Beispiel #1
0
def main(conf):
    train_set = WhamDataset(
        conf["data"]["train_dir"],
        conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        segment=conf["data"]["segment"],
        nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    )
    val_set = WhamDataset(
        conf["data"]["valid_dir"],
        conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    )

    train_loader = DataLoader(
        train_set,
        shuffle=True,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    val_loader = DataLoader(
        val_set,
        shuffle=False,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    # Update number of source values (It depends on the task)
    conf["masknet"].update({"n_src": train_set.n_src})

    model = DPRNNTasNet(**conf["filterbank"], **conf["masknet"])
    optimizer = make_optimizer(model.parameters(), **conf["optim"])
    # Define scheduler
    scheduler = None
    if conf["training"]["half_lr"]:
        scheduler = ReduceLROnPlateau(optimizer=optimizer,
                                      factor=0.5,
                                      patience=5)
    # Just after instantiating, save the args. Easy loading in the future.
    exp_dir = conf["main_args"]["exp_dir"]
    os.makedirs(exp_dir, exist_ok=True)
    conf_path = os.path.join(exp_dir, "conf.yml")
    with open(conf_path, "w") as outfile:
        yaml.safe_dump(conf, outfile)

    # Define Loss function.
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")
    system = System(
        model=model,
        loss_func=loss_func,
        optimizer=optimizer,
        train_loader=train_loader,
        val_loader=val_loader,
        scheduler=scheduler,
        config=conf,
    )

    # Define callbacks
    checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    checkpoint = ModelCheckpoint(checkpoint_dir,
                                 monitor="val_loss",
                                 mode="min",
                                 save_top_k=5,
                                 verbose=True)
    early_stopping = False
    if conf["training"]["early_stop"]:
        early_stopping = EarlyStopping(monitor="val_loss",
                                       patience=30,
                                       verbose=True)

    # Don't ask GPU if they are not available.
    gpus = -1 if torch.cuda.is_available() else None
    trainer = pl.Trainer(
        max_epochs=conf["training"]["epochs"],
        checkpoint_callback=checkpoint,
        early_stop_callback=early_stopping,
        default_root_dir=exp_dir,
        gpus=gpus,
        distributed_backend="ddp",
        gradient_clip_val=conf["training"]["gradient_clipping"],
    )
    trainer.fit(system)

    best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
    with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
        json.dump(best_k, f, indent=0)

    state_dict = torch.load(checkpoint.best_model_path)
    system.load_state_dict(state_dict=state_dict["state_dict"])
    system.cpu()

    to_save = system.model.serialize()
    to_save.update(train_set.get_infos())
    torch.save(to_save, os.path.join(exp_dir, "best_model.pth"))
Beispiel #2
0
def main(conf):
    # train_set = WhamDataset(
    #     conf["data"]["train_dir"],
    #     conf["data"]["task"],
    #     sample_rate=conf["data"]["sample_rate"],
    #     segment=conf["data"]["segment"],
    #     nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    # )
    # val_set = WhamDataset(
    #     conf["data"]["valid_dir"],
    #     conf["data"]["task"],
    #     sample_rate=conf["data"]["sample_rate"],
    #     nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    # )
    train_set = LibriMix(
        csv_dir=conf["data"]["train_dir"],
        task=conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        n_src=conf["masknet"]["n_src"],
        segment=conf["data"]["segment"],
    )

    val_set = LibriMix(
        csv_dir=conf["data"]["valid_dir"],
        task=conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        n_src=conf["masknet"]["n_src"],
        segment=conf["data"]["segment"],
    )

    train_loader = DataLoader(
        train_set,
        shuffle=True,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    val_loader = DataLoader(
        val_set,
        shuffle=False,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    # Update number of source values (It depends on the task)
    # TODO: redundant
    conf["masknet"].update({"n_src": train_set.n_src})

    model = DPRNNTasNet(**conf["filterbank"],
                        **conf["masknet"],
                        sample_rate=conf['data']['sample_rate'])

