Beispiel #1
0
def specmaker(plot, x, y, xmin, xmax, center, trans, ymax, ymin, moddata,
              thickmoddata):
    plot.set_xlim(xmin.value, xmax.value)
    plot.axvline(x=center,
                 color='green',
                 linestyle='--',
                 linewidth=2.0,
                 label='CH3OH')
    plot.set_ylim(ymin, ymax)
    plot.plot(x, y, drawstyle='steps')
    plot.plot(x, moddata, color='brown', label=(r'$\tau<<1$'))
    plot.plot(x, thickmoddata, color='cyan', label=(r'$\tau>1'))
    plot.set_title(trans)
    for mols in range(len(contaminants)):
        contamlabel = 0
        linelistcheck = 0
        for lis in linelistlist:
            if linelistcheck > 0:
                #print(contaminants[mols]+' already plotted.')
                break
            else:
                contamtable = Splatalogue.query_lines(
                    (mins[col + rowoffset] * (1 + z)),
                    (maxs[col + rowoffset] * (1 + z)),
                    energy_max=1840,
                    energy_type='eu_k',
                    chemical_name=contaminants[mols],
                    line_lists=[lis],
                    show_upper_degeneracy=True)
                if len(contamtable) == 0:
                    print('No ' + contaminants[mols] + ' lines in ' + lis +
                          ' frequency range ' + str(mins[col + rowoffset]) +
                          '-' + str(maxs[col + rowoffset]) + '.')
                    continue
                else:
                    linelistcheck += 1
                    print('(' + lis + ') ' + contaminants[mols] +
                          ' contaminants identified for CH3OH ' +
                          mqns[col + rowoffset] + ' at ' +
                          str(mins[col + rowoffset] + linewidth) + ' GHz.')
                    table = utils.minimize_table(contamtable)
                    line = (table['Freq'] * 10**9) / (1 + z)  #Redshifted
                    qns = table['QNs']
                    for g in range(len(table)):
                        if g == 0 and contamlabel == 0:
                            contamline = ax[row, col].axvline(
                                x=line[g],
                                color=colors[mols],
                                label=contaminants[mols])
                            print(contaminants[mols])
                            contamlabel += 1
                        else:
                            ax[row, col].axvline(x=line[g], color=colors[mols])
    '''
def mt(x):
    return minimize_table(
        x,
        columns=[
            'Species',
            'Chemical Name',
            'Resolved QNs',
            'Freq-GHz(rest frame,redshifted)',
            'Meas Freq-GHz(rest frame,redshifted)',
            'Log<sub>10</sub> (A<sub>ij</sub>)',
            'E_U (K)',
            'Upper State Degeneracy',
        ],
    )
def find_lines_in_header(header, return_pixels=False, **kwargs):
    """
    Create a dictionary of line name: line position (in pixel units or
    frequency) for later extraction

    Parameters
    ----------
    header: astropy.io.fits.Header
    return_pixels: bool
        Return the line dictionary with pixel units in the header?
        Otherwises, returns frequency (in GHz)

    Examples
    --------
    >>> from astropy.io import fits
    >>> header = fits.getheader('cubefile.fits')
    >>> linedict = find_lines_in_header(header, energy_max=50,
    ...                                 energy_type='eu_k')
    """

    naxis3 = header["NAXIS3"]
    wcs = WCS(header)

    xarr = np.arange(naxis3)

    r, d = wcs.wcs.crval[:2]
    frequencies = wcs.wcs_pix2world([(r, d, z) for z in xarr], 0)[:, 2]
    unit = u.Unit(header["CUNIT3"])

    lines = splatutils.minimize_table(
        Splatalogue.query_lines(frequencies.min() * unit, frequencies.max() * unit, **kwargs)
    )

    if return_pixels:

        def nearest(x):
            return np.argmin(np.abs(frequencies - x))

