Beispiel #1
0
def plotFluxRatiosDist(predFlux, measFlux, RA, Dec, refRA, refDec, labels,
    outDir, name1, name2, format, clip=True):
    """
    Makes plot of measured-to-predicted flux ratio vs. distance from center
    """
    import numpy as np
    from ..operations_lib import calculateSeparation
    try:
        from astropy.stats.funcs import sigma_clip
    except ImportError:
        from astropy.stats import sigma_clip
    try:
        import matplotlib
        if matplotlib.get_backend() is not 'Agg':
            matplotlib.use("Agg")
        import matplotlib.pyplot as plt
        from matplotlib.ticker import FuncFormatter
    except Exception as e:
        raise ImportError('PyPlot could not be imported. Plotting is not '
            'available: {0}'.format(e.message))

    if name1 is None:
        name1 = 'Model 1'
    if name2 is None:
        name2 = 'Model 2'

    ratio = measFlux / predFlux
    separation = np.zeros(len(measFlux))
    for i in range(len(measFlux)):
        separation[i] = calculateSeparation(RA[i], Dec[i], refRA, refDec).value

    fig = plt.figure(figsize=(7.0, 5.0))
    ax1 = plt.subplot(1, 1, 1)
    ax1.plot(separation, ratio, 'o')
    plt.title('Flux Density Ratios ({0} / {1})'.format(name1, name2))
    plt.ylabel('Flux density ratio')
    plt.xlabel('Distance from center (deg)')

    # Calculate mean ratio and std dev.
    if clip:
        mean_ratio = np.mean(sigma_clip(ratio))
        std = np.std(sigma_clip(ratio))
    else:
        mean_ratio = np.mean(ratio)
        std = np.std(ratio)
    ax1.set_ylim(0, 2.0*mean_ratio)
    xmin, xmax, ymin, ymax = plt.axis()
    ax1.plot([0.0, xmax], [mean_ratio, mean_ratio], '--g')
    ax1.plot([0.0, xmax], [mean_ratio+std, mean_ratio+std], '-.g')
    ax1.plot([0.0, xmax], [mean_ratio-std, mean_ratio-std], '-.g')

    if labels is not None:
        xls = separation
        yls = ratio
        for label, xl, yl in zip(labels, xls, yls):
            plt.annotate(label, xy = (xl, yl), xytext = (-2, 2), textcoords=
                'offset points', ha='right', va='bottom')

    plt.savefig(outDir+'flux_ratio_vs_distance.{}'.format(format), format=format)
Beispiel #2
0
def plotFluxRatiosFlux(predFlux, measFlux, labels, outDir, clip=True):
    """
    Makes plot of measured-to-predicted flux ratio vs. flux
    """
    import os
    import numpy as np
    from ..operations_lib import calculateSeparation
    try:
        from astropy.stats.funcs import sigma_clip
    except ImportError:
        from astropy.stats import sigma_clip
    try:
        import matplotlib
        if matplotlib.get_backend() is not 'Agg':
            matplotlib.use("Agg")
        import matplotlib.pyplot as plt
        from matplotlib.ticker import FuncFormatter
    except Exception as e:
        raise ImportError('PyPlot could not be imported. Plotting is not '
                          'available: {0}'.format(e.message))

    ratio = measFlux / predFlux

    fig = plt.figure(figsize=(7.0, 5.0))
    ax1 = plt.subplot(1, 1, 1)
    ax1.plot(measFlux, ratio, 'o')
    ax1.set_ylim(0, 2)
    plt.title('Flux Ratios (Model 1 / Model 2)')
    plt.ylabel('Flux ratio')
    plt.xlabel('Model 1 flux (Jy)')

    # Calculate mean ratio and std dev.
    if clip:
        mean_ratio = np.mean(sigma_clip(ratio))
        std = np.std(sigma_clip(ratio))
    else:
        mean_ratio = np.mean(ratio)
        std = np.std(ratio)
    xmin, xmax, ymin, ymax = plt.axis()
    ax1.plot([0.0, xmax], [mean_ratio, mean_ratio], '--g')
    ax1.plot([0.0, xmax], [mean_ratio + std, mean_ratio + std], '-.g')
    ax1.plot([0.0, xmax], [mean_ratio - std, mean_ratio - std], '-.g')

    if labels is not None:
        xls = measFlux
        yls = ratio
        for label, xl, yl in zip(labels, xls, yls):
            plt.annotate(label,
                         xy=(xl, yl),
                         xytext=(-2, 2),
                         textcoords='offset points',
                         ha='right',
                         va='bottom')

    plt.savefig(outDir + 'flux_ratio_vs_flux.pdf', format='pdf')
Beispiel #3
0
def plotFluxRatiosDist(predFlux, measFlux, RA, Dec, refRA, refDec, labels, outDir, clip=True):
    """
    Makes plot of measured-to-predicted flux ratio vs. distance from center
    """
    import numpy as np
    from ..operations_lib import calculateSeparation

    try:
        from astropy.stats.funcs import sigma_clip
    except ImportError:
        from astropy.stats import sigma_clip
    try:
        import matplotlib

        if matplotlib.get_backend() is not "Agg":
            matplotlib.use("Agg")
        import matplotlib.pyplot as plt
        from matplotlib.ticker import FuncFormatter
    except Exception as e:
        raise ImportError("PyPlot could not be imported. Plotting is not " "available: {0}".format(e.message))

    ratio = measFlux / predFlux
    separation = np.zeros(len(measFlux))
    for i in range(len(measFlux)):
        separation[i] = calculateSeparation(RA[i], Dec[i], refRA, refDec).value

    fig = plt.figure(figsize=(7.0, 5.0))
    ax1 = plt.subplot(1, 1, 1)
    ax1.plot(separation, ratio, "o")
    ax1.set_ylim(0, 2)
    plt.title("Flux Ratios (Model 1 / Model 2)")
    plt.ylabel("Flux ratio")
    plt.xlabel("Distance from center (deg)")

