Beispiel #1
0
def test_false_alarm_equivalence(method, normalization, use_errs):
    # Note: the PSD normalization is not equivalent to the others, in that it
    # depends on the absolute errors rather than relative errors. Because the
    # scaling contributes to the distribution, it cannot be converted directly
    # from any of the three normalized versions.
    if not HAS_SCIPY and method in ['baluev', 'davies']:
        pytest.skip("SciPy required")

    kwds = METHOD_KWDS.get(method, None)
    t, y, dy = make_data()
    if not use_errs:
        dy = None
    fmax = 5

    ls = LombScargle(t, y, dy, normalization=normalization)
    freq, power = ls.autopower(maximum_frequency=fmax)
    Z = np.linspace(power.min(), power.max(), 30)
    fap = ls.false_alarm_probability(Z, maximum_frequency=fmax,
                                     method=method, method_kwds=kwds)

    # Compute the equivalent Z values in the standard normalization
    # and check that the FAP is consistent
    Z_std = convert_normalization(Z, len(t),
                                  from_normalization=normalization,
                                  to_normalization='standard',
                                  chi2_ref=compute_chi2_ref(y, dy))
    ls = LombScargle(t, y, dy, normalization='standard')
    fap_std = ls.false_alarm_probability(Z_std, maximum_frequency=fmax,
                                         method=method, method_kwds=kwds)

    assert_allclose(fap, fap_std, rtol=0.1)
Beispiel #2
0
def test_autopower(data):
    t, y, dy = data
    ls = LombScargle(t, y, dy)
    kwargs = dict(samples_per_peak=6, nyquist_factor=2,
                  minimum_frequency=2, maximum_frequency=None)
    freq1 = ls.autofrequency(**kwargs)
    power1 = ls.power(freq1)
    freq2, power2 = ls.autopower(**kwargs)

    assert_allclose(freq1, freq2)
    assert_allclose(power1, power2)
Beispiel #3
0
def test_autopower(data):
    t, y, dy = data
    ls = LombScargle(t, y, dy)
    kwargs = dict(samples_per_peak=6, nyquist_factor=2,
                  minimum_frequency=2, maximum_frequency=None)
    freq1 = ls.autofrequency(**kwargs)
    power1 = ls.power(freq1)
    freq2, power2 = ls.autopower(**kwargs)

    assert_allclose(freq1, freq2)
    assert_allclose(power1, power2)
Beispiel #4
0
def test_false_alarm_smoketest(method, normalization):
    if not HAS_SCIPY and method in ['baluev', 'davies']:
        pytest.skip("SciPy required")

    kwds = METHOD_KWDS.get(method, None)
    t, y, dy = make_data()
    fmax = 5

    ls = LombScargle(t, y, dy, normalization=normalization)
    freq, power = ls.autopower(maximum_frequency=fmax)
    Z = np.linspace(power.min(), power.max(), 30)

    fap = ls.false_alarm_probability(Z, maximum_frequency=fmax,
                                     method=method, method_kwds=kwds)

    assert len(fap) == len(Z)
    if method != 'davies':
        assert np.all(fap <= 1)
        assert np.all(fap[:-1] >= fap[1:])  # monotonically decreasing
Beispiel #5
0
def test_distribution(null_data, normalization, with_errors, fmax=40):
    t, y, dy = null_data
    if not with_errors:
        dy = None

    N = len(t)
    ls = LombScargle(t, y, dy, normalization=normalization)
    freq, power = ls.autopower(maximum_frequency=fmax)
    z = np.linspace(0, power.max(), 1000)

    # Test that pdf and cdf are consistent
    dz = z[1] - z[0]
    z_mid = z[:-1] + 0.5 * dz
    pdf = ls.distribution(z_mid)
    cdf = ls.distribution(z, cumulative=True)
    assert_allclose(pdf, np.diff(cdf) / dz, rtol=1E-5, atol=1E-8)

    # psd normalization without specified errors produces bad results
    if not (normalization == 'psd' and not with_errors):
        # Test that observed power is distributed according to the theoretical pdf
        hist, bins = np.histogram(power, 30, normed=True)
        midpoints = 0.5 * (bins[1:] + bins[:-1])
        pdf = ls.distribution(midpoints)
        assert_allclose(hist, pdf, rtol=0.05, atol=0.05 * pdf[0])
Beispiel #6
0
 def bootstrapped_power():
     resample = rng.randint(0, len(y), len(y))  # sample with replacement
     ls_boot = LombScargle(t, y[resample], dy[resample])
     freq, power = ls_boot.autopower(normalization=normalization,
                                     maximum_frequency=fmax)
     return power.max()