    """
    Calibrate ALMA data

    Parameters:
        scantab:       scantable
        scannos:       list of scan number
        calmode:       calibration mode

        verify:        verify calibration
    """
    from asap._asap import stmath
    stm = stmath()
    selection=selector()
    selection.set_scans(scannos)
    orig = scantab.get_selection()
    scantab.set_selection(orig+selection)
##     ssub = scantab.get_scan( scannos )
##     scal = scantable( stm.almacal( ssub, calmode ) )
    scal = scantable( stm.almacal( scantab, calmode ) )
    scantab.set_selection(orig)
    return scal
Beispiel #16
0
def calfs(scantab,
          scannos=[],
          smooth=1,
          tsysval=0.0,
          tauval=0.0,
          tcalval=0.0,
          verify=False):
    """
    Calibrate GBT frequency switched data.
    Adopted from GBTIDL getfs.
    Currently calfs identify the scans as frequency switched data if source
    type enum is fson and fsoff. The data must contains 'CAL' signal
    on/off in each integration. To identify 'CAL' on state, the source type 
    enum of foncal and foffcal need to be present.

    Parameters:
        scantab:       scantable
        scannos:       list of scan numbers
        smooth:        optional box smoothing order for the reference
                       (default is 1 = no smoothing)
        tsysval:       optional user specified Tsys (default is 0.0,
                       use Tsys in the data)
        tauval:        optional user specified Tau
        verify:        Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

    #    check = scantab.get_scan('*_fs*')
    #    if check is None:
    #        msg = "The input data appear to contain no Nod observing mode data."
    #        raise TypeError(msg)
    s = scantab.get_scan(scannos)
    del scantab