        linedict = {row["Species"]: nearest(row["Freq"] * 1e9) for row in lines}
    else:
        linedict = {row["Species"]: row["Freq"] for row in lines}

    return linedict
Beispiel #4
0
    header = fits.getheader(fname)

    freqs = cube.spectral_axis

    numchans = int(
        round(
            np.abs((linewidth.to('Hz')).value /
                   (freqs[1].value - freqs[0].value))))

    freq_max = freqs[np.argmin(freqs)] * (1 + z)  #215*u.GHz
    freq_min = freqs[np.argmax(freqs)] * (1 + z)  #235*u.GHz

    methanol_table = utils.minimize_table(
        Splatalogue.query_lines(freq_min,
                                freq_max,
                                chemical_name=' CH3OH ',
                                energy_max=1840,
                                energy_type='eu_k',
                                line_lists=[linelist],
                                show_upper_degeneracy=True))

    mlines = (methanol_table['Freq'] * 10**9) / (1 + z)
    mqns = methanol_table['QNs']

    temptable = Splatalogue.query_lines(freq_min,
                                        freq_max,
                                        chemical_name=chem,
                                        energy_max=1840,
                                        energy_type='eu_k',
                                        line_lists=[linelist],
                                        show_upper_degeneracy=True)
    if len(temptable) == 0:
freq_max = freqs[(len(freqs) - 1)] * (1 + z)  #235*u.GHz

assert freq_max > freq_min, 'Decreasing frequency axis'

linewidth = 0.00485 * u.GHz  #Half of original 0.0097GHz
lw2 = linewidth / 4
'''Generate methanol table for contaminant search'''
methanol_table = Splatalogue.query_lines(freq_min,
                                         freq_max,
                                         chemical_name=' CH3OH ',
                                         energy_max=1840,
                                         energy_type='eu_k',
                                         line_lists=['JPL'],
                                         show_upper_degeneracy=True)

minmethtable = utils.minimize_table(methanol_table)

mlines = (minmethtable['Freq'] * 10**9) / (1 + z) * u.Hz
mqns = minmethtable['QNs']
meuks = minmethtable['EU_K'] * u.K
meujs = []
for euk in meuks:
    meujs.append(KtoJ(euk))
mdegs = methanol_table['Upper State Degeneracy']

testline = 8
plotwidth = linewidth * 1.5
lwvel = vradio(lw2, mlines[testline])
print(f'Transition: {mqns[testline]}\nEU_K: {meuks[testline]}')

spwwindow = cube.spectral_slab((mlines[testline] - plotwidth),
def line_ids(fn):
    results = []
    Ulines = []

    sp = pyspeckit.Spectrum(fn)

    # this is a bit hackier than I like
    # we'll do all our measurements in Kelvin!
    beams = Beams.from_fits_bintable(fits.open(fn)[1])
    factors = jtok_factors(beams, sp.xarr.to(u.GHz))
    sp.data = sp.data * factors
    sp.unit = u.K

    # want km/s - reference will be ~middle of SPW
    sp.xarr.convert_to_unit(u.km / u.s)

    med = np.nanmedian(sp.data)

    mad = stats.mad_std(sp.data - med)
    detections = (sp.data - med) > 5 * mad

    labels, ct = label(detections)

