Beispiel #1
0
def test_remove_auxiliary_variable():

    p1 = Parameter('test_parameter',
                   1.0,
                   min_value=-5.0,
                   max_value=5.0,
                   delta=0.2,
                   desc='test',
                   free=False,
                   unit='MeV')

    x = Parameter('aux_variable', 1.0)

    # ax + b

    law = Line()
    law.a = 2.0
    law.b = 1.0

    p1.add_auxiliary_variable(x, law)

    assert p1.value == 3.0

    x.value = 4.0

    assert p1.value == 6.0

    p1.remove_auxiliary_variable()

    assert p1.has_auxiliary_variable() == False

    p1.value = -1.0

    assert p1.value == -1.0
Beispiel #2
0
def test_remove_auxiliary_variable():

    p1 = Parameter('test_parameter', 1.0, min_value=-5.0, max_value=5.0, delta=0.2, desc='test', free=False, unit='MeV')

    x = Parameter('aux_variable', 1.0)

    # ax + b

    law = Line()
    law.a = 1.0
    law.b = 2.0

    p1.add_auxiliary_variable(x, law)

    assert p1.value == 3.0

    x.value = 4.0

    assert p1.value == 6.0

    p1.remove_auxiliary_variable()

    assert p1.has_auxiliary_variable() == False

    p1.value = -1.0

    assert p1.value == -1.0
Beispiel #3
0
def test_set_auxiliary_variable():

    p1 = Parameter('test_parameter', 1.0, min_value=-5.0, max_value=5.0, delta=0.2, desc='test', free=False, unit='MeV')

    x = Parameter('aux_variable', 1.0)

    # ax + b

    law = Line()
    law.a = 1.0
    law.b = 2.0

    p1.add_auxiliary_variable(x, law)

    assert p1.has_auxiliary_variable() == True

    assert p1.value == 3.0

    x.value = 4.0

    assert p1.value == 6.0

    # Check that assigning to the parameter doesn't produce any effect
    p1.value = -1.0

    assert p1.value == 6.0
Beispiel #4
0
def test_links_and_pickle():

    import pickle

    p_orig = Parameter('test_parameter',
                       1.0,
                       min_value=-5.0,
                       max_value=5.0,
                       delta=0.2,
                       desc='test',
                       free=False,
                       unit=u.MeV,
                       prior=Uniform_prior())

    # Test the linkinking and pickle

    # Add a link
    x = Parameter('aux_variable', 1.0)

    # ax + b

    law = Line()
    law.a = 2.0
    law.b = 1.0

    p_orig.add_auxiliary_variable(x, law)

    # Now pickle and unpickle

    d = pickle.dumps(p_orig)

    p = pickle.loads(d)

    assert p.has_auxiliary_variable() == True

    assert p.value == 3.0

    assert p.free == False

    p.auxiliary_variable[0].value = 4.0

    assert p.value == 6.0

    # Check that assigning to the parameter doesn't produce any effect
    p.value = -1.0

    assert p.value == 6.0
Beispiel #5
0
def test_set_auxiliary_variable():

    p1 = Parameter('test_parameter',
                   1.0,
                   min_value=-5.0,
                   max_value=5.0,
                   delta=0.2,
                   desc='test',
                   free=False,
                   unit='MeV')

    x = Parameter('aux_variable', 1.0)

    # ax + b

    law = Line()
    law.a = 2.0
    law.b = 1.0

    p1.add_auxiliary_variable(x, law)

    assert p1.has_auxiliary_variable() == True

    assert p1.value == 3.0

    assert p1.free == False

    x.value = 4.0

    assert p1.value == 6.0

    # Check that assigning to the parameter doesn't produce any effect
    p1.value = -1.0

    assert p1.value == 6.0

    # Now check errors reporting
    with pytest.raises(AttributeError):

        p1.add_auxiliary_variable(1.0, law)

    # Now add it twice to verify that it overwrites it
    p1.add_auxiliary_variable(x, law)
    p1.add_auxiliary_variable(x, law)

    p1.display()
Beispiel #6
0
def test_time_domain_integration():

    po = Powerlaw()

    default_powerlaw = Powerlaw()

    src = PointSource("test", ra=0.0, dec=0.0, spectral_shape=po)

    m = Model(src)  # type: model.Model

    # Add time independent variable
    time = IndependentVariable("time", 0.0, u.s)

    m.add_independent_variable(time)

    # Now link one of the parameters with a simple line law
    line = Line()

    line.a = 0.0

    m.link(po.index, time, line)

    # Test the display just to make sure it doesn't crash
    m.display()

    # Now test the average with the integral

    energies = np.linspace(1, 10, 10)

    results = m.get_point_source_fluxes(0, energies,
                                        tag=(time, 0, 10))  # type: np.ndarray

    assert np.all(results == 1.0)

    # Now test the linking of the normalization, first with a constant then with a line with a certain
    # angular coefficient

    m.unlink(po.index)

    po.index.value = default_powerlaw.index.value

    line2 = Line()

    line2.a = 0.0
    line2.b = 1.0

    m.link(po.K, time, line2)

    time.value = 1.0

    results = m.get_point_source_fluxes(0, energies, tag=(time, 0, 10))

    assert np.allclose(results, default_powerlaw(energies))

    # Now make something actually happen
    line2.a = 1.0
    line2.b = 1.0

    results = m.get_point_source_fluxes(0, energies,
                                        tag=(time, 0, 10))  # type: np.ndarray

    # Compare with analytical result
    def F(x):
        return line2.a.value / 2.0 * x**2 + line2.b.value * x

    effective_norm = (F(10) - F(0)) / 10.0

    expected_results = default_powerlaw(
        energies) * effective_norm  # type: np.ndarray

    assert np.allclose(expected_results, results)