Beispiel #1
0
 def test_apogee_continuum(self):
     raw_spectra = np.ones((10, 8575)) * 2
     raw_spectra_err = np.zeros((10, 8575))
     # continuum
     cont_spectra, cont_spectra_arr = apogee_continuum(
         raw_spectra, raw_spectra_err)
     self.assertAlmostEqual(np.mean(cont_spectra), 1.)
Beispiel #2
0
    def test_arXiv_1808_04428(self):
        """
        original astroNN paper models
        """
        from astroNN.apogee import visit_spectra, apogee_continuum
        from astropy.io import fits

        # first model
        models_url = [
            "https://github.com/henrysky/astroNN_spectra_paper_figures/trunk/astroNN_0606_run001",
            "https://github.com/henrysky/astroNN_spectra_paper_figures/trunk/astroNN_0617_run001"
        ]

        for model_url in models_url:
            download_args = ["svn", "export", model_url]
            res = subprocess.Popen(download_args, stdout=subprocess.PIPE)
            output, _error = res.communicate()
            if not _error:
                pass
            else:
                raise ConnectionError(
                    f"Error downloading the models {model_url}")

        opened_fits = fits.open(
            visit_spectra(dr=14, location=4405, apogee='2M19060637+4717296'))
        spectrum = opened_fits[1].data
        spectrum_err = opened_fits[2].data
        spectrum_bitmask = opened_fits[3].data

        # using default continuum and bitmask values to continuum normalize
        norm_spec, norm_spec_err = apogee_continuum(spectrum,
                                                    spectrum_err,
                                                    bitmask=spectrum_bitmask,
                                                    dr=14)
        # load neural net
        neuralnet = load_folder('astroNN_0617_run001')

        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(norm_spec)

        # assert temperature and gravity okay
        self.assertEqual(np.all(pred[0, 0:2] > [4700., 2.40]), True)
        self.assertEqual(np.all(pred[0, 0:2] < [4750., 2.47]), True)

        # load neural net
        neuralnet = load_folder('astroNN_0606_run001')

        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(norm_spec)

        # assert temperature and gravity okay
        self.assertEqual(np.all(pred[0, 0:2] > [4700., 2.40]), True)
        self.assertEqual(np.all(pred[0, 0:2] < [4750., 2.47]), True)
Beispiel #3
0
    def create_data(self,
                    version=1,
                    max_number_of_stars=float("inf"),
                    use_steps=False):

        if os.path.exists('{}stars{}.pickle'.format(self._PICKLE_DIR,
                                                    version)):
            pickle_out = open(
                "{}stars{}.pickle".format(self._PICKLE_DIR, version), 'rb')
            self._star_dict = pickle.load(pickle_out)
            return True

        self._star_dict = {
            'KIC': [],
            'RA': [],
            'DEC': [],
            'Dnu': [],
            'PS': [],
            'e_PS': [],
            'q': [],
            'M': [],
            'spectra': [],
            'error_spectra': [],
            'T_eff': [],
            'logg': [],
            'RC': [],
            'status': [],
            'M_H': [],
            'C': [],
            'N': [],
            'O': [],
            'Na': [],
            'Mg': [],
            'Al': [],
            'Si': [],
            'P': [],
            'S': [],
            'K': [],
            'Ca': [],
            'Ti': [],
            'V': [],
            'Mn': [],
            'Fe': [],
            'Ni': [],
            'Cr': [],
            'Co': [],
            'Cl': []
        }

        # First create table of Kepler stars with PS and Δv with their RA, DEC (creates table1.dat)
        self._populate_kepler_with_rc_dec()

        # Loading in APOGEE star data (RA, DEC)
        local_path_to_file = allstar(dr=14)
        apogee_data = fits.open(local_path_to_file)
        apogee_ra = apogee_data[1].data['RA']
        apogee_de = apogee_data[1].data['DEC']