    # from torchsummary import summary
    # model.cuda()
    # summary(model, (24000,))
    # import pdb
    # pdb.set_trace()

    optimizer = make_optimizer(model.parameters(), **conf["optim"])
    # Define scheduler
    scheduler = None
    if conf["training"]["half_lr"]:
        scheduler = ReduceLROnPlateau(optimizer=optimizer,
                                      factor=0.5,
                                      patience=5)
    # Just after instantiating, save the args. Easy loading in the future.
    exp_dir = conf["main_args"]["exp_dir"]
    os.makedirs(exp_dir, exist_ok=True)
    conf_path = os.path.join(exp_dir, "conf.yml")
    with open(conf_path, "w") as outfile:
        yaml.safe_dump(conf, outfile)

    # Define Loss function.
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")
    system = System(
        model=model,
        loss_func=loss_func,
        optimizer=optimizer,
        train_loader=train_loader,
        val_loader=val_loader,
        scheduler=scheduler,
        config=conf,
    )

    # Define callbacks
    callbacks = []
    checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    checkpoint = ModelCheckpoint(checkpoint_dir,
                                 monitor="val_loss",
                                 mode="min",
                                 save_top_k=5,
                                 verbose=True)
    callbacks.append(checkpoint)
    if conf["training"]["early_stop"]:
        callbacks.append(
            EarlyStopping(monitor="val_loss",
                          mode="min",
                          patience=30,
                          verbose=True))

    # Don't ask GPU if they are not available.
    gpus = -1 if torch.cuda.is_available() else None
    distributed_backend = "ddp" if torch.cuda.is_available() else None

    if conf["training"]["cont"]:
        from glob import glob
        ckpts = glob('%s/*.ckpt' % checkpoint_dir)
        ckpts.sort()
        latest_ckpt = ckpts[-1]
        trainer = pl.Trainer(
            max_epochs=conf["training"]["epochs"],
            callbacks=callbacks,
            default_root_dir=exp_dir,
            gpus=gpus,
            distributed_backend=distributed_backend,
            limit_train_batches=1.0,  # Useful for fast experiment
            gradient_clip_val=conf["training"]["gradient_clipping"],
            resume_from_checkpoint=latest_ckpt)
    else:
        trainer = pl.Trainer(
            max_epochs=conf["training"]["epochs"],
            callbacks=callbacks,
            default_root_dir=exp_dir,
            gpus=gpus,
            distributed_backend=distributed_backend,
            limit_train_batches=1.0,  # Useful for fast experiment
            gradient_clip_val=conf["training"]["gradient_clipping"],
        )
    trainer.fit(system)

    best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
    with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
        json.dump(best_k, f, indent=0)

    # Save best model (next PL version will make this easier)
    # best_path = [b for b, v in best_k.items() if v == min(best_k.values())][0]
    # state_dict = torch.load(best_path)
    state_dict = torch.load(checkpoint.best_model_path)
    # state_dict = torch.load('exp/train_dprnn_130d5f9a/checkpoints/epoch=154.ckpt')
    system.load_state_dict(state_dict=state_dict["state_dict"])
    system.cpu()

    to_save = system.model.serialize()
    to_save.update(train_set.get_infos())
    torch.save(to_save, os.path.join(exp_dir, "best_model.pth"))
Beispiel #3
0
def main(conf):
    train_set = WhamDataset(conf['data']['train_dir'],
                            conf['data']['task'],
                            sample_rate=conf['data']['sample_rate'],
                            segment=conf['data']['segment'],
                            nondefault_nsrc=conf['data']['nondefault_nsrc'])
    val_set = WhamDataset(conf['data']['valid_dir'],
                          conf['data']['task'],
                          sample_rate=conf['data']['sample_rate'],
                          nondefault_nsrc=conf['data']['nondefault_nsrc'])

