Beispiel #1
0
    def blocks(self, reader=None):
        """yields (length, reader) tuples of WavPack frames

        length is the total length of all the substreams
        reader is a BitstreamReader which can be parsed
        """

        def blocks_iter(reader):
            try:
                while (True):
                    (wvpk, block_size) = reader.parse("4b 32u 192p")
                    if (wvpk == 'wvpk'):
                        yield (block_size - 24,
                               reader.substream(block_size - 24))
                    else:
                        return
            except IOError:
                return

        if (reader is None):
            from audiotools.bitstream import BitstreamReader

            reader = BitstreamReader(open(self.filename), 1)
            try:
                for block in blocks_iter(reader):
                    yield block
            finally:
                reader.close()
        else:
            for block in blocks_iter(reader):
                yield block
    def blocks(self, reader=None):
        """yields (length, reader) tuples of WavPack frames

        length is the total length of all the substreams
        reader is a BitstreamReader which can be parsed
        """

        def blocks_iter(reader):
            try:
                while (True):
                    (wvpk, block_size) = reader.parse("4b 32u 192p")
                    if (wvpk == 'wvpk'):
                        yield (block_size - 24,
                               reader.substream(block_size - 24))
                    else:
                        return
            except IOError:
                return

        if (reader is None):
            from audiotools.bitstream import BitstreamReader

            reader = BitstreamReader(open(self.filename), 1)
            try:
                for block in blocks_iter(reader):
                    yield block
            finally:
                reader.close()
        else:
            for block in blocks_iter(reader):
                yield block
Beispiel #3
0
def perform_lookup(disc_id,
                   accuraterip_server="www.accuraterip.com",
                   accuraterip_port=80):
    """performs web-based lookup using the given DiscID object
    and returns a dict of
    {track_number:[(confidence, crc, crc2), ...], ...}
    where track_number starts from 1

    may return a dict of empty lists if no AccurateRip entry is found

    may raise urllib2.HTTPError if an error occurs querying the server
    """

    from audiotools.bitstream import BitstreamReader
    try:
        from urllib.request import urlopen, URLError
    except ImportError:
        from urllib2 import urlopen, URLError

    matches = {n: [] for n in disc_id.track_numbers()}

    url = "http://%s:%s/accuraterip/%s/%s/%s/%s" % (accuraterip_server,
                                                    accuraterip_port,
                                                    str(disc_id)[16],
                                                    str(disc_id)[15],
                                                    str(disc_id)[14],
                                                    disc_id)

    try:
        response = BitstreamReader(urlopen(url), True)
    except URLError:
        # no CD found matching given parameters
        return matches

    try:
        while True:
            (track_count,
             id1,
             id2,
             freedb_disc_id) = response.parse("8u 32u 32u 32u")
            if (((id1 == disc_id.id1()) and
                 (id2 == disc_id.id2()) and
                 (freedb_disc_id == disc_id.freedb_disc_id()))):
                for track_number in range(1, track_count + 1):
                    if track_number in matches:
                        matches[track_number].append(
                            tuple(response.parse("8u 32u 32u")))
    except IOError:
        # keep trying to parse values until the data runs out
        response.close()
        return matches
def perform_lookup(disc_id,
                   accuraterip_server="www.accuraterip.com",
                   accuraterip_port=80):
    """performs web-based lookup using the given DiscID object
    and returns a dict of
    {track_number:[(confidence, crc, crc2), ...], ...}
    where track_number starts from 1

    may return a dict of empty lists if no AccurateRip entry is found

    may raise urllib2.HTTPError if an error occurs querying the server
    """

    from audiotools.bitstream import BitstreamReader
    try:
        from urllib.request import urlopen, URLError
    except ImportError:
        from urllib2 import urlopen, URLError

    matches = {n: [] for n in disc_id.track_numbers()}

    url = "http://%s:%s/accuraterip/%s/%s/%s/%s" % (accuraterip_server,
                                                    accuraterip_port,
                                                    str(disc_id)[16],
                                                    str(disc_id)[15],
                                                    str(disc_id)[14],
                                                    disc_id)

    try:
        response = BitstreamReader(urlopen(url), True)
    except URLError:
        # no CD found matching given parameters
        return matches

    try:
        while (True):
            (track_count,
             id1,
             id2,
             freedb_disc_id) = response.parse("8u 32u 32u 32u")
            if (((id1 == disc_id.id1()) and
                 (id2 == disc_id.id2()) and
                 (freedb_disc_id == disc_id.freedb_disc_id()))):
                for track_number in range(1, track_count + 1):
                    if (track_number in matches):
                        matches[track_number].append(
                            tuple(response.parse("8u 32u 32u")))
    except IOError:
        # keep trying to parse values until the data runs out
        response.close()
        return matches
Beispiel #5
0
class FlacDecoder(object):
    CHANNEL_COUNT = [
        1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2, None, None, None, None, None
    ]

