Beispiel #1
0
def compare_entropy(G):
	FILE 	= "/Users/joazofeifa/Lab/TF_predictions/HOCOMOCOv9_AD_MEME.txt"
	D 		= at.load_PSSMs(FILE,test=False)
		
	xy 		= list()
	for exp in G:
		if np.random.uniform(0,1) < 0.5:
			for TF in G[exp]:
				GC 	= get_GC_motif(D, TF)
				if GC and G[exp][TF][0]:
					xy.append((G[exp][TF][0],G[exp][TF][3], GC) )
		
	F 		= plt.figure()
	ax 		= F.add_axes([0.1, 0.1, 0.35, 0.35])
	axc 	= F.add_axes([0.5, 0.1, 0.05, 0.35])
	ax3 	= F.add_axes([0.6, 0.55, 0.35, 0.35])
	ax2 	= F.add_axes([0.1, 0.55, 0.35, 0.35])
	
	cmap 	= plt.get_cmap('Blues')

	x,y  	=  [math.log(u, 10) for u,v,z in xy if  v > 0.005   ],[v for u,v,z in xy  if   v> 0.005  ]

	c 		= [z for u,v,z in xy if v > 0.005  ] 
	print len(c), len(y)
	norm 	= mpl.colors.Normalize(vmin=min(c), vmax=max(c))
	m 		= cm.ScalarMappable(norm=norm, cmap=cmap)
	cc 		= [m.to_rgba(C) for C in c]
	
	cb1 = mpl.colorbar.ColorbarBase(axc, cmap=cmap,
	                        norm=norm,
	                        orientation='vertical')
	cb1.set_label('GC Content')
	ax.scatter(x,y, color=cc, edgecolor='' )
	ax.set_xlabel("KS-Test")
	ax.set_ylabel("True Positive Rate")
	
	ax.grid()

	ax2.hist(c, bins=25)
	ax2.set_xlabel("GC Content for All HOCOMOCO Motifs")
	ax2.set_ylabel("Frequency")
	
	XY = np.vstack([c,y])
	
	z = gaussian_kde(XY)(XY)
	
	
	ax3.scatter(c,y, s=5, edgecolor='')
	ax3.set_xlabel("GC Content")
	ax3.set_ylabel("True Positive Rate")
	
	ax3.grid()


	plt.show()
	pass
Beispiel #2
0
	nx.draw_networkx_edges(G, pos=pos,  alpha=0.7,width=3,ax=ax,edge_color=colors)
	nx.draw_networkx_labels(G,pos,LABELS,font_size=7, ax=ax)
	plt.show()



if __name__ == "__main__":
	make_distance 	= False
	OUT 			= "/Users/joazofeifa/Lab/EMG/TF_predictions/files/"
	SCIPY 			= False
	CUSTOM 			= False
	ts, xs 			= get_counts(OUT+"thresholds_nearest_assignments.tsv", show_thresh=False)
	threshold_as_network(xs[5])
	if make_distance:
		FILE 	= "/Users/joazofeifa/Lab/TF_predictions/HOCOMOCOv9_AD_MEME.txt"
		D 		= at.load_PSSMs(FILE,test=False)
		perform_linkage(D, OUT=OUT)
	if CUSTOM:
		FILE 	= "/Users/joazofeifa/Lab/TF_predictions/HOCOMOCOv9_AD_MEME.txt"
		KL,M 	= load_matrix(OUT+"kl_distance_matrix.csv")
		
		try_different_thresholds(KL, M, OUT=OUT, res=50)
	
	if SCIPY:
		KL,M 	= load_matrix(OUT+"kl_distance_matrix.csv")
		H,M 	= load_matrix(OUT+"hamming_distance_matrix.csv")
		SCIPY 	= True
		if SCIPY:
			P 	 	= linkage(KL,H,M, SHOW=True)
			extract_clusters(P, threshold=None)