Beispiel #1
0
    def run(self, set_atoms=False):
        # !TODO: split this function
        """Method which explicitly runs LAMMPS."""
        pbc = self.atoms.get_pbc()
        if all(pbc):
            cell = self.atoms.get_cell()
        elif not any(pbc):
            # large enough cell for non-periodic calculation -
            # LAMMPS shrink-wraps automatically via input command
            #       "periodic s s s"
            # below
            cell = 2 * np.max(np.abs(self.atoms.get_positions())) * np.eye(3)
        else:
            warnings.warn(
                "semi-periodic ASE cell detected - translation "
                + "to proper LAMMPS input cell might fail"
            )
            cell = self.atoms.get_cell()
        self.prism = Prism(cell)

        self.set_missing_parameters()
        self.calls += 1

        # change into subdirectory for LAMMPS calculations
        cwd = os.getcwd()
        os.chdir(self.parameters.tmp_dir)

        # setup file names for LAMMPS calculation
        label = "{0}{1:>06}".format(self.label, self.calls)
        lammps_in = uns_mktemp(
            prefix="in_" + label, dir=self.parameters.tmp_dir
        )
        lammps_log = uns_mktemp(
            prefix="log_" + label, dir=self.parameters.tmp_dir
        )
        lammps_trj_fd = NamedTemporaryFile(
            prefix="trj_" + label,
            suffix=(".bin" if self.parameters.binary_dump else ""),
            dir=self.parameters.tmp_dir,
            delete=(not self.parameters.keep_tmp_files),
        )
        lammps_trj = lammps_trj_fd.name
        if self.parameters.no_data_file:
            lammps_data = None
        else:
            lammps_data_fd = NamedTemporaryFile(
                prefix="data_" + label,
                dir=self.parameters.tmp_dir,
                delete=(not self.parameters.keep_tmp_files),
                mode='w',
                encoding='ascii'
            )
            write_lammps_data(
                lammps_data_fd,
                self.atoms,
                specorder=self.parameters.specorder,
                force_skew=self.parameters.always_triclinic,
                velocities=self.parameters.write_velocities,
                prismobj=self.prism,
                units=self.parameters.units,
                atom_style=self.parameters.atom_style
            )
            lammps_data = lammps_data_fd.name
            lammps_data_fd.flush()

        # see to it that LAMMPS is started
        if not self._lmp_alive():
            command = self.get_lammps_command()
            # Attempt to (re)start lammps
            self._lmp_handle = Popen(
                shlex.split(command, posix=(os.name == "posix")),
                stdin=PIPE,
                stdout=PIPE,
            )
        lmp_handle = self._lmp_handle

        # Create thread reading lammps stdout (for reference, if requested,
        # also create lammps_log, although it is never used)
        if self.parameters.keep_tmp_files:
            lammps_log_fd = open(lammps_log, "wb")
            fd = SpecialTee(lmp_handle.stdout, lammps_log_fd)
        else:
            fd = lmp_handle.stdout
        thr_read_log = Thread(target=self.read_lammps_log, args=(fd,))
        thr_read_log.start()

        # write LAMMPS input (for reference, also create the file lammps_in,
        # although it is never used)
        if self.parameters.keep_tmp_files:
            lammps_in_fd = open(lammps_in, "wb")
            fd = SpecialTee(lmp_handle.stdin, lammps_in_fd)
        else:
            fd = lmp_handle.stdin
        write_lammps_in(
            lammps_in=fd,
            parameters=self.parameters,
            atoms=self.atoms,
            prismobj=self.prism,
            lammps_trj=lammps_trj,
            lammps_data=lammps_data,
        )

        if self.parameters.keep_tmp_files:
            lammps_in_fd.close()

        # Wait for log output to be read (i.e., for LAMMPS to finish)
        # and close the log file if there is one
        thr_read_log.join()
        if self.parameters.keep_tmp_files:
            lammps_log_fd.close()

        if not self.parameters.keep_alive:
            self._lmp_end()

        exitcode = lmp_handle.poll()
        if exitcode and exitcode != 0:
            cwd = os.getcwd()
            raise RuntimeError(
                "LAMMPS exited in {} with exit code: {}."
                "".format(cwd, exitcode)
            )