    # Calculate mean ratio and std dev.
    if clip:
        mean_ratio = np.mean(sigma_clip(ratio))
        std = np.std(sigma_clip(ratio))
    else:
        mean_ratio = np.mean(ratio)
        std = np.std(ratio)
    xmin, xmax, ymin, ymax = plt.axis()
    ax1.plot([0.0, xmax], [mean_ratio, mean_ratio], "--g")
    ax1.plot([0.0, xmax], [mean_ratio + std, mean_ratio + std], "-.g")
    ax1.plot([0.0, xmax], [mean_ratio - std, mean_ratio - std], "-.g")

    if labels is not None:
        xls = separation
        yls = ratio
        for label, xl, yl in zip(labels, xls, yls):
            plt.annotate(label, xy=(xl, yl), xytext=(-2, 2), textcoords="offset points", ha="right", va="bottom")

    plt.savefig(outDir + "flux_ratio_vs_distance.pdf", format="pdf")
Beispiel #4
0
def plotFluxRatiosFlux(predFlux, measFlux, labels, outDir, clip=True):
    """
    Makes plot of measured-to-predicted flux ratio vs. flux
    """
    import os
    import numpy as np
    from ..operations_lib import calculateSeparation
    try:
        from astropy.stats.funcs import sigma_clip
    except ImportError:
        from astropy.stats import sigma_clip
    try:
        import matplotlib
        if matplotlib.get_backend() is not 'Agg':
            matplotlib.use("Agg")
        import matplotlib.pyplot as plt
        from matplotlib.ticker import FuncFormatter
    except Exception as e:
        raise ImportError('PyPlot could not be imported. Plotting is not '
            'available: {0}'.format(e.message))

    ratio = measFlux / predFlux

    fig = plt.figure(figsize=(7.0, 5.0))
    ax1 = plt.subplot(1, 1, 1)
    ax1.plot(measFlux, ratio, 'o')
    ax1.set_ylim(0, 2)
    plt.title('Flux Ratios (Model 1 / Model 2)')
    plt.ylabel('Flux ratio')
    plt.xlabel('Model 1 flux (Jy)')

    # Calculate mean ratio and std dev.
    if clip:
        mean_ratio = np.mean(sigma_clip(ratio))
        std = np.std(sigma_clip(ratio))
    else:
        mean_ratio = np.mean(ratio)
        std = np.std(ratio)
    xmin, xmax, ymin, ymax = plt.axis()
    ax1.plot([0.0, xmax], [mean_ratio, mean_ratio], '--g')
    ax1.plot([0.0, xmax], [mean_ratio+std, mean_ratio+std], '-.g')
    ax1.plot([0.0, xmax], [mean_ratio-std, mean_ratio-std], '-.g')

    if labels is not None:
        xls = measFlux
        yls = ratio
        for label, xl, yl in zip(labels, xls, yls):
            plt.annotate(label, xy = (xl, yl), xytext = (-2, 2), textcoords=
                'offset points', ha='right', va='bottom')

    plt.savefig(outDir+'flux_ratio_vs_flux.pdf', format='pdf')
    def calculateWeights(self):
        """
        finds illum cal factors by making an image per wavelength bin, then smoothing it and dividing the mean of the smoothedImage over pixels by the smoothedImage
        """
        cubeWeightsList = []
        self.averageSpectra = []
        deltaWeightsList = []
        self.totalCube = np.sum(self.spectralCubes,axis=0) #sum all cubes
        self.totalFrame = np.sum(self.totalCube,axis=-1)#sum over wvl
        weights = []
        for iWvl in xrange(self.nWvlBins):
            wvlSlice = self.totalCube[:,:,iWvl]
            wvlSlice[wvlSlice == 0] = np.nan
            nanMask = np.isnan(wvlSlice)

            #do a sigma-clipping on the wvlSlice and insert it back in the cube
            maskedWvlSlice = np.ma.array(wvlSlice,mask=nanMask)
            clippedWvlSlice = sigma_clip(wvlSlice,sig=self.nSigmaClip,iters=None,cenfunc=np.ma.median)
            wvlSlice[clippedWvlSlice.mask] = np.nan
            self.totalCube[:,:,iWvl] = wvlSlice

            #do a smoothing over the slice
            smoothedWvlSlice = nearestNRobustMeanFilter(wvlSlice,n=self.nNearest,nSigmaClip=self.nSigmaClip)
            wvlIllumWeights = np.mean(smoothedWvlSlice)/smoothedWvlSlice
            weights.append(wvlIllumWeights)
        self.weights = np.array(weights)
        #move the wvl dimension to the end
        self.weights = np.swapaxes(self.weights,0,1)
        self.weights = np.swapaxes(self.weights,1,2)
        self.deltaWeights = np.zeros_like(self.weights)
        self.flags = np.zeros_like(self.weights)
Beispiel #6
0
def sigmas(files, nofiles = 48, plot = False):
    '''Returns a mean spectrum in the form of a 2d array - one dimension
    is the wavelengths, the other is the flux files.

    The input is the start of the filenames; i.e. if you have 1040 data
    files named "mortenisthebest00001.txt", "mortenisthebest00002.txt" etc.,
    the input is files="mortenisthebest0" (the file format is assumed to
    be .txt) and nofiles = 1040.
    '''
    all_data = np.zeros((nofiles, 2048, 2))
    # First loop over the files to get data from each and put the data
    # in all_data:
    for indx in range(nofiles):
        file1 = files + str(indx).zfill(len(str(nofiles))) + '.txt'
        data1 = np.genfromtxt(file1, skip_header = 17, skip_footer = 1)
        all_data[indx] = data1
    datamean = np.zeros((2,2048))
    # We want to have a mean array datamean that gives us the x-values
    # and mean flux values for each wavelength in the spectrum.

