Beispiel #1
0
 def _get_catalog(self):
     """Returns GAIA catalog for current telescope coordinates."""
     if self._catalog_coords is None or self._catalog_coords.separation(
             self.telescope.real_pos) > 10. * u.arcmin:
         self._catalog = Gaia.query_object_async(
             coordinate=self.telescope.real_pos, radius=1. * u.deg)
     return self._catalog
Beispiel #2
0
def get_gaia_cat(ims, cat_name='gaia'):
    """Get the Gaia catalog for the area of input images"""
    from calc_bounds import bounds, get_footprints

    print 'Calculating coordinate ranges for Gaia query:'
    footprint_list = map(get_footprints, ims)
    ras, decs = bounds(footprint_list)

    ra_midpt = (np.amax(ras)+np.amin(ras))/2.
    dec_midpt = (np.amax(decs)+np.amin(decs))/2.
    ra_width = (np.amax(ras)-np.amin(ras))
    dec_height = (np.amax(decs)-np.amin(decs))

    print '\nPerforming Gaia query:'
    coord = SkyCoord(ra=ra_midpt, dec=dec_midpt, unit=(u.degree, u.degree), frame='icrs')
    width = Quantity(ra_width, u.deg)
    height = Quantity(dec_height, u.deg)
    r = Gaia.query_object_async(coordinate=coord, width=width, height=height)
    print 'Sources returned: {}'.format(len(r))

    assert len(r) > 0, 'No sources found in Gaia query\n'

    cat_file_name = '{}.cat'.format(cat_name)
    print 'Writing Gaia source catalog: {}\n'.format(cat_file_name)
    Table([r['ra'], r['dec']]).write(cat_file_name, format='ascii.fast_commented_header')
    return cat_file_name
Beispiel #3
0
def radec_gaia_stars(ra,
                     dec,
                     radius=1.0,
                     width=None,
                     height=None,
                     verbose=False,
                     tap_url=None):
    """Search for bright stars using GAIA catalog.

    TODO:
        Should be absorbed by the object for image later.

    TODO:
        Should have a version that just uses the local catalog.
    """
    # Central coordinate
    radec = SkyCoord(ra, dec, unit=('deg', 'deg'), frame='icrs')

    # Default searching radius is 1.0 deg
    r_search = Quantity(radius, u.degree)

    if width is not None:
        w_search = Quantity(width, u.degree)
        if height is None:
            # Search in a square
            h_search = w_search
        else:
            h_search = Quantity(height, u.degree)

    # Search for stars
    if tap_url is not None:
        from astroquery.gaia import TapPlus, GaiaClass
        Gaia = GaiaClass(TapPlus(url=tap_url))
    else:
        from astroquery.gaia import Gaia

    if width is not None:
        gaia_results = Gaia.query_object_async(coordinate=radec,
                                               width=w_search,
                                               height=h_search,
                                               verbose=verbose)
    else:
        gaia_results = Gaia.query_object_async(coordinate=radec,
                                               radius=r_search,
                                               verbose=verbose)

    return gaia_results
def get_gaia_stars(name, width):
    result_table = Simbad.query_object(name)
    ra, dec = result_table["RA"][0], result_table["DEC"][0]

    coord = SkyCoord(ra=ra, dec=dec, unit=(u.degree, u.degree), frame='icrs')
    r = Gaia.query_object_async(coordinate=coord, width=width, height=width)

    return r
def query_gaia():
    # Westerlund 1
    coord = SkyCoord(ra="16 47 04.00", dec="-45 51 04.9", unit=(u.degree, u.degree), frame='icrs')
    width = 1 * u.deg
    height = 1 * u.deg
    r = Gaia.query_object_async(coordinate=coord, width=width, height=height)

    return r
Beispiel #6
0
def searchGaiaArchives(ra, dec, height, width):
    coord = SkyCoord(ra=ra * u.deg, dec=dec * u.deg)
    width = u.Quantity(width * u.deg)
    height = u.Quantity(height * u.deg)
    results = Gaia.query_object_async(coordinate=coord,
                                      width=width,
                                      height=height)
    return np.array(list(results['ra'])), np.array(list(results['dec']))
Beispiel #7
0
def gaia_xmatch_results():
    # get a sample of stars to cross match
    center_coord = SkyCoord(ra=280, dec=-60, unit=(u.degree, u.degree), frame='icrs')
    width = u.Quantity(0.05, u.deg)
    height = width
    with warnings.catch_warnings():
        warnings.filterwarnings('ignore')
        sample_of_stars = Gaia.query_object_async(coordinate=center_coord, width=width, height=height)

    # cross match the coordinates and check we get back the same thing
    coordinates_of_stars = pd.DataFrame({'ra': sample_of_stars['ra'], 'de': sample_of_stars['dec']})
    xmatch_results = mwtools.xmatch.Gaia_DR2_Xmatch(coordinates_of_stars)
    return xmatch_results
Beispiel #8
0
def get_gaia_cat(input_images, cat_name='gaia'):
    """
    Get the Gaia catalog for the area of input images.

    This function queries Gaia for a table of sources. It determines
    the dimensions to use for the query by finding the sky positions
    of the corners of each of the images.

    """


    print('Calculating coordinate ranges for Gaia query:')
    footprint_list = map(get_footprints, input_images)


    merged = []
    for im in footprint_list:
        for ext in im:
            merged.append(ext)
    merged = np.vstack(merged)
    ras = merged[:,0]
    decs = merged[:,1]

    ra_midpt = (max(ras)+min(ras))/2.
    dec_midpt = (max(decs)+min(decs))/2.

    ra_width = (np.amax(ras)-np.amin(ras))
    dec_height = (np.amax(decs)-np.amin(decs))

    coord = SkyCoord(ra=ra_midpt, dec=dec_midpt, unit=(u.degree, u.degree), frame='icrs')
    width = Quantity(ra_width, u.deg) * 1.1
    height = Quantity(dec_height, u.deg) * 1.1
    r = Gaia.query_object_async(coordinate=coord, width=width, height=height)
    assert len(r) > 0, 'No sources found in Gaia query\n'
    print('Sources returned: {}'.format(len(r)))


    cat = r['ra', 'dec']
    cat.write('{}.cat'.format(cat_name), format='ascii.commented_header')
    return '{}.cat'.format(cat_name)
Beispiel #9
0
def gaia_results(image,saveas=None):
	# image wcs and frame, for conversions pixels/skycoord
	wcs,frame=WCS(image.header),image.header['RADESYS'].lower()
	# coord of strong lensing galaxy
	ra=image.header['CAT-RA']
	dec=image.header['CAT-DEC']
	coord = SkyCoord(ra,dec,unit=(u.hourangle,u.deg))

	# the pixscale is same along x&y and rotated to default (N up, E left) cdi_j ~ delta_ij
	cdi_i = image.header['CD1_1'] # deg/pixel
	naxis = image.header['NAXIS1'] # naxis1=naxis2
	radius = 3600*cdi_i*naxis/2 # approx 800 arcsec entire image
	radius*=.75 # do 3/4 of that
	# do the search
	r = Gaia.query_object_async(coordinate=coord, radius=radius*u.arcsec)

	if saveas:
		if not os.path.exists(saveas): 
			os.makedirs(saveas)
		pickle.dump(r,open(saveas+"/gaia_results.pkl","wb"))

	return r,image
Beispiel #10
0
def get_gaia_star(coord_center, radius_arcsec, g_mag_cut=15.0):
    '''
    Retruns list of coordinates of GAIA stars in the field.
    '''
    # set up coordinates
    coord = SkyCoord(ra=coord_center[0][0],
                     dec=coord_center[0][1],
                     unit=(u.degree, u.degree),
                     frame='icrs')
    radius = u.Quantity(radius_arcsec, u.arcsec)
    # query GAIA stars
    gaia_stars = Gaia.query_object_async(coordinate=coord, radius=radius)
    # choose stars with proper motion and mag cut
    prop_motion = np.sqrt(gaia_stars['pmra'].data.data**2 +
                          gaia_stars['pmdec'].data.data**2)
    idx_good_stars = (
        (gaia_stars['astrometric_excess_noise'].data.data < 1.0) &
        (prop_motion < 20.0).data &
        (gaia_stars['phot_g_mean_mag'].data.data > g_mag_cut)).astype(bool)
    print('number of stars found in GAIA :', np.sum(idx_good_stars))
    coord_gaia = SkyCoord(ra=gaia_stars[idx_good_stars]['ra'],
                          dec=gaia_stars[idx_good_stars]['dec'],
                          unit=(u.deg, u.deg))
    return (coord_gaia)
def query_one_star(ra_deg, dec_deg, radius_arcsec=10):