    for labelid in range(1, ct + 1):
        ssp = sp[labels == labelid]
        try:
            ssp.xarr.convert_to_unit(u.GHz)
            ssp.specfit()
            ssp.specfit.parinfo
            frq = ssp.specfit.parinfo['SHIFT0'].value * ssp.xarr.unit
        except Exception as ex:
            print(ex)
            frq = ssp.xarr.to(u.GHz).mean()
        sq = Splatalogue.query_lines(
            frq * (1 + 0 / 3e5),
            frq * (1 + 75 / 3e5),  # 30/3e5 original lower bound
            only_astronomically_observed=True)
        if len(sq) > 0:
            tbl = utils.minimize_table(sq)
            try:
                total_intensity = ssp.data.sum() * np.abs(
                    ssp.xarr.to(u.km / u.s).cdelt())
            except ValueError:
                total_intensity = ssp.data.sum() * np.abs(
                    sp.xarr.to(u.km / u.s).cdelt())
            peak_intensity = ssp.data.max()
            tbl.add_column(Column(data=total_intensity, name='TotalIntensity'))
            tbl.add_column(Column(data=peak_intensity, name='PeakIntensity'))
            tbl.add_column(Column(data=mad, name='RMS'))
            tbl.add_column(
                Column(data=u.Quantity((-(frq.to(u.GHz).value - tbl['Freq']) /
                                        tbl['Freq'] * constants.c),
                                       u.km / u.s),
                       name='Velocity'))
            #             print(tbl.pprint(max_width=200))
            results.append(tbl)
        else:
            log.warning(f"Frequency {frq.to(u.GHz)} had no hits")
            Ulines.append(frq)

    try:
        match_table = table.vstack(results)
    except ValueError:
        pass
    else:
        #         match_table.remove_column('QNs')
        match_table = table.unique(match_table, keys='Species')
    match_table.sort('Freq')
    print(match_table.pprint(max_width=200))
    print(match_table['Species', 'Freq', 'Velocity'])
    #     match_table.write(f"line_fit_table_{suffix}.ipac", format='ascii.ipac', overwrite=True)
    return match_table
           8:'eight',
           9:'nine',}

tbls = {}


for line in (1,2,3,4,5,6,7,8,9):

    reline = re.compile('^{n}\({n}\).*-{n}'.format(n=line))

    tbl = utils.minimize_table(nh3[np.array([bool(reline.search(x))
                                                  if bool(x) else False
                                                  for x in
                                                  nh3['Resolved QNs']],
                                                 dtype='bool')],
                                    columns=['Species', 'Chemical Name', 'Resolved QNs',
                                             'Freq-GHz', 'Meas Freq-GHz',
                                             'Log<sub>10</sub> (A<sub>ij</sub>)',
                                             'CDMS/JPL Intensity',
                                             'Linelist',
                                             'E_U (K)', 'Upper State Degeneracy'])

    if len(tbl) == 0:
        pass

    # Select only TopModel lines from CDMS/JPL
    tbls[line] = tbl[tbl['Linelist'] == 'TopModel']

for par in ('tau_wts','voff_lines','aval','freq'):
    print(par)
    for line in (1,2,3,4,5,6,7,8): # 9 not available
Beispiel #8
0
    assert freq_max > freq_min, 'Decreasing frequency axis'

    #linewidth=0.00485*u.GHz#Half of original 0.0097GHz
    #lw2=linewidth/8
    originallinewidth = (11231152.36688232 * u.Hz / 2)
    '''Generate methanol table for use during contaminant search'''
    methanol_table = Splatalogue.query_lines(
        freq_min,
        freq_max,
        chemical_name=' CH3OH ',
        energy_max=1840,
        energy_type='eu_k',
        line_lists=['JPL', 'CDMS', 'SLAIM', 'ToyoMA', 'OSU', 'RFI', 'Lisa'],
        show_upper_degeneracy=True)
    minmethtable = utils.minimize_table(methanol_table)
    mlines = ((minmethtable['Freq'] * 10**9) / (1 + z) * u.Hz).to('MHz')
    mqns = minmethtable['QNs']
    meuks = minmethtable['EU_K'] * u.K
    meujs = []
    for euk in meuks:
        meujs.append(KtoJ(euk))
    mdegs = methanol_table['Upper State Degeneracy']
    mlog10aijs = minmethtable['log10_Aij']
    maijs = 10**mlog10aijs * u.s**-1
    '''Generate species table for contaminant search'''
    species_table = Splatalogue.query_lines(
        freq_min,
        freq_max,
        chemical_name=specieslist[molnum],
        energy_max=1840,
            f'Line {detections[row,1]} at {(line*u.Hz).to("GHz")} skipped; out of frequency range'
        )