        # A few sanity checks
        if len(self.thermo_content) == 0:
            raise RuntimeError("Failed to retrieve any thermo_style-output")
        if int(self.thermo_content[-1]["atoms"]) != len(self.atoms):
            # This obviously shouldn't happen, but if prism.fold_...() fails,
            # it could
            raise RuntimeError("Atoms have gone missing")

        trj_atoms = read_lammps_dump(
            infileobj=lammps_trj,
            order=False,
            index=-1,
            prismobj=self.prism,
            specorder=self.parameters.specorder,
        )

        if set_atoms:
            self.atoms = trj_atoms.copy()

        self.forces = trj_atoms.get_forces()
        # !TODO: trj_atoms is only the last snapshot of the system; Is it
        #        desirable to save also the inbetween steps?
        if self.parameters.trajectory_out is not None:
            # !TODO: is it advisable to create here temporary atoms-objects
            self.trajectory_out.write(trj_atoms)

        tc = self.thermo_content[-1]
        self.results["energy"] = convert(
            tc["pe"], "energy", self.parameters["units"], "ASE"
        )
        self.results["free_energy"] = self.results["energy"]
        self.results["forces"] = self.forces.copy()
        stress = np.array(
            [-tc[i] for i in ("pxx", "pyy", "pzz", "pyz", "pxz", "pxy")]
        )

        # We need to apply the Lammps rotation stuff to the stress:
        xx, yy, zz, yz, xz, xy = stress
        stress_tensor = np.array([[xx, xy, xz],
                                  [xy, yy, yz],
                                  [xz, yz, zz]])
        R = self.prism.rot_mat
        stress_atoms = np.dot(R, stress_tensor)
        stress_atoms = np.dot(stress_atoms, R.T)
        stress_atoms = stress_atoms[[0, 1, 2, 1, 0, 0],
                                    [0, 1, 2, 2, 2, 1]]
        stress = stress_atoms

        self.results["stress"] = convert(
            stress, "pressure", self.parameters["units"], "ASE"
        )

        lammps_trj_fd.close()
        if not self.parameters.no_data_file:
            lammps_data_fd.close()

        os.chdir(cwd)
Beispiel #2
0
def writeLammpsData(
        atoms,
        data='data',
        specorder=None,
        masses={
            'Al': 26.9820,
            'C': 12.0000,
            'H': 1.0080,
            'O': 15.9990,
            'N': 14.0000,
            'F': 18.9980
        },
        force_skew=False,
        velocities=False,
        units="real",
        atom_style='charge'):
    """Write atomic structure data to a LAMMPS data_ file."""
    f = open(data, "w", encoding="ascii")
    if isinstance(atoms, list):
        if len(atoms) > 1:
            raise ValueError(
                "Can only write one configuration to a lammps data file!")
        atoms = atoms[0]

    f.write("{0} (written by ASE) \n\n".format(f.name))

    symbols = atoms.get_chemical_symbols()
    n_atoms = len(symbols)
    f.write("{0} \t atoms \n".format(n_atoms))

    if specorder is None:
        # This way it is assured that LAMMPS atom types are always
        # assigned predictably according to the alphabetic order
        species = sorted(set(symbols))
    else:
        # To index elements in the LAMMPS data file
        # (indices must correspond to order in the potential file)
        species = specorder
    n_atom_types = len(species)
    f.write("{0}  atom types\n".format(n_atom_types))

    p = Prism(atoms.get_cell())
    xhi, yhi, zhi, xy, xz, yz = convert(p.get_lammps_prism(), "distance",
                                        "ASE", units)

    f.write("0.0 {0:23.17g}  xlo xhi\n".format(xhi))
    f.write("0.0 {0:23.17g}  ylo yhi\n".format(yhi))
    f.write("0.0 {0:23.17g}  zlo zhi\n".format(zhi))

    if force_skew or p.is_skewed():
        f.write("{0:23.17g} {1:23.17g} {2:23.17g}  xy xz yz\n".format(
            xy, xz, yz))
    f.write("\n\n")
    f.write("Masses \n\n")
    for i, sp in enumerate(species):
        f.write("%d  %6.4f\n" % (i + 1, masses[sp]))

    f.write("\n\n")
    f.write("Atoms \n\n")
    pos = p.vector_to_lammps(atoms.get_positions(), wrap=True)