    resspec = scantable(stm._dofs(s, scannos, smooth, tsysval, tauval,
                                  tcalval))
    ###
    if verify:
        # get data
        ssub = s.get_scan(scannos)
        #ssubon = ssub.get_scan('*calon')
        #ssuboff = ssub.get_scan('*[^calon]')
        sel = selector()
        sel.set_types([srctype.foncal, srctype.foffcal])
        ssub.set_selection(sel)
        ssubon = ssub.copy()
        ssub.set_selection()
        sel.reset()
        sel.set_types([srctype.fson, srctype.fsoff])
        ssub.set_selection(sel)
        ssuboff = ssub.copy()
        ssub.set_selection()
        sel.reset()
        import numpy
        precal = {}
        postcal = []
        keys = ['fs', 'fs_calon', 'fsr', 'fsr_calon']
        types = [srctype.fson, srctype.foncal, srctype.fsoff, srctype.foffcal]
        ifnos = list(ssub.getifnos())
        polnos = list(ssub.getpolnos())
        for i in range(2):
            #ss=ssuboff.get_scan('*'+keys[2*i])
            ll = []
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2 * i])
                    try:
                        #ss.set_selection(sel)
                        ssuboff.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssuboff.set_selection()
            precal[keys[2 * i]] = ll
            #del ss
            #ss=ssubon.get_scan('*'+keys[2*i+1])
            ll = []
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2 * i + 1])
                    try:
                        #ss.set_selection(sel)
                        ssubon.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssubon.set_selection()
            precal[keys[2 * i + 1]] = ll
            #del ss
        #sig=resspec.get_scan('*_fs')
        #ref=resspec.get_scan('*_fsr')
        sel.set_types(srctype.fson)
        resspec.set_selection(sel)
        sig = resspec.copy()
        resspec.set_selection()
        sel.reset()
        sel.set_type(srctype.fsoff)
        resspec.set_selection(sel)
        ref = resspec.copy()
        resspec.set_selection()
        sel.reset()
        for k in range(len(polnos)):
            for j in range(len(ifnos)):
                sel.set_ifs(ifnos[j])
                sel.set_polarizations(polnos[k])
                try:
                    sig.set_selection(sel)
                    postcal.append(numpy.array(sig._getspectrum(0)))
                except:
                    ref.set_selection(sel)
                    postcal.append(numpy.array(ref._getspectrum(0)))
                sel.reset()
                resspec.set_selection()
        del sel
        # plot
        asaplog.post()
        asaplog.push(
            'Plot only first spectrum for each [if,pol] pairs to verify calibration.'
        )
        asaplog.post('WARN')
        p = new_asaplot()
        rcp('lines', linewidth=1)
        #nr=min(6,len(ifnos)*len(polnos))
        nr = len(ifnos) / 2 * len(polnos)
        titles = []
        btics = []
        if nr > 3:
            asaplog.post()
            asaplog.push('Only first 3 [if,pol] pairs are plotted.')
            asaplog.post('WARN')
            nr = 3
        p.set_panels(rows=nr, cols=3, nplots=3 * nr, ganged=False)
        for i in range(3 * nr):
            b = False
            if i >= 3 * nr - 3:
                b = True
            btics.append(b)
        for i in range(nr):
            p.subplot(3 * i)
            p.color = 0
            title = 'raw data IF%s,%s POL%s' % (
                ifnos[2 * int(i / len(polnos))],
                ifnos[2 * int(i / len(polnos)) + 1], polnos[i % len(polnos)])
            titles.append(title)
            #p.set_axes('title',title,fontsize=40)
            ymin = 1.0e100
            ymax = -1.0e100
            nchan = s.nchan(ifnos[2 * int(i / len(polnos))])
            edge = int(nchan * 0.01)
            for j in range(4):
                spmin = min(precal[keys[j]][i][edge:nchan - edge])
                spmax = max(precal[keys[j]][i][edge:nchan - edge])
                ymin = min(ymin, spmin)
                ymax = max(ymax, spmax)
            for j in range(4):
                if i == 0:
                    p.set_line(label=keys[j])
                else:
                    p.legend()
                p.plot(precal[keys[j]][i])
            p.axes.set_ylim(ymin - 0.1 * abs(ymin), ymax + 0.1 * abs(ymax))
            if not btics[3 * i]:
                p.axes.set_xticks([])
            p.subplot(3 * i + 1)
            p.color = 0
            title = 'sig data IF%s POL%s' % (ifnos[2 * int(i / len(polnos))],
                                             polnos[i % len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin = postcal[2 * i][edge:nchan - edge].min()
            ymax = postcal[2 * i][edge:nchan - edge].max()
            p.plot(postcal[2 * i])
            p.axes.set_ylim(ymin - 0.1 * abs(ymin), ymax + 0.1 * abs(ymax))
            if not btics[3 * i + 1]:
                p.axes.set_xticks([])
            p.subplot(3 * i + 2)
            p.color = 0
            title = 'ref data IF%s POL%s' % (ifnos[2 * int(i / len(polnos)) +
                                                   1], polnos[i % len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin = postcal[2 * i + 1][edge:nchan - edge].min()
            ymax = postcal[2 * i + 1][edge:nchan - edge].max()
            p.plot(postcal[2 * i + 1])
            p.axes.set_ylim(ymin - 0.1 * abs(ymin), ymax + 0.1 * abs(ymax))
            if not btics[3 * i + 2]:
                p.axes.set_xticks([])
        for i in range(3 * nr):
            p.subplot(i)
            p.set_axes('title', titles[i], fontsize='medium')
        x = raw_input('Accept calibration ([y]/n): ')
        if x.upper() == 'N':
            p.quit()
            del p
            return scantab
        p.quit()
        del p
    ###
    resspec._add_history("calfs", varlist)
    return resspec
Beispiel #17
0
def calfs(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
    """
    Calibrate GBT frequency switched data.
    Adopted from GBTIDL getfs.
    Currently calfs identify the scans as frequency switched data if source
    type enum is fson and fsoff. The data must contains 'CAL' signal
    on/off in each integration. To identify 'CAL' on state, the source type 
    enum of foncal and foffcal need to be present.