    (SUBFRAME_CONSTANT, SUBFRAME_VERBATIM, SUBFRAME_FIXED,
     SUBFRAME_LPC) = range(4)

    def __init__(self, filename, channel_mask):
        self.reader = BitstreamReader(open(filename, "rb"), False)

        if (self.reader.read_bytes(4) != b'fLaC'):
            raise ValueError("invalid FLAC file")

        self.current_md5sum = md5()

        # locate the STREAMINFO,
        # which is sometimes needed to handle non-subset streams
        for (block_id, block_size,
             block_reader) in self.metadata_blocks(self.reader):
            if (block_id == 0):
                # read STREAMINFO
                self.minimum_block_size = block_reader.read(16)
                self.maximum_block_size = block_reader.read(16)
                self.minimum_frame_size = block_reader.read(24)
                self.maximum_frame_size = block_reader.read(24)
                self.sample_rate = block_reader.read(20)
                self.channels = block_reader.read(3) + 1
                self.channel_mask = channel_mask
                self.bits_per_sample = block_reader.read(5) + 1
                self.total_frames = block_reader.read(36)
                self.md5sum = block_reader.read_bytes(16)

                # these are frame header lookup tables
                # which vary slightly depending on STREAMINFO's values
                self.BLOCK_SIZE = [
                    self.maximum_block_size, 192, 576, 1152, 2304, 4608, None,
                    None, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
                ]
                self.SAMPLE_RATE = [
                    self.sample_rate, 88200, 176400, 192000, 8000, 16000,
                    22050, 24000, 32000, 44100, 48000, 96000, None, None, None,
                    None
                ]
                self.BITS_PER_SAMPLE = [
                    self.bits_per_sample, 8, 12, None, 16, 20, 24, None
                ]

    def metadata_blocks(self, reader):
        """yields a (block_id, block_size, block_reader) tuple
        per metadata block where block_reader is a BitstreamReader substream"""

        (last_block, block_id, block_size) = self.reader.parse("1u 7u 24u")
        while (last_block == 0):
            yield (block_id, block_size, self.reader.substream(block_size))
            (last_block, block_id, block_size) = self.reader.parse("1u 7u 24u")
        else:
            yield (block_id, block_size, self.reader.substream(block_size))

    def read(self, pcm_frames):
        # if the stream is exhausted,
        # verify its MD5 sum and return an empty pcm.FrameList object
        if (self.total_frames < 1):
            if (self.md5sum == self.current_md5sum.digest()):
                return empty_framelist(self.channels, self.bits_per_sample)
            else:
                raise ValueError("MD5 checksum mismatch")

        crc16 = CRC16()
        self.reader.add_callback(crc16.update)

        # fetch the decoding parameters from the frame header
        (block_size, channel_assignment,
         bits_per_sample) = self.read_frame_header()
        channel_count = self.CHANNEL_COUNT[channel_assignment]
        if (channel_count is None):
            raise ValueError("invalid channel assignment")

        # channel data will be a list of signed sample lists, one per channel
        # such as  [[1, 2, 3, ...], [4, 5, 6, ...]]  for a 2 channel stream
        channel_data = []

        for channel_number in range(channel_count):
            if ((channel_assignment == 0x8) and (channel_number == 1)):
                # for left-difference assignment
                # the difference channel has 1 additional bit
                channel_data.append(
                    self.read_subframe(block_size, bits_per_sample + 1))
            elif ((channel_assignment == 0x9) and (channel_number == 0)):
                # for difference-right assignment
                # the difference channel has 1 additional bit
                channel_data.append(
                    self.read_subframe(block_size, bits_per_sample + 1))
            elif ((channel_assignment == 0xA) and (channel_number == 1)):
                # for average-difference assignment
                # the difference channel has 1 additional bit
                channel_data.append(
                    self.read_subframe(block_size, bits_per_sample + 1))
            else:
                # otherwise, use the frame's bits-per-sample value
                channel_data.append(
                    self.read_subframe(block_size, bits_per_sample))

        # one all the subframes have been decoded,
        # reconstruct them depending on the channel assignment
        if (channel_assignment == 0x8):
            # left-difference
            samples = []
            for (left, difference) in zip(*channel_data):
                samples.append(left)
                samples.append(left - difference)
        elif (channel_assignment == 0x9):
            # difference-right
            samples = []
            for (difference, right) in zip(*channel_data):
                samples.append(difference + right)
                samples.append(right)
        elif (channel_assignment == 0xA):
            # mid-side
            samples = []
            for (mid, side) in zip(*channel_data):
                samples.append((((mid * 2) + (side % 2)) + side) // 2)
                samples.append((((mid * 2) + (side % 2)) - side) // 2)
        else:
            # independent
            samples = [0] * block_size * channel_count
            for (i, channel) in enumerate(channel_data):
                samples[i::channel_count] = channel

        self.reader.byte_align()