    train_loader = DataLoader(train_set,
                              shuffle=True,
                              batch_size=conf['training']['batch_size'],
                              num_workers=conf['training']['num_workers'],
                              drop_last=True)
    val_loader = DataLoader(val_set,
                            shuffle=False,
                            batch_size=conf['training']['batch_size'],
                            num_workers=conf['training']['num_workers'],
                            drop_last=True)
    # Update number of source values (It depends on the task)
    conf['masknet'].update({'n_src': train_set.n_src})

    model = DPRNNTasNet(**conf['filterbank'], **conf['masknet'])
    optimizer = make_optimizer(model.parameters(), **conf['optim'])
    # Define scheduler
    scheduler = None
    if conf['training']['half_lr']:
        scheduler = ReduceLROnPlateau(optimizer=optimizer,
                                      factor=0.5,
                                      patience=5)
    # Just after instantiating, save the args. Easy loading in the future.
    exp_dir = conf['main_args']['exp_dir']
    os.makedirs(exp_dir, exist_ok=True)
    conf_path = os.path.join(exp_dir, 'conf.yml')
    with open(conf_path, 'w') as outfile:
        yaml.safe_dump(conf, outfile)

    # Define Loss function.
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx')
    system = System(model=model,
                    loss_func=loss_func,
                    optimizer=optimizer,
                    train_loader=train_loader,
                    val_loader=val_loader,
                    scheduler=scheduler,
                    config=conf)

    # Define callbacks
    checkpoint_dir = os.path.join(exp_dir, 'checkpoints/')
    checkpoint = ModelCheckpoint(checkpoint_dir,
                                 monitor='val_loss',
                                 mode='min',
                                 save_top_k=5,
                                 verbose=1)
    early_stopping = False
    if conf['training']['early_stop']:
        early_stopping = EarlyStopping(monitor='val_loss',
                                       patience=30,
                                       verbose=1)

    # Don't ask GPU if they are not available.
    gpus = -1 if torch.cuda.is_available() else None
    trainer = pl.Trainer(
        max_nb_epochs=conf['training']['epochs'],
        checkpoint_callback=checkpoint,
        early_stop_callback=early_stopping,
        default_save_path=exp_dir,
        gpus=gpus,
        distributed_backend='ddp',
        gradient_clip_val=conf['training']["gradient_clipping"])
    trainer.fit(system)

    best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
    with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
        json.dump(best_k, f, indent=0)

    # Save best model (next PL version will make this easier)
    best_path = [b for b, v in best_k.items() if v == min(best_k.values())][0]
    state_dict = torch.load(best_path)
    system.load_state_dict(state_dict=state_dict['state_dict'])
    system.cpu()

    to_save = system.model.serialize()
    to_save.update(train_set.get_infos())
    torch.save(to_save, os.path.join(exp_dir, 'best_model.pth'))
Beispiel #4
0
EARLY_STOP_PATIENCE = 20
MAX_EPOCHS = 300

# the model here should be constructed in the script accordingly to the passed config (including the model type)
# most of the models accept `sample_rate` parameter for encoders, which is important (default is 16000, override)
#model = DCUNet("DCUNet-20", fix_length_mode="trim", sample_rate=SAMPLE_RATE)
model = DPRNNTasNet(n_src=1)

from pytorch_lightning.callbacks import ModelCheckpoint

checkpoint = ModelCheckpoint(filename='{epoch:02d}-{val_loss:.2f}',
                             monitor="val_loss",
                             mode="min",
                             save_top_k=5,
                             verbose=True)
optimizer = optim.Adam(model.parameters(), lr=LR)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                 patience=REDUCE_LR_PATIENCE)
early_stopping = EarlyStopping(monitor='val_loss',
                               patience=EARLY_STOP_PATIENCE)

# Probably we also need to subclass `System`, in order to log the target metrics on the validation set (PESQ/STOI)
system = System(model, optimizer, sisdr_loss_wrapper, train_loader, val_loader,
                scheduler)

# log dir and model name are also part of the config, of course
LOG_DIR = 'logs'
logger = pl_loggers.TensorBoardLogger(LOG_DIR,
                                      name='TIMIT-drones-DPRNN-random',
                                      version=1)