    Parameters:
        scantab:       scantable
        scannos:       list of scan numbers
        smooth:        optional box smoothing order for the reference
                       (default is 1 = no smoothing)
        tsysval:       optional user specified Tsys (default is 0.0,
                       use Tsys in the data)
        tauval:        optional user specified Tau
        verify:        Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

#    check = scantab.get_scan('*_fs*')
#    if check is None:
#        msg = "The input data appear to contain no Nod observing mode data."
#        raise TypeError(msg)
    s = scantab.get_scan(scannos)
    del scantab

    resspec = scantable(stm._dofs(s, scannos, smooth, tsysval,tauval,tcalval))
    ###
    if verify:
        # get data
        ssub = s.get_scan(scannos)
        #ssubon = ssub.get_scan('*calon')
        #ssuboff = ssub.get_scan('*[^calon]')
        sel = selector()
        sel.set_types( [srctype.foncal,srctype.foffcal] )
        ssub.set_selection( sel )
        ssubon = ssub.copy()
        ssub.set_selection()
        sel.reset()
        sel.set_types( [srctype.fson,srctype.fsoff] )
        ssub.set_selection( sel )
        ssuboff = ssub.copy()
        ssub.set_selection()
        sel.reset()
        import numpy
        precal={}
        postcal=[]
        keys=['fs','fs_calon','fsr','fsr_calon']
        types=[srctype.fson,srctype.foncal,srctype.fsoff,srctype.foffcal]
        ifnos=list(ssub.getifnos())
        polnos=list(ssub.getpolnos())
        for i in range(2):
            #ss=ssuboff.get_scan('*'+keys[2*i])
            ll=[]
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2*i])
                    try:
                        #ss.set_selection(sel)
                        ssuboff.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssuboff.set_selection()
            precal[keys[2*i]]=ll
            #del ss
            #ss=ssubon.get_scan('*'+keys[2*i+1])
            ll=[]
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2*i+1])
                    try:
                        #ss.set_selection(sel)
                        ssubon.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssubon.set_selection()
            precal[keys[2*i+1]]=ll
            #del ss
        #sig=resspec.get_scan('*_fs')
        #ref=resspec.get_scan('*_fsr')
        sel.set_types( srctype.fson )
        resspec.set_selection( sel )
        sig=resspec.copy()
        resspec.set_selection()
        sel.reset()
        sel.set_type( srctype.fsoff )
        resspec.set_selection( sel )
        ref=resspec.copy()
        resspec.set_selection()
        sel.reset()
        for k in range(len(polnos)):
            for j in range(len(ifnos)):
                sel.set_ifs(ifnos[j])
                sel.set_polarizations(polnos[k])
                try:
                    sig.set_selection(sel)
                    postcal.append(numpy.array(sig._getspectrum(0)))
                except:
                    ref.set_selection(sel)
                    postcal.append(numpy.array(ref._getspectrum(0)))
                sel.reset()
                resspec.set_selection()
        del sel
        # plot
        asaplog.post()
        asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
        asaplog.post('WARN')
        p=new_asaplot()
        rcp('lines', linewidth=1)
        #nr=min(6,len(ifnos)*len(polnos))
        nr=len(ifnos)/2*len(polnos)
        titles=[]
        btics=[]
        if nr>3:
            asaplog.post()
            asaplog.push('Only first 3 [if,pol] pairs are plotted.')
            asaplog.post('WARN')
            nr=3
        p.set_panels(rows=nr,cols=3,nplots=3*nr,ganged=False)
        for i in range(3*nr):
            b=False
            if i >= 3*nr-3:
                b=True
            btics.append(b)
        for i in range(nr):
            p.subplot(3*i)
            p.color=0
            title='raw data IF%s,%s POL%s' % (ifnos[2*int(i/len(polnos))],ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
            titles.append(title)