        # read and verify the frame's trailing CRC-16 footer
        self.reader.read(16)
        self.reader.pop_callback()
        if (int(crc16) != 0):
            raise ValueError("CRC16 mismatch in frame footer")

        # deduct the amount of PCM frames from the remaining amount
        self.total_frames -= block_size

        # build a pcm.FrameList object from the combined samples
        framelist = from_list(samples, channel_count, bits_per_sample, True)

        # update the running MD5 sum calculation with the frame's data
        self.current_md5sum.update(framelist.to_bytes(0, 1))

        # and finally return the frame data
        return framelist

    def read_frame_header(self):
        crc8 = CRC8()
        self.reader.add_callback(crc8.update)

        # read the 32-bit FLAC frame header
        sync_code = self.reader.read(14)
        if (sync_code != 0x3FFE):
            raise ValueError("invalid sync code")

        self.reader.skip(1)
        blocking_strategy = self.reader.read(1)
        block_size_bits = self.reader.read(4)
        sample_rate_bits = self.reader.read(4)
        channel_assignment = self.reader.read(4)
        bits_per_sample_bits = self.reader.read(3)
        self.reader.skip(1)

        # the frame number is a UTF-8 encoded value
        # which takes a variable number of whole bytes
        frame_number = self.read_utf8()

        # unpack the 4 bit block size field
        # which is the total PCM frames in the FLAC frame
        # and may require up to 16 more bits if the frame is usually-sized
        # (which typically happens at the end of the stream)
        if (block_size_bits == 0x6):
            block_size = self.reader.read(8) + 1
        elif (block_size_bits == 0x7):
            block_size = self.reader.read(16) + 1
        else:
            block_size = self.BLOCK_SIZE[block_size_bits]

        # unpack the 4 bit sample rate field
        # which is used for playback, but not needed for decoding
        # and may require up to 16 more bits
        # if the stream has a particularly unusual sample rate
        if (sample_rate_bits == 0xC):
            sample_rate = self.reader.read(8) * 1000
        elif (sample_rate_bits == 0xD):
            sample_rate = self.reader.read(16)
        elif (sample_rate_bits == 0xE):
            sample_rate = self.reader.read(16) * 10
        elif (sample_rate_bits == 0xF):
            raise ValueError("invalid sample rate")
        else:
            sample_rate = self.SAMPLE_RATE[sample_rate_bits]

        # unpack the 3 bit bits-per-sample field
        # this never requires additional bits
        if ((bits_per_sample_bits == 0x3) or (bits_per_sample_bits == 0x7)):
            raise ValueError("invalid bits per sample")
        else:
            bits_per_sample = self.BITS_PER_SAMPLE[bits_per_sample_bits]

        # read and verify frame's CRC-8 value
        self.reader.read(8)
        self.reader.pop_callback()
        if (int(crc8) != 0):
            raise ValueError("CRC8 mismatch in frame header")

        return (block_size, channel_assignment, bits_per_sample)

    def read_subframe_header(self):
        """returns a tuple of (subframe_type, subframe_order, wasted_bps)"""

        self.reader.skip(1)
        subframe_type = self.reader.read(6)
        if (self.reader.read(1) == 1):
            wasted_bps = self.reader.unary(1) + 1
        else:
            wasted_bps = 0

        # extract "order" value from 6 bit subframe type, if necessary
        if (subframe_type == 0):
            return (self.SUBFRAME_CONSTANT, None, wasted_bps)
        elif (subframe_type == 1):
            return (self.SUBFRAME_VERBATIM, None, wasted_bps)
        elif ((subframe_type & 0x38) == 0x08):
            return (self.SUBFRAME_FIXED, subframe_type & 0x07, wasted_bps)
        elif ((subframe_type & 0x20) == 0x20):
            return (self.SUBFRAME_LPC, (subframe_type & 0x1F) + 1, wasted_bps)
        else:
            raise ValueError("invalid subframe type")

    def read_subframe(self, block_size, bits_per_sample):
        (subframe_type, subframe_order,
         wasted_bps) = self.read_subframe_header()

        # read a list of signed sample values
        # depending on the subframe type, block size,
        # adjusted bits per sample and optional subframe order
        if (subframe_type == self.SUBFRAME_CONSTANT):
            subframe_samples = self.read_constant_subframe(
                block_size, bits_per_sample - wasted_bps)
        elif (subframe_type == self.SUBFRAME_VERBATIM):
            subframe_samples = self.read_verbatim_subframe(
                block_size, bits_per_sample - wasted_bps)
        elif (subframe_type == self.SUBFRAME_FIXED):
            subframe_samples = self.read_fixed_subframe(
                block_size, bits_per_sample - wasted_bps, subframe_order)
        else:
            subframe_samples = self.read_lpc_subframe(
                block_size, bits_per_sample - wasted_bps, subframe_order)