        # RA, DEC from KIC table
        kic_table = Table.read("tables/KIC_A87/table1.dat", format="ascii")
        kic_ra = np.array(kic_table['RA'])
        kic_de = np.array(kic_table['DE'])

        # Indices overlap between KIC and APOGEE
        idx_kic, idx_apogee, sep = xmatch(kic_ra,
                                          apogee_ra,
                                          colRA1=kic_ra,
                                          colDec1=kic_de,
                                          colRA2=apogee_ra,
                                          colDec2=apogee_de)

        # Building spectra data for KIC from APOGEE overlaps
        for i in range(0, len(idx_apogee)):
            index_in_apogee = idx_apogee[i]
            index_in_kepler = idx_kic[i]

            if version == 1 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0 and
                    apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0):
                continue

            # Version 2 - Subject to the following constraints
            # Flag checking, condition is the same as Hawkins et al. 2017, STARFLAG and ASPCAP bitwise OR is 0
            # KIC checking, uncertainty in PS should be less than 10s
            if version == 2 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10):
                continue

            # Version 3 - Subject to the following constraints
            # Flag checking, condition is the same as Hawkins et al. 2017, STARFLAG and ASPCAP bitwise OR is 0
            # KIC checking, uncertainty in PS should be less than 10s
            if version == 3 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['SNR'][index_in_apogee] >= 200):
                continue

            # Version 5 - DR13 data subject to same connstraints as Hawkings
            if version == 5 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10):
                continue

            # Version 6 - DR13 data subject to same connstraints as Hawkings - normalization with bitmask as DR13
            if version == 6 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['NVISITS'][index_in_apogee] >= 1):
                continue

            # Version 7 - DR13 data subject to same constraints as Hawkings - no bit mask as DR13
            if version == 7 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['NVISITS'][index_in_apogee] >= 1):
                continue

            # Version 8 - DR13 data subject to same constraints as Hawkings
            if version == 8 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['NVISITS'][index_in_apogee] >= 1):
                continue

            a_apogee_id = apogee_data[1].data['APOGEE_ID'][index_in_apogee]
            a_location_id = apogee_data[1].data['LOCATION_ID'][index_in_apogee]

            local_path_to_file_for_star = None
            if version == 6 or version == 7 or version == 8:
                local_path_to_file_for_star = visit_spectra(
                    dr=14, location=a_location_id, apogee=a_apogee_id)
            elif version == 4 or version == 5:
                local_path_to_file_for_star = combined_spectra(
                    dr=13, location=a_location_id, apogee=a_apogee_id)
            else:
                local_path_to_file_for_star = combined_spectra(
                    dr=14, location=a_location_id, apogee=a_apogee_id)

            if (local_path_to_file_for_star):
                # Filter out the dr=14 gaps, value to be appended to the array
                spectra_no_gap = None
                error_spectra = None
                if version in (6, 7, 8):
                    # Read from visit spectra of the star
                    spectra_data = fits.open(local_path_to_file_for_star)
                    spectra, mask_spectra = None, None

                    # Best fit spectra data - use for spectra data
                    if apogee_data[1].data['NVISITS'][index_in_apogee] == 1:
                        spectra = spectra_data[1].data
                        error_spectra = spectra_data[2].data
                        mask_spectra = spectra_data[3].data
                    elif apogee_data[1].data['NVISITS'][index_in_apogee] > 1:
                        spectra = spectra_data[1].data[1]
                        error_spectra = spectra_data[2].data[1]
                        mask_spectra = spectra_data[3].data[1]