    # The x-values are assumed to be the same for every spectrum.
    datamean[0] = all_data[0,:,0]

    # Do a sigma clip to take away outliers
    for i in range(len(all_data[0,:,0])):
        bool_clip = sigma_clip(all_data[:,i,1], sig = 1.5)[1]
        datamean[1,i] = np.mean(all_data[:,i,1][bool_clip])
    # datamean[1] = np.mean(all_data[:,:,1], axis = 0)
    if plot == True:
        plt.clf()
        plt.plot(datamean[0], datamean[1])
        plt.show()
        plt.semilogy()
        plt.axis([530,680,15,60000])
        plt.xlabel('Wavelength (nm)', fontsize = 20)
        plt.ylabel('Flux (counts)', fontsize = 20)
        plt.title('The raw mean of the spectra', fontsize = 25)
    return datamean
Beispiel #7
0
def _compute_diff(arg):
    """Worker: Computes the DC offset of frame-coadd"""
    upperKey, upperPath, upperWeightPath, lowerKey, lowerPath, \
        lowerWeightPath, overlap = arg
    # print "diff between", upperKey, lowerKey
    upper = SliceableImage.makeFromFITS(upperKey, upperPath, upperWeightPath)
    upper.setRange(overlap.upSlice)
    lower = SliceableImage.makeFromFITS(lowerKey, lowerPath, lowerWeightPath)
    lower.setRange(overlap.loSlice)
    goodPix = np.where((upper.weight > 0.) & (lower.weight > 0.))
    nPixels = len(goodPix[0])
    if nPixels > 10:
        diff_pixels = upper.image[goodPix] - lower.image[goodPix]
        diff_pixels = diff_pixels[np.isfinite(diff_pixels)]
        clipped = sigma_clip(diff_pixels, sig=5., iters=1,
                             varfunc=np.nanvar)
        median = np.nanmedian(clipped[~clipped.mask])
        sigma = np.nanstd(clipped[~clipped.mask])
        diffData = {"diffimage_mean": median,
                    "diffimage_sigma": sigma,
                    "area": nPixels}
    else:
        diffData = None
    return upperKey, lowerKey, diffData
    illumImg = imgDict['illumImg']
    exptime = imgDict['exptime']
    nRows,nCols = np.shape(flatImg)

    nanMask = np.isnan(rawImg) | np.isnan(flatImg) | np.isnan(illumImg)

    rawImg = np.ma.array(rawImg,mask=nanMask)
    flatImg = np.ma.array(flatImg,mask=nanMask)
    illumImg = np.ma.array(illumImg,mask=nanMask)

    bClipData = True
    sig=3.
    if bClipData:
        iters=None
        cenfunc = np.ma.median
        rawImg = sigma_clip(rawImg,sig=sig,iters=iters,cenfunc=cenfunc)
        flatImg = sigma_clip(flatImg,sig=sig,iters=iters,cenfunc=cenfunc)
        illumImg = sigma_clip(illumImg,sig=sig,iters=iters,cenfunc=cenfunc)
        
        clipMask = rawImg.mask | flatImg.mask | illumImg.mask
        rawImg.mask = clipMask
        flatImg.mask = clipMask
        illumImg.mask = clipMask
        
        print 'removed ',np.sum(clipMask)-np.sum(nanMask),'pixels'

    rawList = rawImg[~rawImg.mask]
    flatList = flatImg[~flatImg.mask]
    illumList = illumImg[~illumImg.mask]

    #plotArray(title='with flatcal',image=flatImg)
Beispiel #9
0
def findStats(predFlux, measFlux, RA, Dec, refRA, refDec, outDir, info0, info1,
    info2, name1, name2):
    """
    Calculates statistics and saves them to 'stats.txt'
    """
    import os
    import numpy as np
    from ..operations_lib import calculateSeparation
    try:
        from astropy.stats.funcs import sigma_clip
    except ImportError:
        from astropy.stats import sigma_clip

    ratio = measFlux / predFlux
    meanRatio = np.mean(ratio)
    stdRatio = np.std(ratio)
    clippedRatio = sigma_clip(ratio)
    meanClippedRatio = np.mean(clippedRatio)
    stdClippedRatio = np.std(clippedRatio)

    RAOffsets = np.zeros(len(RA))
    DecOffsets = np.zeros(len(Dec))
    for i in range(len(RA)):
        if RA[i] >= refRA[i]:
            sign = 1.0
        else:
            sign = -1.0
        RAOffsets[i] = sign * calculateSeparation(RA[i], Dec[i], refRA[i], Dec[i]).value # deg
        if Dec[i] >= refDec[i]:
            sign = 1.0
        else:
            sign = -1.0
        DecOffsets[i] = sign * calculateSeparation(RA[i], Dec[i], RA[i], refDec[i]).value # deg

    meanRAOffset = np.mean(RAOffsets)
    stdRAOffset = np.std(RAOffsets)
    clippedRAOffsets = sigma_clip(RAOffsets)
    meanClippedRAOffset = np.mean(clippedRAOffsets)
    stdClippedRAOffset = np.std(clippedRAOffsets)

    meanDecOffset = np.mean(DecOffsets)
    stdDecOffset = np.std(DecOffsets)
    clippedDecOffsets = sigma_clip(DecOffsets)
    meanClippedDecOffset = np.mean(clippedDecOffsets)
    stdClippedDecOffset = np.std(clippedDecOffsets)

    stats = {'meanRatio':meanRatio,
             'stdRatio':stdRatio,
             'meanClippedRatio':meanClippedRatio,
             'stdClippedRatio':stdClippedRatio,
             'meanRAOffsetDeg':meanRAOffset,
             'stdRAOffsetDeg':stdRAOffset,
             'meanClippedRAOffsetDeg':meanClippedRAOffset,
             'stdClippedRAOffsetDeg':stdClippedRAOffset,
             'meanDecOffsetDeg':meanDecOffset,
             'stdDecOffsetDeg':stdDecOffset,
             'meanClippedDecOffsetDeg':meanClippedDecOffset,
             'stdClippedDecOffsetDeg':stdClippedDecOffset}

    outLines = ['Statistics from sky model comparison\n']
    outLines.append('------------------------------------\n\n')

    outLines.append('Sky model 1 ({}):\n'.format(name1))
    outLines.append(info1+'\n\n')
    outLines.append('Sky model 2 ({}):\n'.format(name2))
    outLines.append(info2+'\n\n')

    outLines.append(info0+'\n')
    outLines.append('Number of matches found for comparison: {0}\n\n'.format(len(predFlux)))

    outLines.append('Mean flux density ratio (1 / 2): {0}\n'.format(meanRatio))
    outLines.append('Std. dev. flux density ratio (1 / 2): {0}\n'.format(stdRatio))
    outLines.append('Mean 3-sigma-clipped flux density ratio (1 / 2): {0}\n'.format(meanClippedRatio))
    outLines.append('Std. dev. 3-sigma-clipped flux density ratio (1 / 2): {0}\n\n'.format(stdClippedRatio))