    # get gaia data
    coord = SkyCoord(ra=ra_deg,
                     dec=dec_deg,
                     unit=(u.degree, u.degree),
                     frame='icrs')
    rad = u.Quantity(float(radius_arcsec), u.arcsec)
    rG = Gaia.query_object_async(coordinate=coord, radius=rad)
    # return NaN if no GAIA star is found
    if len(rG) == 0:
        return np.repeat(np.nan, 18).reshape(9, 2)

    # get 2MASS data
    r2 = Vizier.query_region(coord, radius=rad, catalog='II/246')
    # return NaN if no 2MASS star is found
    if (r2 == None) or (len(r2) == 0):
        return np.repeat(np.nan, 18).reshape(9, 2)

    # step through possible matches
    for i in range(len(rG)):
        for j in range(len(r2)):

            # get giaa parameters
            par, epar = rG['parallax'][i] + .03, rG['parallax_error'][i]
            Gmag = rG['phot_g_mean_mag'][i]
            GBPmag = rG['phot_bp_mean_mag'][i]
            FBP = rG['phot_bp_mean_flux'][i]
            eFBP = rG['phot_bp_mean_flux_error'][i]
            eGBPmag = -2.5 * np.log10(FBP / (FBP + eFBP))
            GRPmag = rG['phot_rp_mean_mag'][i]
            FRP = rG['phot_rp_mean_flux'][i]
            eFRP = rG['phot_rp_mean_flux_error'][i]
            eGRPmag = -2.5 * np.log10(FRP / (FRP + eFRP))

            # get 2MASS photometry
            Hmag, Kmag, eKmag = r2[j]['Hmag'][0], r2[j]['Kmag'][0], \
                                r2[j]['e_Kmag'][0]

            # change bad values to NaN
            if np.ma.is_masked(par) or par <= 0: par, epar = np.nan, np.nan
            if np.ma.is_masked(epar) or epar <= 0: par, epar = np.nan, np.nan
            if np.ma.is_masked(Gmag): Gmag = np.nan
            if np.ma.is_masked(GBPmag): GBPmag, eGBPmag = np.nan, np.nan
            if np.ma.is_masked(eGBPmag): GBPmag, eGBPmag = np.nan, np.nan
            if np.ma.is_masked(GRPmag): GRPmag, eGRPmag = np.nan, np.nan
            if np.ma.is_masked(eGRPmag): GRPmag, eGRPmag = np.nan, np.nan
            if np.ma.is_masked(Hmag): Hmag = np.nan
            if np.ma.is_masked(Kmag): Kmag, eKmag = np.nan, np.nan
            if np.ma.is_masked(eKmag): Kmag, eKmag = np.nan, np.nan

            # check that GAIA and 2MASS photometry aproximately match
            if np.ma.is_masked(par) or np.ma.is_masked(Gmag):
                match = False
            else:
                matches = np.zeros(4).astype(bool)
                matches[0], _, _ = does_G_K_match(Gmag, Hmag, Kmag)
                matches[1], _, _ = does_GBP_K_match(GBPmag, Hmag, Kmag)
                matches[2], _, _ = does_GRP_K_match(GRPmag, Hmag, Kmag)
                matches[3], _, _ = does_GBP_GRP_match(GBPmag, GRPmag, Hmag,
                                                      Kmag)
                match = np.all(matches)

            if match:
                dist, mu = compute_distance_modulus(unp.uarray(par, epar))
                print unp.nominal_values(dist)
                l, b = coord.galactic.l.deg, coord.galactic.b.deg
                AK = compute_AK_mwdust(l, b, unp.nominal_values(dist),
                                       unp.std_devs(dist))
                MK = compute_MK(unp.uarray(Kmag, eKmag), mu, AK)
                Rs = MK2Rs(MK)
                Teff = gaia2Teff(unp.uarray(GBPmag, eGBPmag),
                                 unp.uarray(GRPmag, eGRPmag))
                Ms = MK2Ms(MK)
                return [par,epar], [Kmag,eKmag], \
                    [unp.nominal_values(dist), unp.std_devs(dist)], \
                    [unp.nominal_values(mu), unp.std_devs(mu)], \
                    [unp.nominal_values(AK), unp.std_devs(AK)], \
                    [unp.nominal_values(MK), unp.std_devs(MK)], \
                    [unp.nominal_values(Rs), unp.std_devs(Rs)], \
                    [unp.nominal_values(Teff), unp.std_devs(Teff)], \
                    [unp.nominal_values(Ms), unp.std_devs(Ms)], \

    # return NaN if not found a match by now
    return np.repeat(np.nan, 18).reshape(9, 2)
Beispiel #12
0
print("   - RA = {:0.2f} +/- {:0.2f}; Dec = {:0.2f} +/- {:0.2f}".format(
    RA, dRA, DEC, dDEC))
print(GAIAcoord)  #; sys.exit()
print("")

#Check if we already have the Gaia catalog
if os.path.exists(GaiaTable):
    gaia_cat = ascii.read(GaiaTable, format="ipac")
    print("## Already have a Gaia catalog with " + str(len(gaia_cat)) +
          " sources.")
    print("## To get a new one rename or remove " + GaiaTable)
else:
    #Get the GAIA catalog
    print(">> Querying the GAIA catalog ....")
    gaia_cat = Gaia.query_object_async(coordinate=GAIAcoord,
                                       width=dRA,
                                       height=dDEC)
    print(" - Downloaded GAIA-DR2 catalog with " + str(len(gaia_cat)) +
          ' sources')

    #Add fluxes in uJy
    gaia_cat['g'] = 10**((gaia_cat['phot_g_mean_mag'] - 23.9) / -2.5)
    gaia_cat['bp'] = 10**((gaia_cat['phot_bp_mean_mag'] - 23.9) / -2.5)
    gaia_cat['rp'] = 10**((gaia_cat['phot_rp_mean_mag'] - 23.9) / -2.5)

    ascii.write(gaia_cat, GaiaTable, format="ipac",
                overwrite=True)  #save the catalog
    print("  ==> Wrote GAIA-DR2 catalog to ", GaiaTable)

    #fix a bug in the ipac table writer
    fixcmd = "sed -i -e \"s/'null'/ null /g\" " + GaiaTable
Beispiel #13
0
    print(i, name)

    sleep(1)
    if True:
        #    try:
        radec = dat["pos"][sysi]
        sep = dat["sep"][sysi]
        sp = dat["sp"][sysi]

        print(radec)
        c = SkyCoord("J" + radec, unit=(u.hourangle, u.deg))

        width = u.Quantity(5, u.arcsec)
        height = u.Quantity(5, u.arcsec)
        #GAIA
        r = Gaia.query_object_async(coordinate=c, width=width, height=height)
        plx = None
        if len(r["parallax"]) == 0:
            sw = False
        elif type(r["parallax"][0]) == np.float64:
            plx = r["parallax"][0]
            sw = True
        else:
            sw = False
        print("GAIA", plx)

        Simbad.SIMBAD_URL = "http://simbad.u-strasbg.fr/simbad/sim-script"
        Simbad.add_votable_fields("parallax", "flux(V)", "flux(R)", "flux(J)",
                                  "flux(H)", "flux(K)", "pmra", "pmdec")

        result_table = Simbad.query_region(c, radius='0d0m5s')
Beispiel #14
0
def query_one_TIC(theta, radius_arcsec=10):