                    if version == 6:
                        norm_spec, norm_spec_err = apogee_continuum(
                            spectra,
                            error_spectra,
                            cont_mask=None,
                            deg=2,
                            dr=13,
                            bitmask=mask_spectra,
                            target_bit=None)
                        spectra_no_gap = norm_spec
                        error_spectra = norm_spec_err
                    elif version == 7:
                        norm_spec, norm_spec_err = apogee_continuum(
                            spectra,
                            error_spectra,
                            cont_mask=None,
                            deg=2,
                            dr=13,
                            bitmask=None,
                            target_bit=None)
                        spectra_no_gap = norm_spec
                        error_spectra = norm_spec_err
                    elif version == 8:
                        # Bit mask value is now 1
                        norm_spec, norm_spec_err = apogee_continuum(
                            spectra,
                            error_spectra,
                            cont_mask=None,
                            deg=2,
                            dr=13,
                            bitmask=mask_spectra,
                            target_bit=None,
                            mask_value=1)
                        spectra_no_gap = norm_spec
                        error_spectra = norm_spec_err
                    del mask_spectra

                elif version == 4 or version == 5:
                    spectra_data = fits.open(local_path_to_file_for_star)

                    # Best fit spectra data - use for spectra data
                    spectra = spectra_data[3].data
                    spectra_no_gap = gap_delete(spectra, dr=13)
                else:
                    spectra_data = fits.open(local_path_to_file_for_star)

                    # Best fit spectra data - use for spectra data
                    spectra = spectra_data[3].data

                    spectra_no_gap = gap_delete(spectra, dr=14)

                spectra_no_gap = spectra_no_gap.flatten()

                # APOGEE data
                self._star_dict['T_eff'].append(
                    apogee_data[1].data['Teff'][index_in_apogee].copy())
                self._star_dict['logg'].append(
                    apogee_data[1].data['logg'][index_in_apogee].copy())

                # Metals/H
                self._star_dict['M_H'].append(
                    apogee_data[1].data['M_H'][index_in_apogee])
                self._star_dict['C'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][0])
                self._star_dict['N'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][2])
                self._star_dict['O'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][3])
                self._star_dict['Na'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][4])
                self._star_dict['Mg'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][5])
                self._star_dict['Al'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][6])
                self._star_dict['Si'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][7])
                self._star_dict['P'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][8])
                self._star_dict['S'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][9])
                self._star_dict['K'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][10])
                self._star_dict['Ca'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][11])
                self._star_dict['Ti'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][12])
                self._star_dict['V'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][14])
                self._star_dict['Mn'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][16])
                self._star_dict['Fe'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][17])
                self._star_dict['Ni'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][19])
                self._star_dict['Cr'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][15])
                self._star_dict['Co'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][18])
                self._star_dict['Cl'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][1])

                # KIC data
                self._star_dict['KIC'].append(
                    kic_table['KIC'][index_in_kepler])
                self._star_dict['RA'].append(kic_table['RA'][index_in_kepler])
                self._star_dict['DEC'].append(kic_table['DE'][index_in_kepler])
                self._star_dict['Dnu'].append(
                    kic_table['Dnu'][index_in_kepler])
                self._star_dict['PS'].append(
                    kic_table['DPi1'][index_in_kepler])
                self._star_dict['e_PS'].append(
                    kic_table['e_DPi1'][index_in_kepler])
                self._star_dict['q'].append(kic_table['q'][index_in_kepler])
                self._star_dict['M'].append(kic_table['M'][index_in_kepler])
                self._star_dict['status'].append(
                    kic_table['Status'][index_in_kepler])
                self._star_dict['RC'].append(
                    self.is_red_clump(kic_table['DPi1'][index_in_kepler],
                                      kic_table['Dnu'][index_in_kepler]))

                # Gap delete doesn't return row vector, need to manually reshape
                self._star_dict['spectra'].append(spectra_no_gap)

                if version in (6, 7, 8):
                    self._star_dict['error_spectra'].append(
                        error_spectra.flatten())
                    del error_spectra