    outLines.append('Mean RA offset (1 - 2): {0} degrees\n'.format(meanRAOffset))
    outLines.append('Std. dev. RA offset (1 - 2): {0} degrees\n'.format(stdRAOffset))
    outLines.append('Mean 3-sigma-clipped RA offset (1 - 2): {0} degrees\n'.format(meanClippedRAOffset))
    outLines.append('Std. dev. 3-sigma-clipped RA offset (1 - 2): {0} degrees\n\n'.format(stdClippedRAOffset))

    outLines.append('Mean Dec offset (1 - 2): {0} degrees\n'.format(meanDecOffset))
    outLines.append('Std. dev. Dec offset (1 - 2): {0} degrees\n'.format(stdDecOffset))
    outLines.append('Mean 3-sigma-clipped Dec offset (1 - 2): {0} degrees\n'.format(meanClippedDecOffset))
    outLines.append('Std. dev. 3-sigma-clipped Dec offset (1 - 2): {0} degrees\n\n'.format(stdClippedDecOffset))

    fileName = outDir+'stats.txt'
    statsFile = open(fileName, 'w')
    statsFile.writelines(outLines)
    statsFile.close()

    return stats
Beispiel #10
0
    def instantiate(self, *args):
        '''
        Clear the old NuisanceSampler, instantiate the regions using the stored
        residual spectra, and create a new NuisanceSampler.
        '''

        # threshold for sigma clipping
        sigma = config["sigma_clip"]

        # array that specifies if a pixel is already covered.
        # to start, it should be all False
        covered = np.zeros((self.npoints, ), dtype='bool')

        #average all of the spectra in the deque together
        residual_array = np.array(self.resid_deque)
        if len(self.resid_deque) == 0:
            raise RuntimeError("No residual spectra stored yet.")
        else:
            residuals = np.average(residual_array, axis=0)

        # run the sigma_clip algorithm until converged, and we've identified the outliers
        filtered_data = sigma_clip(residuals, sig=sigma, iters=None)
        mask = filtered_data.mask
        wl = self.wl

        sigma0 = config['region_priors']['sigma0']
        logAmp = config["region_params"]["logAmp"]
        sigma = config["region_params"]["sigma"]

        # Sort in decreasing strength of residual
        self.nregions = 0
        regions = {}

        region_mus = {}
        for w, resid in sorted(zip(wl[mask], np.abs(residuals[mask])),
                               key=itemgetter(1),
                               reverse=True):
            if w in wl[covered]:
                continue
            else:
                # check to make sure region is not *right* at the edge of the echelle order
                if w <= np.min(wl) or w >= np.max(wl):
                    continue
                else:
                    # instantiate region and update coverage

                    # Default amp and sigma values
                    regions[self.nregions] = {
                        "logAmp": logAmp,
                        "sigma": sigma,
                        "mu": w
                    }
                    region_mus[
                        self.nregions] = w  # for evaluating the mu prior
                    self.nregions += 1

                    # determine the stretch of wl covered by this new region
                    ind = (wl >= (w - sigma0)) & (wl <= (w + sigma0))
                    # update the covered regions
                    covered = covered | ind

        # Take the current nuisance positions as a starting point, and add the regions
        starting_dict = self.sampler.params.copy()
        starting_dict["regions"] = regions

        region_mus = np.array([region_mus[i] for i in range(self.nregions)])

        # Setup the priors
        region_priors = config["region_priors"]
        region_priors.update({"mus": region_mus})
        prior_params = {"regions": region_priors}

        # do all this crap again
        cheb_MH_cov = float(config["cheb_jump"])**2 * np.ones((self.npoly, ))
        cov_MH_cov = np.array([
            float(config["cov_jump"][key]) for key in self.sampler.cov_tup
        ])**2
        region_MH_cov = [
            float(config["region_jump"][key])**2
            for key in C.cov_region_parameters
        ]
        regions_MH_cov = np.array(
            [region_MH_cov for i in range(self.nregions)]).flatten()

        nuisance_MH_cov = np.diag(
            np.concatenate((cheb_MH_cov, cov_MH_cov, regions_MH_cov)))

        print(starting_dict)
        print("cov shape {}".format(nuisance_MH_cov.shape))

        # Initialize a new sampler, replacing the old one
        self.sampler = NuisanceSampler(OrderModel=self,
                                       starting_param_dict=starting_dict,
                                       cov=nuisance_MH_cov,
                                       debug=True,
                                       outdir=self.noutdir,
                                       prior_params=prior_params,
                                       order=self.order)

        self.p0 = self.sampler.p0

        # Update the nuisance parameters to the starting values so that we at least have a self.data_mat
        print("Updating nuisance parameter data products to starting values.")
        self.update_nuisance(starting_dict)
        self.lnprob = self.evaluate()

        # To speed up convergence, try just doing a bunch of nuisance runs before
        # going into the iteration pattern
        print("Doing nuisance burn-in for {} samples".format(
            config["nuisance_burn"]))
        self.independent_sample(config["nuisance_burn"])
Beispiel #11
0
    def ubersmoother(self,check=False):
        def plot_ubersmoother(x, y, idx, idx0, smooth=False, labels=None):
            # Plot various steps of the smoothing process
            ax.scatter(x, y, s=60, alpha=0.2)

            try:
                idx0_len = len(idx0)
            except:
                idx0_len = 0

            if idx0_len > 0:
                ax.scatter(x[idx0], y[idx0],
                           marker='x', c='black', lw=1.5, s=60,
                           label='removed previously')

            ax.scatter(x[idx], y[idx],
                      marker='x', c='red', lw=2.5, s=60,
                      label='removed this loop')
            if smooth:
                ax.plot(x,np.interp(x, x[~idx], y[~idx]),
                        c='orange', lw=2,
                        label='smoothed')

            # Set axis
            ax.axis([np.min(x), np.max(x), np.min(y)*0.98, np.max(y)*1.02])

            # Set labels
            ax.legend(loc='best')
            ax.set_title(labels[0])
            ax.set_xlabel(labels[1])
            ax.set_ylabel(labels[2])