    # get gaia data
    assert len(theta) == 9
    ra_deg, dec_deg, GAIAmag, Jmag, e_Jmag, Hmag, e_Hmag, Kmag, e_Kmag = theta
    coord = SkyCoord(ra=ra_deg,
                     dec=dec_deg,
                     unit=(u.degree, u.degree),
                     frame='icrs')
    rad = u.Quantity(float(radius_arcsec), u.arcsec)
    rG = Gaia.query_object_async(coordinate=coord, radius=rad)
    # return NaN if no GAIA star is found
    if len(rG) == 0:
        return np.repeat(np.nan, 20).reshape(10, 2)

    # step through possible matches
    for i in range(len(rG)):

        # get gaia parameters
        par, epar = rG['parallax'][i] + .029, rG['parallax_error'][i]
        GAIAmag_dr2 = rG['phot_g_mean_mag'][i]
        GBPmag = rG['phot_bp_mean_mag'][i]
        FBP = rG['phot_bp_mean_flux'][i]
        eFBP = rG['phot_bp_mean_flux_error'][i]
        eGBPmag = -2.5 * np.log10(FBP / (FBP + eFBP))

        GRPmag = rG['phot_rp_mean_mag'][i]
        FRP = rG['phot_rp_mean_flux'][i]
        eFRP = rG['phot_rp_mean_flux_error'][i]
        eGRPmag = -2.5 * np.log10(FRP / (FRP + eFRP))

        # change bad values to NaN
        if np.ma.is_masked(par) or par <= 0: par, epar = np.nan, np.nan
        if np.ma.is_masked(epar) or epar <= 0: par, epar = np.nan, np.nan
        if np.ma.is_masked(GBPmag): GBPmag, eGBPmag = np.nan, np.nan
        if np.ma.is_masked(eGBPmag): GBPmag, eGBPmag = np.nan, np.nan
        if np.ma.is_masked(GRPmag): GRPmag, eGRPmag = np.nan, np.nan
        if np.ma.is_masked(eGRPmag): GRPmag, eGRPmag = np.nan, np.nan

        # check that GAIA and 2MASS photometry aproximately match
        if np.isnan(par) or np.isnan(GBPmag) or np.isnan(GRPmag):
            match = False
        elif GAIAmag == GAIAmag_dr2:
            match = True
        else:
            matches = np.zeros(4).astype(bool)
            matches[0], _, _ = does_G_K_match(GAIAmag_dr2, Hmag, Kmag)
            matches[1], _, _ = does_GBP_K_match(GBPmag, Hmag, Kmag)
            matches[2], _, _ = does_GRP_K_match(GRPmag, Hmag, Kmag)
            matches[3], _, _ = does_GBP_GRP_match(GBPmag, GRPmag, Hmag, Kmag)
            match = np.all(matches)

        if match:
            dist, mu = compute_distance_modulus(unp.uarray(par, epar))
            l, b = coord.galactic.l.deg, coord.galactic.b.deg
            AK = compute_AK_mwdust(l, b, unp.nominal_values(dist),
                                   unp.std_devs(dist))
            MK = compute_MK(unp.uarray(Kmag, e_Kmag), mu, AK)
            Rs = MK2Rs(MK)
            Teff = gaia2Teff(unp.uarray(GBPmag, eGBPmag),
                             unp.uarray(GRPmag, eGRPmag),
                             unp.uarray(Jmag, e_Jmag),
                             unp.uarray(Hmag, e_Hmag))
            Ms = MK2Ms(MK)

            # ***gbp and grp used to have switched positions here
            return [par,epar], [GBPmag,eGBPmag], [GRPmag,eGRPmag], \
                [unp.nominal_values(dist), unp.std_devs(dist)], \
                [unp.nominal_values(mu), unp.std_devs(mu)], \
                [unp.nominal_values(AK), unp.std_devs(AK)], \
                [unp.nominal_values(MK), unp.std_devs(MK)], \
                [unp.nominal_values(Rs), unp.std_devs(Rs)], \
                [unp.nominal_values(Teff), unp.std_devs(Teff)], \
                [unp.nominal_values(Ms), unp.std_devs(Ms)], \

    # return NaN if not found a match by now
    return np.repeat(np.nan, 20).reshape(10, 2)
Beispiel #15
0
ixf = 0
for line in lines:
	cos = line.split()
	ra1 = float(cos[1])
	dec1 = float(cos[2])
	ra2 = float(cos[12])
	dec2 = float(cos[13])
	bp1 = float(cos[-4])
	bp2 = float(cos[-2])

	#print ra1,dec1,ra2,dec2
	if dec1 < 30 and dec2 < 30:
		coord1 = SkyCoord(ra=ra1, dec=dec1, unit=(u.deg, u.deg), frame='icrs')
		coord2 = SkyCoord(ra=ra2, dec=dec2, unit=(u.deg, u.deg), frame='icrs')

		r1 = Gaia.query_object_async(coordinate=coord1, radius=u.Quantity(10./3600., u.deg))
		print len(r1)
		pmra = r1[0]['pmra']
		pmdec = r1[0]['pmdec']
		parallax = r1[0]['parallax']
		epmra = r1[0]['pmra_error']
		epmdec = r1[0]['pmdec_error']
		eparallax = r1[0]['parallax_error']	

		drop1,drop2 = False, False
		drop3,drop4 = False, False

		if len(r1)>1:
			for r in r1[1:]:
				if  (np.absolute(r['pmra']-pmra)/max(epmra,r['pmra_error']) < 5) and (np.absolute(r['pmdec']-pmdec)/max(epmdec,r['pmdec_error'])<5) and (np.absolute(r['parallax']-parallax)/eparallax < 5):
					drop1 = True
Beispiel #16
0
def querycat_gaia(ralist=None, declist=None, cone_search=False,
                  width=10.0, height=10.0, radius=5.0, dr2=False,
                test=False, debug=False):
    """


    """

    import time

    from astropy.table import Table, vstack

    import astropy.units as u
    from astropy.coordinates import SkyCoord
    from astroquery.gaia import Gaia

    if dr2:
        help(Gaia)
        gaiadr2_table = Gaia.load_table('gaiadr2.gaia_source')
        for column in (gaiadr1_table.get_columns()):
            print(column.get_name())

    if debug:
        help(Gaia)

    width = u.Quantity(width/3600.0, u.degree)
    height = u.Quantity(height/3600.0, u.degree)
    radius = u.Quantity(radius/3600.0, u.degree)


    if test is True:
        ralist = [180.0]
        declist = [0.0]

        width = u.Quantity(30.0, u.arcsec)
        height = u.Quantity(30.0, u.arcsec)
        radius = u.Quantity(15.0, u.arcsec)

    result_nrows = 0
    for isource, (ra, dec) in enumerate(zip(ralist, declist)):

        coord = SkyCoord(ra=ra, dec=dec,
                         unit=(u.degree, u.degree),
                         frame='icrs')

        t0 = time.time()
        if not cone_search:
            result = Gaia.query_object_async(coordinate=coord,
                                             width=width, height=height)
            # help(result)
            if debug:
                result.pprint()
                result.info('stats')

        if cone_search:
            job = Gaia.cone_search_async(coord, radius)
            # help(job)
            result = job.get_results()

        print('Number of rows:', len(result))
        print('Elapsed time(secs):',time.time() - t0)

        if debug:
           help(result)
           result.pprint()
           result.info('stats')


        result_nrows = result_nrows + len(result)
        if isource == 0:
            result_all = result
        if isource > 0:
           result_all = vstack([result_all, result])

#def fix_vot_object():
    table = result_all
    print('icol, format, dtype')
    # help(table)
    # help(table.columns)
    for (icol, column) in enumerate(table.columns):
        print(icol, table.columns[icol].name,
              table.columns[icol].format,
              table.columns[icol].dtype)
        # convert the columns for dtype = object which is not
        # supported by FITs to bool
        if table.columns[icol].dtype == 'object':
            colname = table.columns[icol].name
            NewColumn = Table.Column(table[colname].data, dtype='bool')
            table.replace_column(colname, NewColumn)
    print()


    result_all = table

    print('Number of Gaia sources returned:', result_nrows, len(result_all))

    return result_all
Beispiel #17
0
def search(image, headinfo, target_coords, syntax, catalog_syntax, filter_):

    """
    Search area around transient/target location in photometric catalogs

    Current catalog (selectable in syntax):