    if atom_style == 'atomic':
        for i, r in enumerate(pos):
            # Convert position from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            s = species.index(symbols[i]) + 1
            f.write("{0:>6} {1:>3} {2:23.17g} {3:23.17g} {4:23.17g}\n".format(
                *(i + 1, s) + tuple(r)))
    elif atom_style == 'charge':
        charges = atoms.get_initial_charges()
        for i, (q, r) in enumerate(zip(charges, pos)):
            # Convert position and charge from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            q = convert(q, "charge", "ASE", units)
            s = species.index(symbols[i]) + 1
            f.write("{0:>6} {1:>3} {2:>5} {3:23.17g} {4:23.17g} {5:23.17g}\n".
                    format(*(i + 1, s, q) + tuple(r)))
    elif atom_style == 'full':
        charges = atoms.get_initial_charges()
        molecule = 1  # Assign all atoms to a single molecule
        for i, (q, r) in enumerate(zip(charges, pos)):
            # Convert position and charge from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            q = convert(q, "charge", "ASE", units)
            s = species.index(symbols[i]) + 1
            f.write(
                "{0:>6} {1:>3} {2:>3} {3:>5} {4:23.17g} {5:23.17g} {6:23.17g}\n"
                .format(*(i + 1, molecule, s, q) + tuple(r)))
    else:
        raise NotImplementedError

    if velocities and atoms.get_velocities() is not None:
        f.write("\n\nVelocities \n\n")
        vel = p.vector_to_lammps(atoms.get_velocities())
        for i, v in enumerate(vel):
            # Convert velocity from ASE units to LAMMPS units
            v = convert(v, "velocity", "ASE", units)
            f.write("{0:>6} {1:23.17g} {2:23.17g} {3:23.17g}\n".format(
                *(i + 1, ) + tuple(v)))

    f.flush()
    f.close()
Beispiel #3
0
def write_lammps_data(fileobj, atoms, specorder=None, force_skew=False,
                      prismobj=None, velocities=False, units="metal",
                      atom_style='atomic'):
    """Write atomic structure data to a LAMMPS data file."""
    if isinstance(fileobj, basestring):
        f = paropen(fileobj, "w", encoding="ascii")
        close_file = True
    else:
        # Presume fileobj acts like a fileobj
        f = fileobj
        close_file = False

    # FIXME: We should add a check here that the encoding of the file object
    #        is actually ascii once the 'encoding' attribute of IOFormat objects
    #        starts functioning in implementation (currently it doesn't do
    #         anything).

    if isinstance(atoms, list):
        if len(atoms) > 1:
            raise ValueError(
                "Can only write one configuration to a lammps data file!"
            )
        atoms = atoms[0]

    f.write("{0} (written by ASE) \n\n".format(f.name))

    symbols = atoms.get_chemical_symbols()
    n_atoms = len(symbols)
    f.write("{0} \t atoms \n".format(n_atoms))

    if specorder is None:
        # This way it is assured that LAMMPS atom types are always
        # assigned predictably according to the alphabetic order
        species = sorted(set(symbols))
    else:
        # To index elements in the LAMMPS data file
        # (indices must correspond to order in the potential file)
        species = specorder
    n_atom_types = len(species)
    f.write("{0}  atom types\n".format(n_atom_types))

    if prismobj is None:
        p = Prism(atoms.get_cell())
    else:
        p = prismobj

    # Get cell parameters and convert from ASE units to LAMMPS units
    xhi, yhi, zhi, xy, xz, yz = convert(p.get_lammps_prism(), "distance",
            "ASE", units)

    f.write("0.0 {0:23.17g}  xlo xhi\n".format(xhi))
    f.write("0.0 {0:23.17g}  ylo yhi\n".format(yhi))
    f.write("0.0 {0:23.17g}  zlo zhi\n".format(zhi))

    if force_skew or p.is_skewed():
        f.write(
            "{0:23.17g} {1:23.17g} {2:23.17g}  xy xz yz\n".format(
                xy, xz, yz
            )
        )
    f.write("\n\n")

    f.write("Atoms \n\n")
    pos = p.vector_to_lammps(atoms.get_positions(), wrap=True)

    if atom_style == 'atomic':
        for i, r in enumerate(pos):
            # Convert position from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            s = species.index(symbols[i]) + 1
            f.write(
                "{0:>6} {1:>3} {2:23.17g} {3:23.17g} {4:23.17g}\n".format(
                    *(i + 1, s) + tuple(r)
                )
            )
    elif atom_style == 'charge':
        charges = atoms.get_initial_charges()
        for i, (q, r) in enumerate(zip(charges, pos)):
            # Convert position and charge from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            q = convert(q, "charge", "ASE", units)
            s = species.index(symbols[i]) + 1
            f.write(
                "{0:>6} {1:>3} {2:>5} {3:23.17g} {4:23.17g} {5:23.17g}\n".format(
                    *(i + 1, s, q) + tuple(r)
                )
            )
    elif atom_style == 'full':
        charges = atoms.get_initial_charges()
        molecule = 1 # Assign all atoms to a single molecule
        for i, (q, r) in enumerate(zip(charges, pos)):
            # Convert position and charge from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            q = convert(q, "charge", "ASE", units)
            s = species.index(symbols[i]) + 1
            f.write(
                "{0:>6} {1:>3} {2:>3} {3:>5} {4:23.17g} {5:23.17g} {6:23.17g}\n".format(
                    *(i + 1, molecule, s, q) + tuple(r)
                )
            )
    else:
        raise NotImplementedError