for mol, molname, linecolor in zip(otherspecies, specplotnames, colors):
    firstline = True
    temptable = Splatalogue.query_lines(emitxlims[0] * u.Hz,
                                        emitxlims[1] * u.Hz,
                                        energy_max=1840,
                                        energy_type='eu_k',
                                        chemical_name=mol,
                                        line_lists=['CDMS', 'JPL', 'SLAIM'],
                                        show_upper_degeneracy=True,
                                        only_NRAO_recommended=True)
    if len(temptable) != 0:
        print(f'{mol} lines available in range.')
        table = utils.minimize_table(temptable)
        otherlines = (table['Freq'] * 10**9 * u.Hz) / (1 + z)  #Redshifted
        euks = table['EU_K']
        qns = table['QNs']
        for line, euk, qn in zip(otherlines, euks, qns):
            if euk < 1000:
                closest_channel = cube.closest_spectral_channel(line)
                if spw[closest_channel] >= 3 * stdvalue:
                    if firstline:
                        print('Begin plotting')
                        plt.axvline(x=line.value,
                                    linestyle='--',
                                    color=linecolor,
                                    label=molname)
                        print(f'{qn}; {euk} K; {line} Hz')
                        firstline = False
Beispiel #10
0
# SLAIM is missing an important (10,5) transition
slaim = Splatalogue.query_lines(210*u.GHz, 235*u.GHz, chemical_name=' HNCO ',
                                energy_max=2500, energy_type='eu_k',
                                line_lists=['SLAIM'],
                                show_upper_degeneracy=True)
freqs = np.array(slaim['Freq-GHz'])*u.GHz
aij = slaim['Log<sub>10</sub> (A<sub>ij</sub>)']
deg = slaim['Upper State Degeneracy']
EU = (np.array(slaim['E_U (K)'])*u.K*constants.k_B).to(u.erg).value

cdmsplat_ = Splatalogue.query_lines(210*u.GHz, 235*u.GHz, chemical_name=' HNCO ',
                                    energy_max=2500, energy_type='eu_k',
                                    line_lists=['CDMS'],
                                    show_upper_degeneracy=True)
cdmsplat = utils.minimize_table(cdmsplat_)
freqs = np.array(cdmsplat['Freq'])*u.GHz
aij = cdmsplat['log10_Aij']
deg = cdmsplat_['Upper State Degeneracy']
EU = (np.array(cdmsplat['EU_K'])*u.K*constants.k_B).to(u.erg).value
#ref_freq = 220.74726*u.GHz
#vdiff = (np.array(-(freqs-ref_freq)/ref_freq)*constants.c).to(u.km/u.s).value



nl = nodes.Nodelist()
nl.findnode('cdms')
cdms = nl.findnode('cdms')

request = request.Request(node=cdms)
Beispiel #11
0
import scipy.constants as cnst
from astropy.io import fits
import glob
import radio_beam
import os
from astropy.modeling import models, fitting
import time
import pdb
import pickle

Splatalogue.QUERY_URL = 'https://splatalogue.online/c_export.php'

sanitytable1 = utils.minimize_table(
    Splatalogue.query_lines(200 * u.GHz,
                            300 * u.GHz,
                            chemical_name=' HCN ',
                            energy_max=1840,
                            energy_type='eu_k',
                            line_lists=['JPL'],
                            show_upper_degeneracy=True))
'''Collect constants and CH3OH-specific quantum parameters'''
print('Setting constants')
c = cnst.c * u.m / u.s
k = cnst.k * u.J / u.K
h = cnst.h * u.J * u.s
sigma_sb = cnst.sigma * u.W / ((u.m)**(2) * (u.K)**(4))
b_0 = 24679.98 * u.MHz
a_0 = 127484 * u.MHz
c_0 = 23769.70 * u.MHz
m = b_0**2 / (a_0 * c_0)
mu_a = (0.896e-18 * u.statC * u.cm).to('cm(3/2) g(1/2) s-1 cm')
R_i = 1
Beispiel #12
0
    freq_min = freqs[0] * (1 + z)  #215*u.GHz
    freq_max = freqs[(len(freqs) - 1)] * (1 + z)  #235*u.GHz