        - Skymapper: Southern Hemisphere
        - Pan Starrs: North of declination -30 degree
        - Apass: All-sky survey
        - 2MASS: JHK all sky survey

    Future:
        - SDSS: Future implemtation
        - Ability to make custom catalog from different surveys


    Input:

        - Image: Numpy 2D array
        - headinfo: astropy.io.fits.header.Header
        - target_coords: astropy.coordinates.sky_coordinate.SkyCoord
        - syntax: dict
        - catalog_syntax: dict
        - filter_: str

    Output:

        - data:  pandas DataFrame

    """

    import warnings

    if not syntax['catalog_warnings'] or syntax['master_warnings']:
            warnings.filterwarnings("ignore")

    import numpy as np
    import os,sys
    import requests
    import pathlib
    import shutil
    import os.path
    import logging
    from functools import reduce

    from astropy.table import Table
    from astropy.wcs import wcs
    from astroquery.vizier import Vizier
    from astropy.io.votable import parse_single_table
    from astropy.coordinates import Angle

    from autophot.packages.functions import r_dist
    logger = logging.getLogger(__name__)

    try:

        # Get wxs information
        w1 = wcs.WCS(headinfo)

        # Radius around target
        radius  = float(syntax['radius'])

        # Target name, if applicable
        target = syntax['target_name']

        # Get workdirectory location,, create directory if needed
        dirname = os.path.join(syntax['wdir'],'catalog_queries')
        pathlib.Path(dirname).mkdir(parents = True, exist_ok=True)

        '''
        Getting target Ra and Dec

        - if target is none but a Ra and DEC is given, create new target name

        - if ra and dec not given us center of image as location - for quick reduction of image

        '''
        # if target or it's ra/dec - set target name
        if target == None:
             if syntax['target_ra'] != None and syntax['target_dec'] != None:
                 target = 'target_ra_'+str(round(syntax['target_ra']))+'_dec_'+str(round(syntax['target_dec']))
                 logger.info('New target name: %s' %target)
             else:
                 #  if not just call target
                 target = 'target'

        # Search limitation with Pan Starrs rlimited to 0.5 deg
        if radius > 0.5 and syntax['catalog'] == 'pan_starrs' :
                    logger.warning('Search Limitation with PanStarrs API -> Radius = 0.5 [deg] ')
                    radius = 0.5

        # Choosen catalog for input.yml, create directory for catalog if needed
        catalog_dir = syntax['catalog']
        pathlib.Path(os.path.join(dirname ,catalog_dir)).mkdir(parents = True, exist_ok=True)

        # Folder for target, create directory if needed
        target_dir =   reduce(os.path.join,[dirname,catalog_dir,target.lower()])
        pathlib.Path(target_dir).mkdir(parents = True, exist_ok=True)

        # Filename of fetchec catalog
        fname = str(target) + '_r_' + str(radius)

        # Can force to use certain catalog - untested 03-10-19
        if syntax['force_catalog_csv']:
            logger.info('Using '+syntax['force_catalog_csv_name']+' as catalog')
            fname = str(syntax['force_catalog_csv_name']) + '_r_' + str(radius)

        # if catalog is found via it's filename - use this and return data
        if os.path.isfile(os.path.join(target_dir,fname+'.csv')):
            logger.info('Catalog found for Target: %s\nCatalog: %s \nFile: %s' % (target,str(catalog_dir).upper(),fname))
            data = Table.read(os.path.join(target_dir,fname+'.csv'),format = 'csv')
            data = data.to_pandas()

        else:
            # If no previously catalog found - look for one
            logger.info('Searching for new catalog: %s ' % syntax['catalog'])

            if syntax['catalog'] in ['gaia']:

                import astropy.units as u
                from astroquery.gaia import Gaia
                import warnings
                warnings.filterwarnings('ignore')

                width = u.Quantity(radius, u.deg)
                height = u.Quantity(radius, u.deg)

                data = Gaia.query_object_async(coordinate=target_coords, width=width, height=height)

                data = data.to_pandas()
                data.to_csv(fname+'.csv', sep=',',index = False)

                # Move file to new location - 'catalog queries'
                shutil.move(os.path.join(os.getcwd(), fname+'.csv'),
                            os.path.join(target_dir, fname+'.csv'))

                warnings.filterwarnings('default')

            if syntax['catalog'] in ['apass','2mass']:

                # No row limit
                Vizier.ROW_LIMIT = -1
                catalog_search = Vizier.query_region(target_coords,
                                                     radius = Angle(radius,'deg'),
                                                     catalog = syntax['catalog'])

                # Select first catalog from list
                data = catalog_search[0].to_pandas()
                data.to_csv(fname+'.csv', sep=',',index = False)


                # Move file to new location - 'catalog queries'
                shutil.move(os.path.join(os.getcwd(), fname+'.csv'),
                            os.path.join(target_dir, fname+'.csv'))


            # some catalogs need specific download path using 'requests'
            if syntax['catalog'] in ['pan_starrs','skymapper']:

                mindet=1

                if syntax['catalog'] == 'pan_starrs':

                    server=('https://archive.stsci.edu/'+'panstarrs/search.php')
                    params = {'RA': target_coords.ra.degree, 'DEC': target_coords.dec.degree,
                              'SR': radius, 'max_records': 10000,
                              'outputformat': 'VOTable',
                              'ndetections': ('>%d' % mindet)}

                if syntax['catalog'] == 'skymapper':

                    server=('http://skymapper.anu.edu.au/sm-cone/public/query?')
                    params = {'RA': target_coords.ra.degree, 'DEC': target_coords.dec.degree,
                              'SR': radius,
                              'RESPONSEFORMAT': 'VOTABLE'}

                with open('temp.xml', "wb") as f:

                    logger.info('Downloading from %s'  % syntax['catalog'] )
                    response = requests.get(server,params = params)
                    f.write(response.content)

                # Parse local file into astropy.table object
                data = parse_single_table('temp.xml')

                # Delete temporary file
                os.remove('temp.xml')

                # Convert table to dataframe
                data_table = data.to_table(use_names_over_ids=True)
                data = data_table.to_pandas()

                # invalid entries in panstarrs are -999 - change to nans
                if syntax['catalog'] == 'pan_starrs':
                    data = data.replace(-999,np.nan)

                # No sources in field - temporary fix - will add "check different catalog"
                if len(data) == 0:
                    logging.critical('Catalog: %s : does not cover field' %  syntax['catalog'])
                    sys.exit()

                # Save to csv and move to 'catalog_queries'
                data.to_csv(fname+'.csv',index = False)

                shutil.move(os.path.join(os.getcwd(), fname+'.csv'),
                            os.path.join(target_dir,  fname+'.csv'))


        # Add in x and y pixel locatins under wcs
        x_pix,y_pix = w1.wcs_world2pix(data[catalog_syntax['RA']], data[catalog_syntax['DEC']],1)

        data.insert(loc = 5, column = 'x_pix', value = x_pix)
        data.insert(loc = 6, column = 'y_pix', value = y_pix)

        # Remove boundary sources
        data = data[data.x_pix < image.shape[1] - syntax['pix_bound']]
        data = data[data.x_pix > syntax['pix_bound']]
        data = data[data.y_pix < image.shape[0] - syntax['pix_bound']]
        data = data[data.y_pix > syntax['pix_bound']]

        logger.info('Catalog length: %d' % len(data))

        warnings.filterwarnings("default")

    except Exception as e:
        logger.exception(e)
        data = None

    return data
def query_nearby_gaia(tic,
                      ra_deg,
                      dec_deg,
                      Npixsearch=5,
                      Npixplt=3,
                      pltt=True):
    '''Search nearby stars within some number of TESS pixels.'''
    # download TPF file
    bjds, tpfs = read_TESS_TPF(tic)
    TPFfname = glob.glob('MAST/TESS/TIC%i/tess*_tp.fits' % tic)
    assert len(TPFfname) > 0
    hdu = fits.open(TPFfname[0])

    # get reference pixel and pixelscale
    pixscale_ra, pixscale_dec = abs(hdu[1].header['1CDLT4']), \
                                abs(hdu[1].header['2CDLT4'])
    refra, refdec = hdu[1].header['1CRVL4'], hdu[1].header['2CRVL4']
    #R = np.matrix([[hdu[1].header['11PC4'],hdu[1].header['12PC4']],
    #               [hdu[1].header['21PC4'],hdu[1].header['22PC4']]])