    if velocities and atoms.get_velocities() is not None:
        f.write("\n\nVelocities \n\n")
        vel = p.vector_to_lammps(atoms.get_velocities())
        for i, v in enumerate(vel):
            # Convert velocity from ASE units to LAMMPS units
            v = convert(v, "velocity", "ASE", units)
            f.write(
                "{0:>6} {1:23.17g} {2:23.17g} {3:23.17g}\n".format(
                    *(i + 1,) + tuple(v)
                )
            )

    f.flush()
    if close_file:
        f.close()
Beispiel #4
0
def write_lammps_data(fileobj,
                      atoms,
                      specorder=None,
                      force_skew=False,
                      prismobj=None,
                      velocities=False,
                      units="metal",
                      atom_style='atomic'):
    """Write atomic structure data to a LAMMPS data file."""
    if isinstance(fileobj, str):
        fd = paropen(fileobj, "w", encoding="ascii")
        close_file = True
    else:
        # Presume fileobj acts like a fileobj
        fd = fileobj
        close_file = False

    # FIXME: We should add a check here that the encoding of the file object
    #        is actually ascii once the 'encoding' attribute of IOFormat objects
    #        starts functioning in implementation (currently it doesn't do
    #         anything).

    if isinstance(atoms, list):
        if len(atoms) > 1:
            raise ValueError(
                "Can only write one configuration to a lammps data file!")
        atoms = atoms[0]

    if hasattr(fd, "name"):
        fd.write("{0} (written by ASE) \n\n".format(fd.name))
    else:
        fd.write("(written by ASE) \n\n")

    symbols = atoms.get_chemical_symbols()
    n_atoms = len(symbols)
    fd.write("{0} \t atoms \n".format(n_atoms))

    if specorder is None:
        # This way it is assured that LAMMPS atom types are always
        # assigned predictably according to the alphabetic order
        species = sorted(set(symbols))
    else:
        # To index elements in the LAMMPS data file
        # (indices must correspond to order in the potential file)
        species = specorder
    n_atom_types = len(species)
    fd.write("{0}  atom types\n".format(n_atom_types))

    if prismobj is None:
        p = Prism(atoms.get_cell())
    else:
        p = prismobj

    # Get cell parameters and convert from ASE units to LAMMPS units
    xhi, yhi, zhi, xy, xz, yz = convert(p.get_lammps_prism(), "distance",
                                        "ASE", units)

    fd.write("0.0 {0:23.17g}  xlo xhi\n".format(xhi))
    fd.write("0.0 {0:23.17g}  ylo yhi\n".format(yhi))
    fd.write("0.0 {0:23.17g}  zlo zhi\n".format(zhi))

    if force_skew or p.is_skewed():
        fd.write("{0:23.17g} {1:23.17g} {2:23.17g}  xy xz yz\n".format(
            xy, xz, yz))
    fd.write("\n\n")

    fd.write("Atoms \n\n")
    pos = p.vector_to_lammps(atoms.get_positions(), wrap=True)

    if atom_style == 'atomic':
        for i, r in enumerate(pos):
            # Convert position from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            s = species.index(symbols[i]) + 1
            fd.write("{0:>6} {1:>3} {2:23.17g} {3:23.17g} {4:23.17g}\n".format(
                *(i + 1, s) + tuple(r)))
    elif atom_style == 'charge':
        charges = atoms.get_initial_charges()
        for i, (q, r) in enumerate(zip(charges, pos)):
            # Convert position and charge from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            q = convert(q, "charge", "ASE", units)
            s = species.index(symbols[i]) + 1
            fd.write("{0:>6} {1:>3} {2:>5} {3:23.17g} {4:23.17g} {5:23.17g}\n".
                     format(*(i + 1, s, q) + tuple(r)))
    elif atom_style == 'full':
        charges = atoms.get_initial_charges()
        # The label 'mol-id' has apparenlty been introduced in read earlier,
        # but so far not implemented here. Wouldn't a 'underscored' label
        # be better, i.e. 'mol_id' or 'molecule_id'?
        if atoms.has('mol-id'):
            molecules = atoms.get_array('mol-id')
            if not np.issubdtype(molecules.dtype, np.integer):
                raise TypeError(
                    ("If 'atoms' object has 'mol-id' array, then"
                     " mol-id dtype must be subtype of np.integer, and"
                     " not {:s}.").format(str(molecules.dtype)))
            if (len(molecules) != len(atoms)) or (molecules.ndim != 1):
                raise TypeError(("If 'atoms' object has 'mol-id' array, then"
                                 " each atom must have exactly one mol-id."))
        else:
            # Assigning each atom to a distinct molecule id would seem
            # preferableabove assigning all atoms to a single molecule id per
            # default, as done within ase <= v 3.19.1. I.e.,
            # molecules = np.arange(start=1, stop=len(atoms)+1, step=1, dtype=int)
            # However, according to LAMMPS default behavior,
            molecules = np.zeros(len(atoms))
            # which is what happens if one creates new atoms within LAMMPS
            # without explicitly taking care of the molecule id.
            # Quote from docs at https://lammps.sandia.gov/doc/read_data.html:
            #    The molecule ID is a 2nd identifier attached to an atom.
            #    Normally, it is a number from 1 to N, identifying which
            #    molecule the atom belongs to. It can be 0 if it is a
            #    non-bonded atom or if you don't care to keep track of molecule
            #    assignments.