    assert freq_max > freq_min, 'Decreasing frequency axis'

    linewidth = 0.00485 * u.GHz  #Half of original 0.0097GHz
    lw2 = linewidth / 8
    '''Generate methanol table for contaminant search'''
    mtable1 = Splatalogue.query_lines(freq_min,
                                      freq_max,
                                      chemical_name=' CH3OH ',
                                      energy_max=1840,
                                      energy_type='eu_k',
                                      line_lists=[linelist],
                                      show_upper_degeneracy=True)
    methanol_table = utils.minimize_table(mtable1)

    mdict[i] = {datacubes[i]: methanol_table}
    mlines = (methanol_table['Freq'] * 10**9) / (1 + z)
    mqns = methanol_table['QNs']
    meuks = methanol_table['EU_K'] * u.K
    mlog10aijs = np.array(methanol_table['log10_Aij'])
    maijs = 10**mlog10aijs * u.s**-1
    meujs = []
    for euk in meuks:
        meujs.append(KtoJ(euk))
    mdegs = mtable1['Upper State Degeneracy']

    mins = []
    maxs = []
Beispiel #13
0
    freq_min = freqs[0] * (1 + z)  #215*u.GHz
    freq_max = freqs[(len(freqs) - 1)] * (1 + z)  #235*u.GHz

    assert freq_max > freq_min, 'Decreasing frequency axis'

    linewidth = 0.00485 * u.GHz  #Half of original 0.0097GHz
    lw2 = linewidth / 8
    '''Generate methanol table for contaminant search'''
    mtable1 = Splatalogue.query_lines(freq_min,
                                      freq_max,
                                      chemical_name=' CH3OH ',
                                      energy_max=1840,
                                      energy_type='eu_k',
                                      line_lists=[linelist],
                                      show_upper_degeneracy=True)
    methanol_table = utils.minimize_table(mtable1)

    mdict[i] = {imgnames[i]: methanol_table}
    mlines = (methanol_table['Freq'] * 10**9) / (1 + z)
    mqns = methanol_table['QNs']
    meuks = methanol_table['EU_K'] * u.K
    mlog10aijs = np.array(methanol_table['log10_Aij'])
    maijs = 10**mlog10aijs * u.s**-1
    meujs = []
    for euk in meuks:
        meujs.append(KtoJ(euk))
    mdegs = mtable1['Upper State Degeneracy']

    mins = []
    maxs = []
        for labelid in range(1, ct + 1):
            ssp = sp[labels == labelid]
            try:
                ssp.xarr.convert_to_unit(u.GHz)
                ssp.specfit()
                ssp.specfit.parinfo
                frq = ssp.specfit.parinfo['SHIFT0'].value * ssp.xarr.unit
            except Exception as ex:
                print(ex)
                frq = ssp.xarr.to(u.GHz).mean()
            sq = Splatalogue.query_lines(frq * (1 + 30 / 3e5),
                                         frq * (1 + 75 / 3e5),
                                         only_astronomically_observed=True)
            if len(sq) > 0:
                tbl = utils.minimize_table(sq)
                try:
                    total_intensity = ssp.data.sum() * np.abs(
                        ssp.xarr.to(u.km / u.s).cdelt())
                except ValueError:
                    total_intensity = ssp.data.sum() * np.abs(
                        sp.xarr.to(u.km / u.s).cdelt())
                peak_intensity = ssp.data.max()
                tbl.add_column(
                    Column(data=total_intensity, name='TotalIntensity'))
                tbl.add_column(
                    Column(data=peak_intensity, name='PeakIntensity'))
                tbl.add_column(Column(data=mad, name='RMS'))
                tbl.add_column(
                    Column(data=u.Quantity(
                        (-(frq.to(u.GHz).value - tbl['Freq']) / tbl['Freq'] *
    8: 'eight',
    9: 'nine',
}