    # search gaia data
    coord = SkyCoord(ra=ra_deg,
                     dec=dec_deg,
                     unit=(u.degree, u.degree),
                     frame='icrs')
    radius_arcsec = float(Npixsearch * pixscale_ra * 3600)
    rad = u.Quantity(radius_arcsec, u.arcsec)
    rG = Gaia.query_object_async(coordinate=coord, radius=rad)
    assert len(rG) > 0

    # get source data
    ras = np.array(rG['ra'])
    e_ras = np.array(rG['ra_error'])
    decs = np.array(rG['dec'])
    e_decs = np.array(rG['dec_error'])
    Gmags = np.array(rG['phot_g_mean_mag'])

    # plotting
    if pltt:
        fig, ax = plt.subplots(1)
        ax.plot(ra_deg, dec_deg, 'bd', ms=8, label='Input source position')
        cax = ax.scatter(ras,
                         decs,
                         c=Gmags,
                         s=50 * 10**(-.4 * (Gmags - 15)),
                         edgecolor='k',
                         alpha=.9,
                         cmap=truncate_colormap(plt.get_cmap('hot_r'), .1, .9))
        ax.plot(ras, decs, 'k.')
        cbar_axes = fig.add_axes([.1, .1, .85, .04])
        cbar = fig.colorbar(cax, cax=cbar_axes, orientation='horizontal')
        cbar.set_label('GAIA mag')
        ax.set_xlabel('RA [deg]'), ax.set_ylabel('Dec [deg]')

        # plot search annulus
        r = np.repeat(radius_arcsec, 100) / 3600
        theta = np.linspace(0, 2 * np.pi, r.size)
        ax.plot(r * np.cos(theta) + ra_deg,
                r * np.sin(theta) + dec_deg,
                'k--',
                lw=.9)

        # add patches of a TESS pixels
        assert Npixplt % 2 == 1
        Xcorners = range(-int(np.floor(Npixplt / 2.)),
                         int(np.floor(Npixplt / 2.)) + 1)
        Ycorners = range(-int(np.floor(Npixplt / 2.)),
                         int(np.floor(Npixplt / 2.)) + 1)
        for i in Xcorners:
            for j in Ycorners:
                lowercorner_ra,lowercorner_dec = (-.5+i)*pixscale_ra + refra, \
                                                 (-.5+j)*pixscale_dec + refdec
                rect = Rectangle((lowercorner_ra, lowercorner_dec),
                                 pixscale_ra,
                                 pixscale_dec,
                                 lw=1,
                                 edgecolor='k',
                                 facecolor='none')
                ax.add_patch(rect)
        ax.set_xlim((ras.min() - pixscale_ra, ras.max() + pixscale_ra))
        ax.set_ylim((decs.min() - pixscale_dec, decs.max() + pixscale_dec))
        ax.set_title('TIC %i (%i sources found)' % (tic, len(rG)), fontsize=10)
        ax.legend(loc='upper left', fontsize=10)
        fig.subplots_adjust(bottom=.22, top=.95)
        plt.savefig('plots/gaiasources_tic%i.png' % tic)
        plt.show()
        plt.close('all')

    return ras, e_ras, decs, e_decs, Gmags, radius_arcsec
Beispiel #19
0
    # get image center
    ra_targ = table['CRVAL1'][0]
    print(table)
    dec_targ = table['CRVAL2'][0]
    logger.info(
        "Looking Gaia sources around (%.3f, %.3f) with radius %.3f with less than %.1f mas/yr"
        % (ra_targ, dec_targ, search_radius.value, proper_motion_threshold))
    # improve this using a box like the image https://astroquery.readthedocs.io/en/latest/gaia/gaia.html (width and height)
    coord = SkyCoord(ra=ra_targ, dec=dec_targ, unit=(u.deg, u.deg))
    # query Gaia sources and write the result
    ref_cat = 'gaia_hst.csv'

    max_rows = 3000

    Gaia.ROW_LIMIT = max_rows
    gaia_query = Gaia.query_object_async(coordinate=coord,
                                         radius=search_radius)
    #https://gea.esac.esa.int/archive/documentation/GDR2/Gaia_archive/chap_datamodel/sec_dm_main_tables/ssec_dm_gaia_source.html
    reduced_query = gaia_query['ra', 'dec', 'ra_error', 'dec_error',
                               'phot_g_mean_flux', 'ref_epoch', 'pmra',
                               'pmdec', 'pmra_error', 'pmdec_error',
                               'solution_id']

    ngaia = len(reduced_query)

    # np.abs was giving problems here so just filter twice with 10 and -10 proper motions are in mas
    filter = ((np.abs(reduced_query['pmdec']) < proper_motion_threshold) &
              ((np.abs(reduced_query['pmra']) < proper_motion_threshold)))
    reduced_query = reduced_query[filter]
    reduced_query.write(ref_cat,
                        format='ascii.commented_header',
                        delimiter='\t',
Beispiel #20
0
def hst_button(
    galaxies,
    skymethod='globalmin+match',
    instruments="ACS/WFC",
    prop_ids=None,
    filters=None,
    radius=None,
    filepath=None,
    download_data=True,
    correct_astrometry=True,
    create_mosaic=True,
    jy_conversion=True,
    verbose=False,
    log_filename='hst.log',
):
    """Create a HST mosaic, given a galaxy name.
    
    Using a galaxy name and radius, queries around that object, 
    downloads available HST data and mosaics into a final product. It
    will create separate mosaics for each proposal ID, and the file structure
    will look like ``/galaxy/HST/proposal_id/galaxy_instrument_filter_proposal_id.fits``.
    
    N.B. I must confess to not being well-versed with HST data, so if 
    anyone can help improve this please let me know.
    
    This data button uses a number of tools included in the drizzlepac
    Python package. This includes alignimages/tweakreg and astrodrizzle, 
    which correct astrometry and are specifically tailored for the setup 
    of HST data. This means that 1) creating mosaics with this will likely 
    take a long time and 2) you will need a beefy computer (especially with
    regards to hard drive space).
    
    Args:
        galaxies (str or list): Names of galaxies to create mosaics for.
            Resolved by NED.
        skymethod (str, optional): Method used for AstroDrizzle's background
            matching step. In general, this can be left untouched but for
            mosaics with little overlap, it may be worth playing around 
            with this. For instance, I've had some luck when there isn't
            much overlap between exposures using 'globalmin'. Options are 
            'localmin', 'globalmin+match', 'globalmin', and 'match'. Defaults 
            to 'globalmin+match'.
        instruments (str or list, optional): Instrument to download data 
            for.  Can be any combination of 'ACS/WFC', 'WFC3/IR', 
            'WFC3/UVIS', 'WFPC2/PC', or 'WFPC2/WFC'. If you want all 
            available data for all these instruments, select 'all', but 
            this is not recommended! Defaults to 'ACS/WFC'.
        prop_ids (str or list, optional): Proposal IDs to download data for.
            Defaults to None, which will pull out all proposal IDs for each
            instrument.
        filters (str or list, optional): Filters to download data for.
            The script will look for each filter, for each instrument.
            Defaults to None, which will pull out all applicable filters
            for each instrument, for each proposal ID.
        radius (astropy.units.Quantity, optional): Radius around the 
            galaxy to search for observations. Defaults to None, where
            it will query Ned to get size.
        filepath (str, optional): Path to save the working and output
            files to. If not specified, saves to current working 
            directory.
        download_data (bool, optional): If True, will download data from 
            MAST. Defaults to True.
        correct_astrometry (bool, optional): If True, will perform astrometric
            corrections to the downloaded data using alignimages. Defaults
            to True.
        create_mosaic (bool, optional): Switching this to True will 
            mosaic the data using astrodrizzle as appropriate. Defaults 
            to True.
        jy_conversion (bool, optional): Convert the mosaicked file from
            raw units to Jy/pix. Defaults to True.
        verbose (bool, optional): Can be used to suppress most of the
            output messages produced during the process. Mainly useful
            for debugging. Defaults to False.
        log_filename (str, optional): Will produce a stripped down log
            of what data the code is reducing. By default, will save to
            galaxy/hst.log.
    