        for i, (m, q, r) in enumerate(zip(molecules, charges, pos)):
            # Convert position and charge from ASE units to LAMMPS units
            r = convert(r, "distance", "ASE", units)
            q = convert(q, "charge", "ASE", units)
            s = species.index(symbols[i]) + 1
            fd.write("{0:>6} {1:>3} {2:>3} {3:>5} {4:23.17g} {5:23.17g} "
                     "{6:23.17g}\n".format(*(i + 1, m, s, q) + tuple(r)))
    else:
        raise NotImplementedError

    if velocities and atoms.get_velocities() is not None:
        fd.write("\n\nVelocities \n\n")
        vel = p.vector_to_lammps(atoms.get_velocities())
        for i, v in enumerate(vel):
            # Convert velocity from ASE units to LAMMPS units
            v = convert(v, "velocity", "ASE", units)
            fd.write("{0:>6} {1:23.17g} {2:23.17g} {3:23.17g}\n".format(
                *(i + 1, ) + tuple(v)))

    fd.flush()
    if close_file:
        fd.close()
Beispiel #5
0
def create_bulk_crystal(name, size, round="up"):
    """Create a bulk crystal from a spacegroup description.

    :param name: name of the crystal. A list can be found by @TODO
    :type name: str
    :param size: size of the bulk crystal. In the case of a triclinic cell, the dimensions are the ones along the diagonal of the cell matrix, and the crystal tilt decides the rest.
    :type size: array_like with 3 elements

    :return: ase.Atoms object containing the crystal
    :rtype: ase.Atoms
    """
    crystal = crystals[name]
    a, b, c, alpha, beta, gamma = [
        crystal[i] for i in ["a", "b", "c", "alpha", "beta", "gamma"]
    ]
    lx, ly, lz = size[0], size[1], size[2]

    # cellpar = [a, b, c, alpha, beta, gamma]
    repeats = [
        lx / a, ly / b / np.sin(np.radians(gamma)),
        lz / c / np.sin(np.radians(alpha)) / np.sin(np.radians(beta))
    ]
    if round == "up":
        repeats = [int(np.ceil(i)) for i in repeats]
    elif round == "down":
        repeats = [int(np.floor(i)) for i in repeats]
    elif round == "round":
        repeats = [int(round(i)) for i in repeats]
    else:
        raise ValueError
    myCrystal = ase.spacegroup.crystal(
        crystal["elements"],
        crystal["positions"],
        spacegroup=crystal["spacegroup"],
        cellpar=[
            crystal[i] for i in ["a", "b", "c", "alpha", "beta", "gamma"]
        ],
        size=repeats)

    ###############################################################################
    # Creating a Lammps prism and then recreating the ase cell is necessary
    # to avoid flipping of the simulation cell when outputing the lammps data file
    # By making the transformation here, what we see in the lammps output is the same as
    # the system we are actually carving into
    p = Prism(myCrystal.cell)
    xhi, yhi, zhi, xy, xz, yz = p.get_lammps_prism()
    xlo, ylo, zlo = 0, 0, 0
    cell = np.zeros((3, 3))
    cell[0, 0] = xhi - xlo
    cell[1, 1] = yhi - ylo
    cell[2, 2] = zhi - zlo
    if xy is not None:
        cell[1, 0] = xy
    if xz is not None:
        cell[2, 0] = xz
    if yz is not None:
        cell[2, 1] = yz

    myCrystal.set_cell(cell)
    myCrystal.wrap()
    ##################################################################################
    return myCrystal