        #######################
        # Initializing variables
        time = self.time
        phase = self.phase
        flux = self.flux
        ferr = self.ferr

        # Find the number of full periods in lightcurve
        n_epochs = float(len(flux))
        n_epochs_period = float(len(np.where((time >= time[0]) &
                (time < time[0]+period))[0]))
        n_full_periods = np.ceil(n_epochs / n_epochs_period)

        # Append nans to flux so there an integer number of periods
        n_pad = (n_epochs_period*n_full_periods) - n_epochs
        ind_pad = np.append(range(0,len(flux)),[-1]*n_pad)
        ind_reshape = np.reshape(ind_pad,(n_full_periods,n_epochs_period))

        flux_smooth = np.array(flux[:])

        outlier_mask = np.zeros(flux.shape,dtype=bool)

        ###########################
        # SMOOTHING THE LIGHTCURVE:
        #   1) Slice by period-width slices (starting at 1 period)
        #   2) Sort the flux by phase
        #      A. if slice width == period: rolling median
        #      B. if slice width > period: median_filtering + sigma_clipping
        #   3) Shift slice over one period, repeat steps.
        #   4) Store outliers in mask over which to interpolate later.
        #      width is 1 period, median filtering+sigma_clipping if > 1 period)

        # Loop up to slices of 10*period OR
        # if fewer than 10 periods, # of periods
        if n_full_periods < 10:
            n_slices = n_full_periods
        else: n_slices = 10

        if check:
            plt_ct = 1

        for p in np.arange(1,n_slices):
            for s in np.arange(0,n_full_periods-p):
                indices = [0,p]+s

                # Start and end indices
                start_INDX = indices[0].astype("int")
                end_INDX = indices[1].astype("int")

                # Select region of interest
                ind_region = ind_reshape[start_INDX:end_INDX].flatten()
                msk = ind_region < 0
                ind_region = ind_region[~msk]

                flux_region = flux_smooth[ind_region]
                time_region = time[ind_region]
                phase_region = phase[ind_region]

                # Phase the data
                phasesort = np.argsort(phase_region)
                flux_region_phasesort = flux_region[phasesort]
                time_region_phasesort = time_region[phasesort]
                phase_region_phasesort = phase_region[phasesort]
                ind_region_phasesort = ind_region[phasesort]

                if p == 1:
                    #########################
                    ### Rolling median method
                    threshold = 3.
                    flux_pandas = rolling_median(flux_region_phasesort,
                            window=5, center=True, freq=period)
                    diff = np.abs(flux_region_phasesort - flux_pandas)

                    outlier_idx = diff > np.std(diff[~np.isnan(diff)])
                    outlier_mask[ind_region_phasesort] = outlier_idx

                    if check and s==0:
                        fig = plt.figure(figsize=(12,8))
                        ax = fig.add_subplot(111)

                        labels = ['Rolling Median on 1-folded Period Slices',
                                  'Phase',
                                  'Flux (counts)']
                        plot_ubersmoother(phase_region_phasesort,
                                          flux_region_phasesort,
                                          outlier_idx,
                                          None,
                                          labels=labels)

                        plt.show()

                else:
                    ###################################
                    # Median_filtering + sigma_clipping.
                    # Median_filtering boxsize = 3% of period (scales with npts)
                    box = round(len(phase_region_phasesort)*0.03)
                    flux_region_filt = median_filter(flux_region_phasesort,
                            size=box, mode="reflect")#,
                            #cval=np.median(flux_region_phasesort))
                    clip = sigma_clip(flux_region_phasesort - flux_region_filt, 2.0)

                    # Sort clip into time spacing and save outliers in outliermask
                    timesort = np.argsort(time_region_phasesort)
                    clip_timesort = clip[timesort]
                    outlier_mask[ind_region[np.where(clip_timesort.mask == True)[0]]] = True

                    if check and s==0 and p in [2,9]:
                        if plt_ct == 1:
                            fig = plt.figure(figsize=(12,12))

                        ax = fig.add_subplot(2,1,plt_ct)
                        labels = ['Sigma Clipping on %s-folded Period Slices' %(p),
                                  'Phase',
                                  'Flux (counts)']
                        plot_ubersmoother(phase_region_phasesort,
                                          flux_region_phasesort,
                                          clip.mask,
                                          outlier_mask[ind_region_phasesort],
                                          labels=labels)
                        ax.plot(phase_region_phasesort, flux_region_filt,
                                c='red', lw=1.5)

                        if plt_ct == 3:
                            fig.subplots_adjust(hspace=0.40)
                            plt.show()
                        else:
                            plt_ct+=1

        # Interpolate across missing points
        flux_smooth = np.interp(time, time[~outlier_mask], flux[~outlier_mask])
        # If long-cadence data, insert raw transits, apply gaussian filter to
        # smooth. Gaussian_filter causes us to underestimate the bottoms of
        # the wd occultations.
        if "LC" in self.filename:
            only_transit = np.where((phase >= 0.73) & (phase <= 0.77))[0]
            flux_smooth[only_transit] = flux[only_transit]
            flux_smooth_final = gaussian_filter(flux_smooth, 1, order=0)
        # For the short-cadence data, median_filter (290) entire lightcurve,
        # then insert median_filtered (23 window) wd occultations
        elif "SC" in self.filename:
            only_transit = np.where((phase >= 0.74) & (phase <= 0.78))[0]
            flux_smooth_no_transit = median_filter(flux_smooth, size=290)
            flux_smooth_transit = median_filter(flux_smooth, size=23)
            flux_smooth_no_transit[only_transit] = flux_smooth_transit[only_transit]
            flux_smooth_final = flux_smooth_no_transit

        if check:
            fig = plt.figure(figsize=(12,8))
            ax = fig.add_subplot(111)

            ax.plot(time, flux, '-ko', lw=2, alpha=0.6)
            ax.plot(time, flux_smooth_final, c="#32cd32", lw=2, alpha=0.7)

            ax.axis([np.min(time), np.max(time),
                     np.min(flux)*0.98, np.max(flux)*1.02])

            ax.set_title('Final Smoothed Flux')
            ax.set_xlabel('Time (days)')
            ax.set_ylabel('Flux (counts')
            plt.show()

        self.flux_smooth = flux_smooth_final
        self.outlier_mask = outlier_mask

        # Use smoothed flux to normalize. Mask out occultations
        self.normalize()
Beispiel #12
0
def correct_overscan(amplifier, bias_slice=None, data_slice=None, clip=3.):
    """Extract bias-corrected, exposed parts of raw GMOS fits file

    Bias is determined from selected regions of overscan, clipping outliers

    Parameters
    ----------
    amplifier: ~fits.ImageHDU
    bias_slice: list of 2 slices
        slices in Y, X to use for determining the bias level
        (default=None: use 'BIASSEC' from header)
    data_slice: list of 2 slices
        slices in Y, X that give good parts of the array
        (default=None: use 'DATASEC' from header)
    clip: ~float
        number of standard deviations from the median within which overscan
        values have to be to be included.