    """
    
    if isinstance(galaxies, str):
        galaxies = [galaxies]
        
    if isinstance(instruments,str):
        instruments = [instruments]
        
    if instruments == 'all':
        instruments = ['ACS/WFC',
                       'WFC3/IR','WFC3/UVIS',
                       'WFPC2/PC','WFPC2/WFC']
        
    if isinstance(filters,str):
        filters = [filters]
        
    if isinstance(prop_ids,str):
        prop_ids = [prop_ids]

    if filepath is not None:
        os.chdir(filepath)
        
    orig_dir = os.getcwd()
    
    if radius is not None:
        original_radius = radius.copy()
    else:
        original_radius = None
        
    steps = []
    
    if download_data:
        steps.append(1)
    if correct_astrometry:
        steps.append(2)
    if create_mosaic:
        steps.append(3)
    if jy_conversion:
        steps.append(4)
        
    # Set up folders for various corrections
    
    os.environ['CRDS_SERVER_URL'] = 'https://hst-crds.stsci.edu'
    os.environ['CRDS_PATH'] = orig_dir+'/reference_files'
    os.environ['iref'] = orig_dir+'/reference_files/references/hst/wfc3/'
    os.environ['jref'] = orig_dir+'/reference_files/references/hst/acs/'
    os.environ['uref'] = orig_dir+'/reference_files/references/hst/wfpc2/'
    
    # For large proposals, astrodrizzle can run into file open
    # issues so raise the max file open amount.
    
    _, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
    resource.setrlimit(resource.RLIMIT_NOFILE,(hard,hard))
    
    # Change the temp directory -- if this gets filled up it can cause
    # problems.
    
    orig_tmpdir = os.environ['TMPDIR']
    
    if not os.path.exists('tmp'):
        os.mkdir('tmp')
    os.environ['TMPDIR'] = orig_dir+'/tmp'
        
    for galaxy in galaxies:
        
        if not os.path.exists(galaxy):
            os.mkdir(galaxy)
            
        if not os.path.exists(galaxy+'/HST'):
            os.mkdir(galaxy+'/HST')
            
        if not verbose:
            
            # Various packages used here put out a lot of messages. Silence info messages.
            
            loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict]
            for logger in loggers:
                    logger.setLevel(logging.ERROR)
                    
        # Even if verbose is not True, still print out some useful messages to the 
        # console.
        
        hst_logger = logging.getLogger('data_buttons')
        handler = logging.FileHandler(galaxy+'/'+log_filename,mode='w')
        hst_logger.addHandler(handler)
        hst_logger.addHandler(logging.StreamHandler())
        hst_logger.setLevel(logging.INFO)
        hst_logger.info('Beginning '+galaxy)
        hst_logger.info(' ')
        hst_logger.info(' ')
        
        if radius is None:
            
            try:
 
                size_query = Ned.get_table(galaxy,table='diameters')
                radius = np.max(size_query['NED Major Axis'])/2*u.arcsec
                radius = radius.to(u.deg)
     
            except:
                
                hst_logger.warning(galaxy+' not resolved by Ned, using 0.2deg radius.')
                radius = 0.2*u.degree
 
        obs_table = Observations.query_criteria(objectname=galaxy,
                                                radius=radius,
                                                obs_type='all',
                                                obs_collection='HST')
        
        # Ignore any calibration observations.
        obs_table = obs_table[obs_table['intentType'] == 'science']
        
        for instrument in instruments:
    
            # Pixel sizes for final mosaics selected to match the HLA.
            
            pix_size = {'ACS/HRC':0.025,
                        'ACS/SBC':0.03,
                        'ACS/WFC':0.05,
                        'NICMOS/NIC1':0.025,
                        'NICMOS/NIC2':0.05,
                        'NICMOS/NIC3':0.1,
                        'WFC3/IR':0.09,
                        'WFC3/UVIS':0.04,
                        'WFPC2/PC':0.05,
                        'WFPC2/WFC':0.1}[instrument]
                        
            # Bits to consider good for drizzling.
            
            bits = {'ACS/HRC':256,
                    'ACS/SBC':256,
                    'ACS/WFC':256,
                    'NICMOS/NIC1':0,
                    'NICMOS/NIC2':0,
                    'NICMOS/NIC3':0,
                    'WFC3/IR':768,
                    'WFC3/UVIS':256,
                    'WFPC2/PC':'8,1024',
                    'WFPC2/WFC':'8,1024'}[instrument]
                        
            # Filename extension, in order of preference.
            
            suffixes = {'ACS/WFC':['FLC','FLT'],
                        'WFC3/IR':['FLT'],
                        'WFC3/UVIS':['FLC','FLT'],
                        'WFPC2/PC':[['C0M','C1M']],
                        'WFPC2/WFC':[['C0M','C1M']],
                        }[instrument]
            
            # The instruments often have / in the name, so account for 
            # this in making folders and files.
            
            hst_logger.info('Beginning '+instrument)
            
            if not os.path.exists(galaxy+'/HST/'+instrument.replace('/','_')):
                os.mkdir(galaxy+'/HST/'+instrument.replace('/','_'))
                
            reset_filters = False
            
            instrument_table = obs_table[obs_table['instrument_name'] == instrument]
            
            reset_prop_ids = False
                
            if not prop_ids:
                prop_ids = list(np.unique(instrument_table['proposal_id']))
                reset_prop_ids = True
                
            hst_logger.info('Available proposal IDs: '+','.join(prop_ids))
            hst_logger.info(' ')
                
            for prop_id in prop_ids:
                
                hst_logger.info('Proposal ID: '+str(prop_id))
                
                prop_table = instrument_table[instrument_table['proposal_id'] == prop_id]
            
                if not filters:
                    filters = list(np.unique(prop_table['filters']))
                    reset_filters = True
                    
                hst_logger.info('Available filters: '+','.join(filters))
            
                for hst_filter in filters:
                    
                    # If we have a highly illegal filter, just skip.
                    # TODO: This needs to be sorted for some fringe
                    # cases, probably.
                     
                    if not hst_filter[0] == 'F':
                        continue
                    
                    hst_logger.info('Filter: '+str(hst_filter))

                    # Pull out available data and download.

                    filter_table = prop_table[prop_table['filters'] == hst_filter]
                    
                    if len(filter_table) == 0:
                        hst_logger.warning('No available data to download. Skipping...')
                        continue
                 
                    data_products_id = Observations.get_product_list(filter_table)
                    
                    for suffix in suffixes:
                    
                        download_table = Observations.filter_products(data_products_id,
                                                                      productSubGroupDescription=suffix,
                                                                      mrp_only=False)
                        
                        if len(download_table) > 0:
                            break
                        
                    if isinstance(suffix,list):
                        filename_exts = [ext.lower() for ext in suffix]
                    else:
                        filename_exts = [suffix.lower()]
                    
                    hst_logger.info(instrument+'/'+prop_id+'/'+hst_filter)
                        
                    if not os.path.exists(galaxy+
                                          '/HST/'+
                                          instrument.replace('/','_')+
                                          '/'+
                                          hst_filter):
                        os.mkdir(galaxy+
                                 '/HST/'+
                                 instrument.replace('/','_')+
                                 '/'+
                                 hst_filter) 
                        
                    if not os.path.exists(galaxy+'/HST/'+prop_id):
                        os.mkdir(galaxy+'/HST/'+prop_id) 
                        
                    full_filepath =  (galaxy+
                                          '/HST/'+
                                          instrument.replace('/','_')+
                                          '/'+
                                          hst_filter+
                                          '/'
                                          +prop_id)
                    
                    if not os.path.exists(full_filepath):
                        os.mkdir(full_filepath)
                     
                    if 1 in steps:
                            
                        # Download files
                        
                        download_mast(download_table,
                                      download_dir="hst_temp/" + galaxy)  
                                    
                        if not os.path.exists(full_filepath+'/raw'):
                            os.mkdir(full_filepath+'/raw')
                        if not os.path.exists(full_filepath+'/outputs'):
                            os.mkdir(full_filepath+'/outputs')    
                                    