            #p.set_axes('title',title,fontsize=40)
            ymin=1.0e100
            ymax=-1.0e100
            nchan=s.nchan(ifnos[2*int(i/len(polnos))])
            edge=int(nchan*0.01)
            for j in range(4):
                spmin=min(precal[keys[j]][i][edge:nchan-edge])
                spmax=max(precal[keys[j]][i][edge:nchan-edge])
                ymin=min(ymin,spmin)
                ymax=max(ymax,spmax)
            for j in range(4):
                if i==0:
                    p.set_line(label=keys[j])
                else:
                    p.legend()
                p.plot(precal[keys[j]][i])
            p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
            if not btics[3*i]:
                p.axes.set_xticks([])
            p.subplot(3*i+1)
            p.color=0
            title='sig data IF%s POL%s' % (ifnos[2*int(i/len(polnos))],polnos[i%len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin=postcal[2*i][edge:nchan-edge].min()
            ymax=postcal[2*i][edge:nchan-edge].max()
            p.plot(postcal[2*i])
            p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
            if not btics[3*i+1]:
                p.axes.set_xticks([])
            p.subplot(3*i+2)
            p.color=0
            title='ref data IF%s POL%s' % (ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin=postcal[2*i+1][edge:nchan-edge].min()
            ymax=postcal[2*i+1][edge:nchan-edge].max()
            p.plot(postcal[2*i+1])
            p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
            if not btics[3*i+2]:
                p.axes.set_xticks([])
        for i in range(3*nr):
            p.subplot(i)
            p.set_axes('title',titles[i],fontsize='medium')
        x=raw_input('Accept calibration ([y]/n): ' )
        if x.upper() == 'N':
            p.quit()
            del p
            return scantab
        p.quit()
        del p
    ###
    resspec._add_history("calfs",varlist)
    return resspec
Beispiel #18
0
def average_time(*args, **kwargs):
    """
    Return the (time) average of a scan or list of scans. [in channels only]
    The cursor of the output scan is set to 0
    Parameters:
        one scan or comma separated  scans or a list of scans
        mask:     an optional mask (only used for 'var' and 'tsys' weighting)
        scanav:   True averages each scan separately.
                  False (default) averages all scans together,
        weight:   Weighting scheme.
                    'none'     (mean no weight)
                    'var'      (1/var(spec) weighted)
                    'tsys'     (1/Tsys**2 weighted)
                    'tint'     (integration time weighted)
                    'tintsys'  (Tint/Tsys**2)
                    'median'   ( median averaging)
        align:    align the spectra in velocity before averaging. It takes
                  the time of the first spectrum in the first scantable
                  as reference time.
        compel:   True forces to average overwrapped IFs.
    Example:
        # return a time averaged scan from scana and scanb
        # without using a mask
        scanav = average_time(scana,scanb)
        # or equivalent
        # scanav = average_time([scana, scanb])
        # return the (time) averaged scan, i.e. the average of
        # all correlator cycles
        scanav = average_time(scan, scanav=True)
    """
    scanav = False
    if kwargs.has_key('scanav'):
       scanav = kwargs.get('scanav')
    weight = 'tint'
    if kwargs.has_key('weight'):
       weight = kwargs.get('weight')
    mask = ()
    if kwargs.has_key('mask'):
        mask = kwargs.get('mask')
    align = False
    if kwargs.has_key('align'):
        align = kwargs.get('align')
    compel = False
    if kwargs.has_key('compel'):
        compel = kwargs.get('compel')
    varlist = vars()
    if isinstance(args[0],list):
        lst = args[0]
    elif isinstance(args[0],tuple):
        lst = list(args[0])
    else:
        lst = list(args)

    del varlist["kwargs"]
    varlist["args"] = "%d scantables" % len(lst)
    # need special formatting here for history...