    Returns
    -------
    ~fits.ImageHDU
        bias-corrected exposed parts

    Note
    ----
    The output fits structure will have the following new headers:
    APPLIED DATASEC: section of initial data array extracted
    APPLIED BIASSEC: section of initial data array used to determine bias level
    BIAS:     bias value subtracted (ADU)
    BIASSTD:  standard deviation of values going in to bias value (ADU)
              (should be similar to read noise; this is not checked here)
    BIASUNC:  formal uncertainty in bias (BIASSTD/sqrt(N), in ADU)

    The following headers are updated
    CRPIX1:   X reference pixel for the world coordinate system
    CRPIX1:   Y reference pixel for the world coordinate system
    CCDSEC:   the part of the chip represented by the data section
    DETSEC:   the part of the overall array represented by the data section
    """

    if bias_slice is None:
        bias_slice = sec2slice(amplifier.header['BIASSEC'])

    if data_slice is None:
        data_slice = sec2slice(amplifier.header['DATASEC'])
        data_subslice = None
    else:
        # ensure we get numbers only, rather than relative indices,
        # otherwise cannot store it as DATASEC header later
        data_slice = [slice(*s.indices(shape))
                      for s, shape in zip(data_slice, amplifier.data.shape)]
        # get equivalent subslice of 'DATASEC' for updating CCDSEC, DETSEC
        data_subslice = get_subslices(sec2slice(amplifier.header['DATASEC']),
                                      data_slice)

    overscan = amplifier.data[bias_slice]

    if clip:
        clipped = stats.sigma_clip(overscan, clip, 1)
    else:
        clipped = overscan

    bias_estimate, bias_std = clipped.mean(), clipped.std()
    bias_unc = bias_std/np.sqrt(clipped.size)

    outamp = fits.ImageHDU(amplifier.data[data_slice]-bias_estimate,
                           amplifier.header)

    # add new headers with information on what was done
    outamp.header['APPLIED DATASEC'] \
        = slice2sec(data_slice), 'Section considered good'
    outamp.header['APPLIED BIASSEC'] \
        = slice2sec(bias_slice), 'Section used to estimate bias'
    outamp.header['BIAS'] = bias_estimate, 'ADU'
    outamp.header['BIASSTD'] = bias_std, 'ADU'
    outamp.header['BIASUNC'] = bias_unc, 'ADU'
    # adjust remove/existing headers as appropriate
    outamp.header.remove('BIASSEC')  # no BIAS section left
    outamp.header.remove('DATASEC')  # all of image is now DATA
    outamp.header['CRPIX1'] += data_slice[1].start
    outamp.header['CRPIX2'] += data_slice[0].start
    if data_subslice:
        binning = np.fromstring(amplifier.header['CCDSUM'], sep=' ',
                                dtype=np.int)
        ccd_subslice = adjust_subslices(data_subslice, binning)
        outamp.header['CCDSEC'] = slice2sec(slice_slices(
            sec2slice(amplifier.header['CCDSEC']), ccd_subslice))
        outamp.header['DETSEC'] = slice2sec(slice_slices(
            sec2slice(amplifier.header['DETSEC']), ccd_subslice))

    return outamp
    beforeImg[~stableMask] = 0
    afterImg[~stableMask] = 0
    print 'masked stable sdev<{}%'.format(sdevThreshold)

bCoolMask = False
if bCoolMask:
    effIntImg = np.load('stableMask.npz')['effIntImg']
    effIntThreshold = .999
    mask = effIntImg >= effIntThreshold
    beforeImg[~mask] = 0
    afterImg[~mask] = 0
    print 'masked effIntTime fraction >{}'.format(effIntThreshold)

nRows,nCols = np.shape(beforeImg)

clippedBeforeImg = sigma_clip(beforeImg,sig=3)
clipMask = clippedBeforeImg.mask
beforeImg[clipMask] = 0
afterImg[clipMask] = 0

deadBeforeImg = (beforeImg == 0)
deadAfterImg = (afterImg == 0)

beforeList = beforeImg[beforeImg != 0]
afterList = afterImg[afterImg != 0]

afterImg[deadAfterImg] = np.nan
beforeImg[deadBeforeImg] = np.nan

plotArray(title='without flatcal',image=beforeImg)
#plotArray(title='with flatcal',image=afterImg)
Beispiel #14
0
def plotFluxRatiosDist(predFlux,
                       measFlux,
                       RA,
                       Dec,
                       refRA,
                       refDec,
                       labels,
                       outDir,
                       name1,
                       name2,
                       format,
                       clip=True):
    """
    Makes plot of measured-to-predicted flux ratio vs. distance from center
    """
    import numpy as np
    from ..operations_lib import calculateSeparation
    try:
        from astropy.stats.funcs import sigma_clip
    except ImportError:
        from astropy.stats import sigma_clip
    try:
        import matplotlib
        if matplotlib.get_backend() is not 'Agg':
            matplotlib.use("Agg")
        import matplotlib.pyplot as plt
        from matplotlib.ticker import FuncFormatter
    except Exception as e:
        raise ImportError('PyPlot could not be imported. Plotting is not '
                          'available: {0}'.format(e.message))

    if name1 is None:
        name1 = 'Model 1'
    if name2 is None:
        name2 = 'Model 2'

    ratio = measFlux / predFlux
    separation = np.zeros(len(measFlux))
    for i in range(len(measFlux)):
        separation[i] = calculateSeparation(RA[i], Dec[i], refRA, refDec).value

    fig = plt.figure(figsize=(7.0, 5.0))
    ax1 = plt.subplot(1, 1, 1)
    ax1.plot(separation, ratio, 'o')
    plt.title('Flux Density Ratios ({0} / {1})'.format(name1, name2))
    plt.ylabel('Flux density ratio')
    plt.xlabel('Distance from center (deg)')