                        # Pull out the relevant files, and move to base folder.
                        
                        for filename_ext in filename_exts:
                
                            matches = []
                            for root, _, filenames in os.walk("hst_temp/" + galaxy):
                                for filename in fnmatch.filter(
                                    filenames, "*_"+filename_ext+".fits"
                                ):
                                    matches.append(os.path.join(root, filename))
                    
                            for match in matches:
                                
                                filename = match.split('/')
                    
                                os.rename(match,full_filepath+'/raw/'+filename[-1])
                            
                        # Clean up any temporary files.
        
                        shutil.rmtree("hst_temp/" + galaxy, ignore_errors=True)
                        
                    filename_ext = filename_exts[0]
                        
                    hst_files = glob.glob(full_filepath+'/raw/*_'+filename_ext+'.fits')
                        
                    if 2 in steps:
                            
                        # First, update the WCS information in case it's 
                        # required.
                        
                        for filename_ext in filename_exts:
                             
                            hst_files = glob.glob(full_filepath+'/raw/*_'+filename_ext+'.fits')
                            
                            crds.assign_bestrefs(hst_files,
                                                 sync_references=True)
                            
                            # For WFPC2, the CRDS doesn't download everything
                            # needed. Download the GEIS data files and
                            # rerun the bestrefs assignment.
                            
                            if 'WFPC2' in instrument:
                                 
                                geis_hdrs = glob.glob(os.environ['uref']+'/*h')
                                 
                                for geis_hdr in geis_hdrs:
                                     
                                    geis_data = geis_hdr[:-1]+'d'
                                     
                                    if not os.path.exists(geis_data):
                                         
                                        geis_data = geis_data.split('/')[-1]
                                         
                                        print(geis_data)
                                        print(os.environ['uref'])
                                         
                                        wget.download(
                                            os.environ['CRDS_SERVER_URL']+'/unchecked_get/references/hst/'+geis_data,
                                            out=os.environ['uref'])
                                         
                                crds.assign_bestrefs(hst_files,sync_references=True)
                 
                            for hst_file in hst_files:
                              
                                stwcs.updatewcs.updatewcs(hst_file,
                                                          use_db=False)
                            
                        os.chdir(full_filepath+'/raw')
                        
                        filename_ext = filename_exts[0]
                            
                        hst_files = glob.glob('*_'+filename_ext+'.fits')
                        
                        # Normalize all files.
                        
                        photeq.photeq(', '.join(hst_files),readonly=False)
                        os.rename('photeq.log','../outputs/photeq.log')
                        
                        if 'WFPC' in instrument:
                            
                            # Using tweakreg, align each frame to GAIA.
                            
                            gaia_table = Gaia.query_object_async(coordinate=galaxy, 
                                                                 radius=2*radius)
                            ras = gaia_table['ra']
                            decs = gaia_table['dec']
                             
                            source_table = Table([ras,decs])
                            source_table.write('gaia.cat',
                                               format='ascii.fast_commented_header')
                            
                            tweakreg.TweakReg(hst_files,
                                              imagefindcfg={'threshold':5,'conv_width':3},
                                              refcat='gaia.cat',
                                              #expand_refcat=True,
                                              enforce_user_order=False,
                                              shiftfile=True,
                                              outshifts='shifts.txt',
                                              searchrad=10,
                                              minobj=5,
                                              separation=0,
                                              updatehdr=True,
                                              reusename=True,
                                              wcsname='TWEAK',
                                              interactive=False,
                                              fitgeometry='general',
                                              clean=True,
                                              see2dplot=False
                                              )
                            
                            # Update the c1m files to use the TWEAK
                            # wcs
                            
                            for hst_file in hst_files:
                                
                                dq_file = hst_file.replace('c0','c1')
                                
                                tweakback.tweakback(hst_file,
                                                    dq_file,
                                                    newname='TWEAK')
                            
                            plot_files = glob.glob('*.png')
                            for plot_file in plot_files:
                                os.remove(plot_file)
                                
                            cat_files = glob.glob('*.coo')
                            for cat_file in cat_files:
                                os.remove(cat_file)
                                
                            os.rename('shifts_wcs.fits','../outputs/shifts_wcs.fits')
                            os.rename('tweakreg.log','../outputs/tweakreg.log')
                            os.rename('shifts.txt','../outputs/shifts.txt')
                        
                        elif 'ACS' in instrument or 'WFC3' in instrument:
                             
                            # Correct astrometry using alignimages. First,
                            # correct each frame separately.
                        
                            pool = mp.Pool(mp.cpu_count())
                            
                            suitable_hst_files = pool.map(astrometric_correction,
                                                          hst_files)
                            
                            pool.close()
                            
                            suitable_hst_files = [x for x in suitable_hst_files 
                                                  if x is not None]
                            
                            if len(suitable_hst_files) == 0:
                                hst_logger.warning('Failure with astrometry corrections. Skipping')
                                os.chdir(orig_dir)
                                continue
                            
                            # Now, align every suitable frame simultaneously. 
    
                            output_table = astrometric_correction(suitable_hst_files)
                             
                            with open('../outputs/astrometry.pkl','wb') as table_file:
                                pickle.dump(output_table,table_file)
                            
                        else:
                            
                            raise Exception('Unknown instrument!')
                        
                        os.chdir(orig_dir)
                        
                    os.chdir(full_filepath)
                            
                    if 3 in steps:    
                        
                        os.chdir('raw')
                        
                        if 'WFPC2' in instrument:
                            
                            hst_files = glob.glob('*_c0m.fits')
                            
                            wcskey = 'TWEAK'
                            
                        elif 'ACS' in instrument or 'WFC3' in instrument:
                            
                            with open('../outputs/astrometry.pkl','rb') as table_file:
                             
                                output_table = pickle.load(table_file)
                                    
                            # We only want fits where an acceptable astrometric
                            # solution has been found.
                            
                            suitable_fits = np.where(output_table['fit_qual'] < 5)
#                         (output_table['fit_qual'] >= 1)
                            
                            hst_files = list(output_table[suitable_fits]['imageName'])
                            
                            if len(output_table[suitable_fits]) == 0:
                                hst_logger.warning('Failure with astrometry corrections. Skipping')
                                os.chdir(orig_dir)
                                continue
                            
                            wcskey = ' '
                            
                        else:
                            
                            raise Exception('Unknown instrument!')
                        
                        # Following Dalcanton+ (2012), group exposures into
                        # long (>50s) and short (<=50s), and process for cosmic
                        # rays separately
                        
                        exp_times = []
                        
                        for hst_file in hst_files:
                            
                            hdu = fits.open(hst_file)[0]
                            exp_time = hdu.header['EXPTIME']
                            exp_times.append(exp_time)
                            
                        for exp_group in ['short','long']:
                            
                            hst_files_group = []
                            
                            for i in range(len(exp_times)):
                            
                                if exp_times[i] > 50 and exp_group == 'long':
                                    hst_files_group.append(hst_files[i])
                                elif exp_times[i] <= 50 and exp_group == 'short':
                                    hst_files_group.append(hst_files[i])
                                    
                            if len(hst_files_group) == len(hst_files):
                                
                                exp_group = ''
                                
                            if len(hst_files_group) == 0:
                                continue
                                
                            if len(exp_group) > 0:
                                
                                output_name = '../outputs/'+galaxy+'_'+exp_group
                                drizzle_log_name = '../outputs/astrodrizzle_'+exp_group+'.log'
                                
                            else:
                                
                                output_name = '../outputs/'+galaxy
                                drizzle_log_name = '../outputs/astrodrizzle.log'
        
                            # Perform the mosaicking. Generally, use iminmed.
                            # However, sometimes iminmed will fail so
                            # for the other instruments we'll use imedian as
                            # a fallback.
    