    from asap._asap import stmath
    stm = stmath()
    for s in lst:
        if not isinstance(s,scantable):
            msg = "Please give a list of scantables"
            raise TypeError(msg)
    if scanav: scanav = "SCAN"
    else: scanav = "NONE"
    alignedlst = []
    if align:
        refepoch = lst[0].get_time(0)
        for scan in lst:
            alignedlst.append(scan.freq_align(refepoch,insitu=False))
    else:
        alignedlst = lst
    if weight.upper() == 'MEDIAN':
        # median doesn't support list of scantables - merge first
        merged = None
        if len(alignedlst) > 1:
            merged = merge(alignedlst)
        else:
            merged = alignedlst[0]
        s = scantable(stm._averagechannel(merged, 'MEDIAN', scanav))
        del merged
    else:
        #s = scantable(stm._average(alignedlst, mask, weight.upper(), scanav))
        s = scantable(stm._new_average(alignedlst, compel, mask, 
                                       weight.upper(), scanav))
    s._add_history("average_time",varlist)

    return s
Beispiel #19
0
def average_time(*args, **kwargs):
    """
    Return the (time) average of a scan or list of scans. [in channels only]
    The cursor of the output scan is set to 0
    Parameters:
        one scan or comma separated  scans or a list of scans
        mask:     an optional mask (only used for 'var' and 'tsys' weighting)
        scanav:   True averages each scan separately.
                  False (default) averages all scans together,
        weight:   Weighting scheme.
                    'none'     (mean no weight)
                    'var'      (1/var(spec) weighted)
                    'tsys'     (1/Tsys**2 weighted)
                    'tint'     (integration time weighted)
                    'tintsys'  (Tint/Tsys**2)
                    'median'   ( median averaging)
        align:    align the spectra in velocity before averaging. It takes
                  the time of the first spectrum in the first scantable
                  as reference time.
        compel:   True forces to average overwrapped IFs.
    Example:
        # return a time averaged scan from scana and scanb
        # without using a mask
        scanav = average_time(scana,scanb)
        # or equivalent
        # scanav = average_time([scana, scanb])
        # return the (time) averaged scan, i.e. the average of
        # all correlator cycles
        scanav = average_time(scan, scanav=True)
    """
    scanav = False
    if kwargs.has_key('scanav'):
        scanav = kwargs.get('scanav')
    weight = 'tint'
    if kwargs.has_key('weight'):
        weight = kwargs.get('weight')
    mask = ()
    if kwargs.has_key('mask'):
        mask = kwargs.get('mask')
    align = False
    if kwargs.has_key('align'):
        align = kwargs.get('align')
    compel = False
    if kwargs.has_key('compel'):
        compel = kwargs.get('compel')
    varlist = vars()
    if isinstance(args[0], list):
        lst = args[0]
    elif isinstance(args[0], tuple):
        lst = list(args[0])
    else:
        lst = list(args)

    del varlist["kwargs"]
    varlist["args"] = "%d scantables" % len(lst)
    # need special formatting here for history...

    from asap._asap import stmath
    stm = stmath()
    for s in lst:
        if not isinstance(s, scantable):
            msg = "Please give a list of scantables"
            raise TypeError(msg)
    if scanav: scanav = "SCAN"
    else: scanav = "NONE"
    alignedlst = []
    if align:
        refepoch = lst[0].get_time(0)
        for scan in lst:
            alignedlst.append(scan.freq_align(refepoch, insitu=False))
    else:
        alignedlst = lst
    if weight.upper() == 'MEDIAN':
        # median doesn't support list of scantables - merge first
        merged = None
        if len(alignedlst) > 1:
            merged = merge(alignedlst)
        else:
            merged = alignedlst[0]
        s = scantable(stm._averagechannel(merged, 'MEDIAN', scanav))
        del merged
    else:
        #s = scantable(stm._average(alignedlst, mask, weight.upper(), scanav))
        s = scantable(
            stm._new_average(alignedlst, compel, mask, weight.upper(), scanav))
    s._add_history("average_time", varlist)

    return s