    # Calculate mean ratio and std dev.
    if clip:
        mean_ratio = np.mean(sigma_clip(ratio))
        std = np.std(sigma_clip(ratio))
    else:
        mean_ratio = np.mean(ratio)
        std = np.std(ratio)
    ax1.set_ylim(0, 2.0 * mean_ratio)
    xmin, xmax, ymin, ymax = plt.axis()
    ax1.plot([0.0, xmax], [mean_ratio, mean_ratio], '--g')
    ax1.plot([0.0, xmax], [mean_ratio + std, mean_ratio + std], '-.g')
    ax1.plot([0.0, xmax], [mean_ratio - std, mean_ratio - std], '-.g')

    if labels is not None:
        xls = separation
        yls = ratio
        for label, xl, yl in zip(labels, xls, yls):
            plt.annotate(label,
                         xy=(xl, yl),
                         xytext=(-2, 2),
                         textcoords='offset points',
                         ha='right',
                         va='bottom')

    plt.savefig(outDir + 'flux_ratio_vs_distance.{}'.format(format),
                format=format)
Beispiel #15
0
def collapse(array_in, region=None, method='sum', sigma=False):
    """
    Collapse a slice of a datacube, with a given mode, along the 
    wavelength slice.
    
    This function handles both numpy.array (with no sigma clipping) 
    and numpy.ma masked arrays (with sigma clipping, from astropy.stast.funcs)
    
    Parameters
    ----------
    array_in : numpy.ndarray
               The input datacube array.
    region :  The region of the datacube to collapse, in the form of [a, b], 
              where a is the 1st slice boundary, and b is the 2nd + 1 slice boundary. 
              Can be omitted to collapse entire z-axis.
            
    method : {'median', 'sum', 'mean'}
             The method of collapse.
             
    sigma : bool, optional
            Flag for wether to perform sigma clipping or not (default is False).
                
    Returns
    -------
    collapsedArray : numpy.ndarray
                     Collapsed image.
    
    Example usage:
    
        1. >> result = ifu_3d_collapse(cube, region=[1000, 1999], method='median')
        
        Median collapse cube from z-axis frames 1000-2000.
        
        2. >> result = ifu_3d_collapsed(cube, method='mean', sigma=2.5)
        
        Mean collapse a cube along the entire z-axis, performing a sigma
        clipping of 2.5.
    """
    
    # Extract the desired slice...
    if not region:
        print('(3d_collapse): Entire z-axis will be collapsed!')
        slice_array = array_in
    else:
        print('(3d_collapse): z-axis collapse limits: ', region)
        slice_array = array_in[region[0]:region[1], :, :]
        
    # ... and perform the desired operation, based on input mode.
    collapsed_array = _arrayCollapse(slice_array, method=method)
    
    if sigma:
        # Import sigma_clip from astropy
        from astropy.stats.funcs import sigma_clip
        
        # Perform sigma clipping on input cube
        print('(3d_collapse): Clipping data ...')
        clipped = sigma_clip(slice_array, sigma, iters=None, axis=0, copy=True)
        
                
        # Compare the clipped sample to determine wether we need to 
        # recalculate the collapse        
        if np.array_equal(clipped.compressed(), slice_array.flatten()): 
            print('Arrays are exactly the same, no clipping required.')
        else:
            # Now that we have the sigma mask, recalculate the collapse...            
            collapsed_array = _maskedCollapse(clipped, method)

    # Returns the collapsed array
    #print('(3d_collapse): Shape of returned array:', collapsed_array.shape)
    return collapsed_array
Beispiel #16
0
def findStats(predFlux, measFlux, RA, Dec, refRA, refDec, outDir, info0, info1,
              info2, name1, name2):
    """
    Calculates statistics and saves them to 'stats.txt'
    """
    import os
    import numpy as np
    from ..operations_lib import calculateSeparation
    try:
        from astropy.stats.funcs import sigma_clip
    except ImportError:
        from astropy.stats import sigma_clip

    ratio = measFlux / predFlux
    meanRatio = np.mean(ratio)
    stdRatio = np.std(ratio)
    clippedRatio = sigma_clip(ratio)
    meanClippedRatio = np.mean(clippedRatio)
    stdClippedRatio = np.std(clippedRatio)

    RAOffsets = np.zeros(len(RA))
    DecOffsets = np.zeros(len(Dec))
    for i in range(len(RA)):
        if RA[i] >= refRA[i]:
            sign = 1.0
        else:
            sign = -1.0
        RAOffsets[i] = sign * calculateSeparation(RA[i], Dec[i], refRA[i],
                                                  Dec[i]).value  # deg
        if Dec[i] >= refDec[i]:
            sign = 1.0
        else:
            sign = -1.0
        DecOffsets[i] = sign * calculateSeparation(RA[i], Dec[i], RA[i],
                                                   refDec[i]).value  # deg

    meanRAOffset = np.mean(RAOffsets)
    stdRAOffset = np.std(RAOffsets)
    clippedRAOffsets = sigma_clip(RAOffsets)
    meanClippedRAOffset = np.mean(clippedRAOffsets)
    stdClippedRAOffset = np.std(clippedRAOffsets)

    meanDecOffset = np.mean(DecOffsets)
    stdDecOffset = np.std(DecOffsets)
    clippedDecOffsets = sigma_clip(DecOffsets)
    meanClippedDecOffset = np.mean(clippedDecOffsets)
    stdClippedDecOffset = np.std(clippedDecOffsets)

    stats = {
        'meanRatio': meanRatio,
        'stdRatio': stdRatio,
        'meanClippedRatio': meanClippedRatio,
        'stdClippedRatio': stdClippedRatio,
        'meanRAOffsetDeg': meanRAOffset,
        'stdRAOffsetDeg': stdRAOffset,
        'meanClippedRAOffsetDeg': meanClippedRAOffset,
        'stdClippedRAOffsetDeg': stdClippedRAOffset,
        'meanDecOffsetDeg': meanDecOffset,
        'stdDecOffsetDeg': stdDecOffset,
        'meanClippedDecOffsetDeg': meanClippedDecOffset,
        'stdClippedDecOffsetDeg': stdClippedDecOffset
    }