                # Close file handler
                del spectra_data
                del spectra

            # Check max condition
            if i > max_number_of_stars - 1:
                break

        # Convert to numpy arrays
        self._star_dict['KIC'] = np.array(self._star_dict['KIC'])
        self._star_dict['RA'] = np.array(self._star_dict['RA'])
        self._star_dict['DEC'] = np.array(self._star_dict['DEC'])
        self._star_dict['Dnu'] = np.array(self._star_dict['Dnu'])
        self._star_dict['PS'] = np.array(self._star_dict['PS'])
        self._star_dict['e_PS'] = np.array(self._star_dict['e_PS'])
        self._star_dict['spectra'] = np.array(self._star_dict['spectra'])
        self._star_dict['logg'] = np.array(self._star_dict['logg'])
        self._star_dict['T_eff'] = np.array(self._star_dict['T_eff'])
        self._star_dict['RC'] = np.array(self._star_dict['RC'])
        self._star_dict['status'] = np.array(self._star_dict['status'])
        self._star_dict['M'] = np.array(self._star_dict['M'])
        self._star_dict['M_H'] = np.array(self._star_dict['M_H'])
        self._star_dict['C'] = np.array(self._star_dict['C'])
        self._star_dict['N'] = np.array(self._star_dict['N'])
        self._star_dict['O'] = np.array(self._star_dict['O'])
        self._star_dict['Na'] = np.array(self._star_dict['Na'])
        self._star_dict['Mg'] = np.array(self._star_dict['Mg'])
        self._star_dict['Al'] = np.array(self._star_dict['Al'])
        self._star_dict['Si'] = np.array(self._star_dict['Si'])
        self._star_dict['P'] = np.array(self._star_dict['P'])
        self._star_dict['S'] = np.array(self._star_dict['S'])
        self._star_dict['K'] = np.array(self._star_dict['K'])
        self._star_dict['Ca'] = np.array(self._star_dict['Ca'])
        self._star_dict['Ti'] = np.array(self._star_dict['Ti'])
        self._star_dict['V'] = np.array(self._star_dict['V'])
        self._star_dict['Mn'] = np.array(self._star_dict['Mn'])
        self._star_dict['Fe'] = np.array(self._star_dict['Fe'])
        self._star_dict['Ni'] = np.array(self._star_dict['Ni'])
        self._star_dict['Cl'] = np.array(self._star_dict['Cl'])
        self._star_dict['Cr'] = np.array(self._star_dict['Cr'])
        self._star_dict['Co'] = np.array(self._star_dict['Co'])
        self._star_dict['q'] = np.array(self._star_dict['q'])

        if version == 6:
            self._star_dict['error_spectra'] = np.array(
                self._star_dict['error_spectra'])

        # Pickle for caching
        pickle_out = open("{}stars{}.pickle".format(self._PICKLE_DIR, version),
                          'wb')
        pickle.dump(self._star_dict, pickle_out)
        pickle_out.close()

        return True
Beispiel #4
0
	def grab_sample(self, N = 32, dr=14, spectra_format='visit', bitmask_value =1, save_sample=True):
		self.create_data()

		stars = {
			'APSTAR_ID' : [],

			# Spectra of the star
			'spectra'   : [],

			# Stellar features
			'Teff'      : [],
			'logg'      : [],

			# Metals
			'M_H'       : [],
			'C'         : [],
			'N'         : [],
			'O'         : [],
			'Na'        : [],
			'Mg'        : [],
			'Al'        : [],
			'Si'        : [],
			'P'         : [],
			'S'         : [],
			'K'         : [],
			'Ca'        : [],
			'Ti'        : [],
			'V'         : [],
			'Mn'        : [],
			'Fe'        : [],
			'Ni'        : [],
		}

		# Get random indices
		idx = np.random.choice(len(self.apogee_data[1].data['logg']), len(self.apogee_data[1].data['logg']))

		for i in idx:
			# Break condition
			if len(stars['logg']) >= N:
				break

			# For when the spectra_format is visit, we require more than NVISIT >= 1
			if spectra_format == 'visit' and (self.apogee_data[1].data['NVISITS'][i] < 1):
				continue

			# Enforce we have high quality spectra from dr14
			if not(self.apogee_data[1].data['STARFLAG'][i] == 0 and self.apogee_data[1].data['ASPCAPFLAG'][i] == 0 and self.apogee_data[1].data['SNR'][i] < 200):