tbls = {}

for line in (1, 2, 3, 4, 5, 6, 7, 8, 9):

    reline = re.compile('^{n}\({n}\).*-{n}'.format(n=line))

    tbl = utils.minimize_table(nh3[np.array([
        bool(reline.search(x)) if bool(x) else False
        for x in nh3['Resolved QNs']
    ],
                                            dtype='bool')],
                               columns=[
                                   'Species', 'Chemical Name', 'Resolved QNs',
                                   'Freq-GHz', 'Meas Freq-GHz',
                                   'Log<sub>10</sub> (A<sub>ij</sub>)',
                                   'CDMS/JPL Intensity', 'Linelist', 'E_U (K)',
                                   'Upper State Degeneracy'
                               ])

    if len(tbl) == 0:
        pass

    # Select only TopModel lines from CDMS/JPL
    tbls[line] = tbl[tbl['Linelist'] == 'TopModel']

for par in ('tau_wts', 'voff_lines', 'aval', 'freq'):
    print par
    for line in (1, 2, 3, 4, 5, 6, 7, 8):  # 9 not available
        sp = pyspeckit.Spectrum(fn)
        sp.xarr.convert_to_unit(u.GHz)
        print(fn, sp.xarr.min(), sp.xarr.max())

        fpre = os.path.splitext(os.path.split(fn)[-1])[0]

        species_names = [x[0] for x in line_to_image_list]
        frequencies = u.Quantity(
            [float(x[1].strip("GHz")) for x in line_to_image_list], unit=u.GHz)

        splat = Splatalogue.query_lines(sp.xarr.min(),
                                        sp.xarr.max(),
                                        chemical_name='NaCl|KCl',
                                        line_lists=['CDMS'])
        if len(splat) > 0:
            splat = utils.minimize_table(splat)
            species_names = [row['Species'] + row['QNs'] for row in splat]
            frequencies = u.Quantity(splat['Freq'], u.GHz)
        else:
            species_names = []
            frequencies = []

        sp.plotter(figure=pl.figure(1))
        sp.plotter(figure=pl.figure(1))

        outname = paths.dpath(
            'longbaseline/spectra/pngs/{target}_{0}.png'.format(fpre,
                                                                target=target))
        sp.plotter.savefig(outname, bbox_extra_artists=[])

        okfreqs = (frequencies > sp.xarr.min()) & (frequencies < sp.xarr.max())
)
freqs = np.array(slaim["Freq-GHz"]) * u.GHz
aij = slaim["Log<sub>10</sub> (A<sub>ij</sub>)"]
deg = slaim["Upper State Degeneracy"]
EU = (np.array(slaim["E_U (K)"]) * u.K * constants.k_B).to(u.erg).value

cdmsplat_ = Splatalogue.query_lines(
    210 * u.GHz,
    235 * u.GHz,
    chemical_name=" HNCO ",
    energy_max=2500,
    energy_type="eu_k",
    line_lists=["CDMS"],
    show_upper_degeneracy=True,
)
cdmsplat = utils.minimize_table(cdmsplat_)
freqs = np.array(cdmsplat["Freq"]) * u.GHz
aij = cdmsplat["log10_Aij"]
deg = cdmsplat_["Upper State Degeneracy"]
EU = (np.array(cdmsplat["EU_K"]) * u.K * constants.k_B).to(u.erg).value
# ref_freq = 220.74726*u.GHz
# vdiff = (np.array(-(freqs-ref_freq)/ref_freq)*constants.c).to(u.km/u.s).value


nl = nodes.Nodelist()
nl.findnode("cdms")
cdms = nl.findnode("cdms")

request = request.Request(node=cdms)