    outLines = ['Statistics from sky model comparison\n']
    outLines.append('------------------------------------\n\n')

    outLines.append('Sky model 1 ({}):\n'.format(name1))
    outLines.append(info1 + '\n\n')
    outLines.append('Sky model 2 ({}):\n'.format(name2))
    outLines.append(info2 + '\n\n')

    outLines.append(info0 + '\n')
    outLines.append('Number of matches found for comparison: {0}\n\n'.format(
        len(predFlux)))

    outLines.append('Mean flux density ratio (1 / 2): {0}\n'.format(meanRatio))
    outLines.append(
        'Std. dev. flux density ratio (1 / 2): {0}\n'.format(stdRatio))
    outLines.append(
        'Mean 3-sigma-clipped flux density ratio (1 / 2): {0}\n'.format(
            meanClippedRatio))
    outLines.append(
        'Std. dev. 3-sigma-clipped flux density ratio (1 / 2): {0}\n\n'.format(
            stdClippedRatio))

    outLines.append(
        'Mean RA offset (1 - 2): {0} degrees\n'.format(meanRAOffset))
    outLines.append(
        'Std. dev. RA offset (1 - 2): {0} degrees\n'.format(stdRAOffset))
    outLines.append(
        'Mean 3-sigma-clipped RA offset (1 - 2): {0} degrees\n'.format(
            meanClippedRAOffset))
    outLines.append(
        'Std. dev. 3-sigma-clipped RA offset (1 - 2): {0} degrees\n\n'.format(
            stdClippedRAOffset))

    outLines.append(
        'Mean Dec offset (1 - 2): {0} degrees\n'.format(meanDecOffset))
    outLines.append(
        'Std. dev. Dec offset (1 - 2): {0} degrees\n'.format(stdDecOffset))
    outLines.append(
        'Mean 3-sigma-clipped Dec offset (1 - 2): {0} degrees\n'.format(
            meanClippedDecOffset))
    outLines.append(
        'Std. dev. 3-sigma-clipped Dec offset (1 - 2): {0} degrees\n\n'.format(
            stdClippedDecOffset))

    fileName = outDir + 'stats.txt'
    statsFile = open(fileName, 'w')
    statsFile.writelines(outLines)
    statsFile.close()

    return stats
Beispiel #17
0
    def instantiate(self, *args):
        '''
        Clear the old NuisanceSampler, instantiate the regions using the stored
        residual spectra, and create a new NuisanceSampler.
        '''

        # threshold for sigma clipping
        sigma=config["sigma_clip"]

        # array that specifies if a pixel is already covered.
        # to start, it should be all False
        covered = np.zeros((self.npoints,), dtype='bool')

        #average all of the spectra in the deque together
        residual_array = np.array(self.resid_deque)
        if len(self.resid_deque) == 0:
            raise RuntimeError("No residual spectra stored yet.")
        else:
            residuals = np.average(residual_array, axis=0)

        # run the sigma_clip algorithm until converged, and we've identified the outliers
        filtered_data = sigma_clip(residuals, sig=sigma, iters=None)
        mask = filtered_data.mask
        wl = self.wl

        sigma0 = config['region_priors']['sigma0']
        logAmp = config["region_params"]["logAmp"]
        sigma = config["region_params"]["sigma"]

        # Sort in decreasing strength of residual
        self.nregions = 0
        regions = {}

        region_mus = {}
        for w, resid in sorted(zip(wl[mask], np.abs(residuals[mask])), key=itemgetter(1), reverse=True):
            if w in wl[covered]:
                continue
            else:
                # check to make sure region is not *right* at the edge of the echelle order
                if w <= np.min(wl) or w >= np.max(wl):
                    continue
                else:
                    # instantiate region and update coverage

                    # Default amp and sigma values
                    regions[self.nregions] = {"logAmp":logAmp, "sigma":sigma, "mu":w}
                    region_mus[self.nregions] = w # for evaluating the mu prior
                    self.nregions += 1

                    # determine the stretch of wl covered by this new region
                    ind = (wl >= (w - sigma0)) & (wl <= (w + sigma0))
                    # update the covered regions
                    covered = covered | ind

        # Take the current nuisance positions as a starting point, and add the regions
        starting_dict = self.sampler.params.copy()
        starting_dict["regions"] = regions

        region_mus = np.array([region_mus[i] for i in range(self.nregions)])

        # Setup the priors
        region_priors = config["region_priors"]
        region_priors.update({"mus":region_mus})
        prior_params = {"regions":region_priors}

        # do all this crap again
        cheb_MH_cov = float(config["cheb_jump"])**2 * np.ones((self.npoly,))
        cov_MH_cov = np.array([float(config["cov_jump"][key]) for key in self.sampler.cov_tup])**2
        region_MH_cov = [float(config["region_jump"][key])**2 for key in C.cov_region_parameters]
        regions_MH_cov = np.array([region_MH_cov for i in range(self.nregions)]).flatten()

        nuisance_MH_cov = np.diag(np.concatenate((cheb_MH_cov, cov_MH_cov, regions_MH_cov)))

        print(starting_dict)
        print("cov shape {}".format(nuisance_MH_cov.shape))

        # Initialize a new sampler, replacing the old one
        self.sampler = NuisanceSampler(OrderModel=self, starting_param_dict=starting_dict, cov=nuisance_MH_cov,
                                       debug=True, outdir=self.noutdir, prior_params=prior_params, order=self.order)

        self.p0 = self.sampler.p0

        # Update the nuisance parameters to the starting values so that we at least have a self.data_mat
        print("Updating nuisance parameter data products to starting values.")
        self.update_nuisance(starting_dict)
        self.lnprob = self.evaluate()

        # To speed up convergence, try just doing a bunch of nuisance runs before
        # going into the iteration pattern
        print("Doing nuisance burn-in for {} samples".format(config["nuisance_burn"]))
        self.independent_sample(config["nuisance_burn"])