				# Stellar features
				logg = self.apogee_data[1].data['logg'][i]
				Teff = self.apogee_data[1].data['Teff'][i]

				# Metals/H
				M_H  = self.apogee_data[1].data['M_H'][i]

				# Metals
				C    = self.apogee_data[1].data['X_H'][i][0]
				N_c  = self.apogee_data[1].data['X_H'][i][2]
				O    = self.apogee_data[1].data['X_H'][i][3]
				Na   = self.apogee_data[1].data['X_H'][i][4]
				Mg   = self.apogee_data[1].data['X_H'][i][5]
				Al   = self.apogee_data[1].data['X_H'][i][6]
				Si   = self.apogee_data[1].data['X_H'][i][7]
				P    = self.apogee_data[1].data['X_H'][i][8]
				S    = self.apogee_data[1].data['X_H'][i][9]
				K    = self.apogee_data[1].data['X_H'][i][10]
				Ca   = self.apogee_data[1].data['X_H'][i][11]
				Ti   = self.apogee_data[1].data['X_H'][i][12]
				V    = self.apogee_data[1].data['X_H'][i][14]
				Mn   = self.apogee_data[1].data['X_H'][i][16]
				Fe   = self.apogee_data[1].data['X_H'][i][17]
				Ni   = self.apogee_data[1].data['X_H'][i][19]

				# Make sure all of them are not falled
				if all([False if i == -9999 else True for i in [logg, Teff, M_H, C, N_c, O, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Mn, Fe, Ni]]):
					# Get spectra data
					apogee_id, location_id = self.apogee_data[1].data['APOGEE_ID'][i], self.apogee_data[1].data['LOCATION_ID'][i]
					star_spectra = None

					# Populating the appropiate star_spectra variable with stellar spectra
					if spectra_format == 'combined':
						local_path_to_file_for_star = combined_spectra(dr=dr, location=location_id, apogee=apogee_id)
						if local_path_to_file_for_star:
							spectra_data = fits.open(local_path_to_file_for_star)
							star_spectra = spectra_data[3].data.copy()
							star_spectra = gap_delete(spectra, dr=dr)
							star_spectra = star_spectra.flatten()
							# Close file handlers
							del spectra_data
					elif spectra_format == 'visit':
						local_path_to_file_for_star = visit_spectra(dr=dr, location=location_id, apogee=apogee_id)
						if local_path_to_file_for_star:
							spectra_data = fits.open(local_path_to_file_for_star)
							spectra, error_spectra, mask_spectra = None, None, None

							# NVISITS is 1, 1D array
							if self.apogee_data[1].data['NVISITS'][i] == 1:
								spectra = spectra_data[1].data
								error_spectra = spectra_data[2].data
								mask_spectra = spectra_data[3].data
							elif self.apogee_data[1].data['NVISITS'][i] > 1:
								spectra = spectra_data[1].data[1]
								error_spectra = spectra_data[2].data[1]
								mask_spectra = spectra_data[3].data[1]

							# Mask if the mask value is present
							if bitmask_value is not None:
								norm_spec, norm_spec_err = apogee_continuum(spectra, error_spectra, cont_mask=None, deg=2, bitmask=mask_spectra, target_bit=None, mask_value=bitmask_value)
								star_spectra = norm_spec.flatten()
							else:
								norm_spec, norm_spec_err = apogee_continuum(spectra, error_spectra, cont_mask=None, deg=2, bitmask=None, target_bit=None, mask_value=None)
								star_spectra = norm_spec.flatten()
							# Close file handlers
							del spectra_data
					else:
						raise ValueError("spectra_format must either be combined|visit")