                            combine_types = ['iminmed','imedian']
                            
                            if 'WFPC2' in instrument:
                                combine_nhigh = 1
                            else:
                                combine_nhigh = 0
                            
                            for combine_type in combine_types:
                             
                                try:
                                    
                                    astrodrizzle.AstroDrizzle(
                                        input=hst_files_group,
                                        output=output_name,
                                        preserve=False,
                                        clean=True,
                                        combine_type=combine_type,
                                        combine_nhigh=combine_nhigh,
                                        skymethod=skymethod,
                                        sky_bits=bits,
                                        driz_sep_bits=bits,
                                        driz_sep_fillval=99999,
                                        combine_hthresh=90000,
                                        final_scale=pix_size,
                                        final_bits=bits,
                                        final_fillval=0,
                                        wcskey=wcskey,
                                        final_rot=0,
                                        )
                                    
                                    break
                                    
                                except ValueError:
                                
                                    pass
                                
                            # Move the AstroDrizzle log.
                            
                            os.rename('astrodrizzle.log',
                                      drizzle_log_name)
                            
                    # Move back to the original directory.
                        
                    os.chdir(orig_dir)
                    
                    if 4 in steps:
                        
                        mosaic_outputs = glob.glob(full_filepath+'/outputs/*_sci.fits')
                         
                        for mosaic_output in mosaic_outputs:
                            
                            # Replace any fillvals with NaNs.
                            
                            hdu = fits.open(mosaic_output)[0]
                            hdu.data[hdu.data == 0] = np.nan
                            
                            fits.writeto(mosaic_output,
                                         hdu.data,hdu.header,
                                         overwrite=True)
                            
                            if '_long_' in mosaic_output.split('/')[-1]:
                                
                                new_filename = (galaxy+
                                            '/HST/'
                                            +prop_id
                                            +'/'
                                            +galaxy
                                            +'_'
                                            +instrument.replace('/','_')
                                            +'_'
                                            +hst_filter
                                            +'_'
                                            +prop_id
                                            +'_long.fits')
                                
                            elif '_short_' in mosaic_output.split('/')[-1]:
                                
                                new_filename = (galaxy+
                                            '/HST/'
                                            +prop_id
                                            +'/'
                                            +galaxy
                                            +'_'
                                            +instrument.replace('/','_')
                                            +'_'
                                            +hst_filter
                                            +'_'
                                            +prop_id
                                            +'_short.fits')
                                
                            else:
                                
                                new_filename = (galaxy+
                                            '/HST/'
                                            +prop_id
                                            +'/'
                                            +galaxy
                                            +'_'
                                            +instrument.replace('/','_')
                                            +'_'
                                            +hst_filter
                                            +'_'
                                            +prop_id
                                            +'.fits')
                                
                                
                            convert_to_jy(mosaic_output,
                                          new_filename)
                            
                if reset_filters:
                    filters = None
                    
                hst_logger.info(' ')
        
            if reset_prop_ids:
                prop_ids = None
                
            hst_logger.info(' ')
            
        if original_radius is None:
            radius = None
        else:
            radius = original_radius.copy()
            
    # Clear out the tmp folder and reset to the original.
    
    shutil.rmtree('tmp/', ignore_errors=True)
    os.environ['TMPDIR'] = orig_tmpdir
Beispiel #21
0
import astropy.units as u
from astropy.coordinates import SkyCoord
from astroquery.gaia import Gaia
import numpy as np

Gaia.ROW_LIMIT = -1
coord = SkyCoord(ra=301,
                 dec=-60,
                 unit=(u.degree, u.degree, u.pc),
                 frame='icrs')
width = u.Quantity(0.1, u.deg)
height = u.Quantity(0.1, u.deg)
radius = u.Quantity(0.02, u.deg)
r = Gaia.query_object_async(coordinate=coord,
                            width=width,
                            height=height,
                            radius=radius)
print((r['dist']))
print(type(r['designation']))
print(r.colnames)
# print(r['source_id'])
arr = np.array(r)
print(arr.shape)
Beispiel #22
0
def image_gaia_stars(image,
                     wcs,
                     radius=None,
                     center=None,
                     pixel=0.168,
                     mask_a=694.7,
                     mask_b=4.04,
                     verbose=False,
                     visual=False,
                     size_buffer=1.4,
                     tap_url=None,
                     img_size=(8, 8)):
    """Search for bright stars using GAIA catalog.

    TODO:
        Should be absorbed by the object for image later.

    TODO:
        Should have a version that just uses the local catalog.
    """
    # Central coordinate
    if center is None:
        ra_cen, dec_cen = wcs.wcs_pix2world(image.shape[0] / 2,
                                            image.shape[1] / 2, 0)
        img_cen_ra_dec = SkyCoord(ra_cen,
                                  dec_cen,
                                  unit=('deg', 'deg'),
                                  frame='icrs')
        if verbose:
            print("# The center of the search: RA={:9.5f}, DEC={:9.5f}".format(
                ra_cen, dec_cen))
    else:
        if not isinstance(center, SkyCoord):
            raise TypeError(
                "# The center coordinate should be a SkyCoord object")
        img_cen_ra_dec = center
        if verbose:
            print("# The center of the search: RA={:9.5f}, DEC={:9.5f}".format(
                center.ra, center.dec))

    # Width and height of the search box
    if radius is None:
        img_search_x = Quantity(pixel * (image.shape)[0] * size_buffer,
                                u.arcsec)
        img_search_y = Quantity(pixel * (image.shape)[1] * size_buffer,
                                u.arcsec)
        if verbose:
            print("# The width of the search: {:7.1f}".format(img_search_x))
            print("# The height of the search: {:7.1f}".format(img_search_y))
    else:
        if not isinstance(radius, Quantity):
            raise TypeError(
                "# Searching radius needs to be an Astropy Quantity.")
        if verbose:
            print("# The searching radius is: {:7.2f}".format(radius))

    # Search for stars
    if tap_url is not None:
        with suppress_stdout():
            from astroquery.gaia import TapPlus, GaiaClass
            Gaia = GaiaClass(TapPlus(url=tap_url))

            if radius is not None:
                gaia_results = Gaia.query_object_async(
                    coordinate=img_cen_ra_dec, radius=radius, verbose=verbose)
            else:
                gaia_results = Gaia.query_object_async(
                    coordinate=img_cen_ra_dec,
                    width=img_search_x,
                    height=img_search_y,
                    verbose=verbose)
    else:
        with suppress_stdout():
            from astroquery.gaia import Gaia

            if radius is not None:
                gaia_results = Gaia.query_object_async(
                    coordinate=img_cen_ra_dec, radius=radius, verbose=verbose)
            else:
                gaia_results = Gaia.query_object_async(
                    coordinate=img_cen_ra_dec,
                    width=img_search_x,
                    height=img_search_y,
                    verbose=verbose)

    if gaia_results:
        # Convert the (RA, Dec) of stars into pixel coordinate
        ra_gaia = np.asarray(gaia_results['ra'])
        dec_gaia = np.asarray(gaia_results['dec'])
        x_gaia, y_gaia = wcs.wcs_world2pix(ra_gaia, dec_gaia, 0)

        # Generate mask for each star
        rmask_gaia_arcsec = mask_a * np.exp(
            -gaia_results['phot_g_mean_mag'] / mask_b)

        # Update the catalog
        gaia_results.add_column(Column(data=x_gaia, name='x_pix'))
        gaia_results.add_column(Column(data=y_gaia, name='y_pix'))
        gaia_results.add_column(
            Column(data=rmask_gaia_arcsec, name='rmask_arcsec'))

        if visual:
            fig = plt.figure(figsize=img_size)
            ax1 = fig.add_subplot(111)

            ax1 = display_single(image, ax=ax1)
            # Plot an ellipse for each object
            for star in gaia_results:
                smask = mpl_ellip(xy=(star['x_pix'], star['y_pix']),
                                  width=(2.0 * star['rmask_arcsec'] / pixel),
                                  height=(2.0 * star['rmask_arcsec'] / pixel),
                                  angle=0.0)
                smask.set_facecolor('coral')
                smask.set_edgecolor('coral')
                smask.set_alpha(0.3)
                ax1.add_artist(smask)

            # Show stars
            ax1.scatter(gaia_results['x_pix'],
                        gaia_results['y_pix'],
                        c='orangered',
                        s=100,
                        alpha=0.9,
                        marker='+')

            ax1.set_xlim(0, image.shape[0])
            ax1.set_ylim(0, image.shape[1])

            return gaia_results, fig

        return gaia_results

    return None