					# Adding the star data into the dict
					if star_spectra is not None:
						stars['spectra'].append(star_spectra)
						stars['logg'].append(logg)
						stars['Teff'].append(Teff)
						stars['M_H'].append(M_H)
						stars['C'].append(C)
						stars['N'].append(N_c)
						stars['O'].append(O)
						stars['Na'].append(Na)
						stars['Mg'].append(Mg)
						stars['Al'].append(Al)
						stars['Si'].append(Si)
						stars['P'].append(P)
						stars['S'].append(S)
						stars['K'].append(K)
						stars['Ca'].append(Ca)
						stars['Ti'].append(Ti)
						stars['V'].append(V)
						stars['Mn'].append(Mn)
						stars['Fe'].append(Fe)
						stars['Ni'].append(Ni)

		# Convert to np style arrays
		for key in stars:
			stars[key] = np.array(stars[key])
		# stars['logg']    = np.array(stars['logg'])
		# stars['Teff']    = np.array(stars['Teff'])
		# stars['M_H']     = np.array(stars['M_H'])
		# stars['C']       = np.array(stars['C'])
		# stars['N']       = np.array(stars['N'])
		# stars['O']       = np.array(stars['O'])
		# stars['Na']      = np.array(stars['Na'])
		# stars['Mg']      = np.array(stars['Mg'])
		# stars['Al']      = np.array(stars['Al'])
		# stars['Si']      = np.array(stars['Si'])
		# stars['P']       = np.array(stars['P'])
		# stars['S']       = np.array(stars['S'])
		# stars['K']       = np.array(stars['K'])
		# stars['Ca']      = np.array(stars['Ca'])
		# stars['Ti']      = np.array(stars['Ti'])
		# stars['V']       = np.array(stars['V'])
		# stars['Mn']      = np.array(stars['Mn'])
		# stars['Fe']      = np.array(stars['Fe'])
		# stars['Ni']      = np.array(stars['Ni'])
		# stars['spectra'] = np.array(stars['spectra'])

		# Save sample if asked to
		if save_sample:
			pickle_out = open("{}apogee_sample_{}_stars.pickle".format(self._PICKLE_DIR, N), 'wb')
			pickle.dump(stars, pickle_out)
			pickle_out.close()

		return stars
Beispiel #5
0
    def test_arXiv_1902_08634 (self):
        """
        astroNN spectrophotometric distance
        """
        from astroNN.apogee import visit_spectra, apogee_continuum
        from astroNN.gaia import extinction_correction, fakemag_to_pc
        from astropy.io import fits

        # first model
        models_url = ["https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_no_offset_model",
                      "https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_constant_model",
                      "https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_multivariate_model"]

        for model_url in models_url:
            download_args = ["svn", "export", model_url]
            res = subprocess.Popen(download_args, stdout=subprocess.PIPE)
            output, _error = res.communicate()
            if not _error:
                pass
            else:
                raise ConnectionError(f"Error downloading the models {model_url}")

        opened_fits = fits.open(visit_spectra(dr=14, location=4405, apogee='2M19060637+4717296'))
        spectrum = opened_fits[1].data
        spectrum_err = opened_fits[2].data
        spectrum_bitmask = opened_fits[3].data

        # using default continuum and bitmask values to continuum normalize
        norm_spec, norm_spec_err = apogee_continuum(spectrum, spectrum_err,
                                                    bitmask=spectrum_bitmask, dr=14)
        # correct for extinction
        K = extinction_correction(opened_fits[0].header['K'], opened_fits[0].header['AKTARG'])

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_no_offset_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(norm_spec)
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        # no offset correction so further away
        self.assertEqual(pc.value < 1250, True)
        self.assertEqual(pc.value > 1100, True)

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_constant_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(np.hstack([norm_spec, np.zeros((norm_spec.shape[0], 4))]))
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        self.assertEqual(pc.value < 1150, True)
        self.assertEqual(pc.value > 1000, True)

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_multivariate_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(np.hstack([norm_spec, np.zeros((norm_spec.shape[0], 4))]))
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        self.assertEqual(pc.value < 1150, True)
        self.assertEqual(pc.value > 1000, True)