        # account for wasted bits-per-sample, if necessary
        if (wasted_bps):
            return [sample << wasted_bps for sample in subframe_samples]
        else:
            return subframe_samples

    def read_constant_subframe(self, block_size, bits_per_sample):
        sample = self.reader.read_signed(bits_per_sample)
        return [sample] * block_size

    def read_verbatim_subframe(self, block_size, bits_per_sample):
        return [
            self.reader.read_signed(bits_per_sample) for x in range(block_size)
        ]

    def read_fixed_subframe(self, block_size, bits_per_sample, order):
        # "order" number of warm-up samples
        samples = [
            self.reader.read_signed(bits_per_sample) for i in range(order)
        ]

        # "block_size" - "order" number of residual values
        residuals = self.read_residual(block_size, order)

        # which are applied to the warm-up samples
        # depending on the FIXED subframe order
        # and results in "block_size" number of total samples
        if (order == 0):
            return residuals
        elif (order == 1):
            for residual in residuals:
                samples.append(samples[-1] + residual)
            return samples
        elif (order == 2):
            for residual in residuals:
                samples.append((2 * samples[-1]) - samples[-2] + residual)
            return samples
        elif (order == 3):
            for residual in residuals:
                samples.append((3 * samples[-1]) - (3 * samples[-2]) +
                               samples[-3] + residual)
            return samples
        elif (order == 4):
            for residual in residuals:
                samples.append((4 * samples[-1]) - (6 * samples[-2]) +
                               (4 * samples[-3]) - samples[-4] + residual)
            return samples
        else:
            raise ValueError("unsupported FIXED subframe order")

    def read_lpc_subframe(self, block_size, bits_per_sample, order):
        # "order" number of warm-up samples
        samples = [
            self.reader.read_signed(bits_per_sample) for i in range(order)
        ]

        # the size of each QLP coefficient, in bits
        qlp_precision = self.reader.read(4)

        # the amount of right shift to apply
        # during LPC calculation
        # (though this is a signed value, negative shifts are noops
        # in the reference FLAC decoder)
        qlp_shift_needed = max(self.reader.read_signed(5), 0)

        # "order" number of signed QLP coefficients
        qlp_coeffs = [
            self.reader.read_signed(qlp_precision + 1) for i in range(order)
        ]
        # QLP coefficients are applied in reverse order
        qlp_coeffs.reverse()

        # "block_size" - "order" number of residual values
        residuals = self.read_residual(block_size, order)

        # which are applied to the running LPC calculation
        for residual in residuals:
            samples.append((sum([
                coeff * sample
                for (coeff, sample) in zip(qlp_coeffs, samples[-order:])
            ]) >> qlp_shift_needed) + residual)

        return samples

    def read_residual(self, block_size, order):
        residuals = []

        coding_method = self.reader.read(2)
        partition_order = self.reader.read(4)

        # each parititon contains  block_size / 2 ** partition_order
        # number of residuals
        for partition_number in range(2**partition_order):
            if (partition_number == 0):
                # except for the first partition
                # which contains "order" less than the rest
                residuals.extend(
                    self.read_residual_partition(
                        coding_method,
                        (block_size // 2**partition_order) - order))
            else:
                residuals.extend(
                    self.read_residual_partition(
                        coding_method, block_size // 2**partition_order))

        return residuals

    def read_residual_partition(self, coding_method, residual_count):
        if (coding_method == 0):
            # the Rice parameters determines the number of
            # least-significant bits to read for each residual
            rice_parameter = self.reader.read(4)
            if (rice_parameter == 0xF):
                escape_code = self.reader.read(5)
                return [
                    self.reader.read_signed(escape_code)
                    for i in range(residual_count)
                ]
        elif (coding_method == 1):
            # 24 bps streams may use a 5-bit Rice parameter
            # for better compression
            rice_parameter = self.reader.read(5)
            if (rice_parameter == 0x1F):
                escape_code = self.reader.read(5)
                return [
                    self.reader.read_signed(escape_code)
                    for i in range(residual_count)
                ]
        else:
            raise ValueError("invalid Rice coding parameter")

        # a list of signed residual values
        partition_residuals = []

        for i in range(residual_count):
            msb = self.reader.unary(1)  # most-significant bits
            lsb = self.reader.read(rice_parameter)  # least-significant bits
            value = (msb << rice_parameter) | lsb  # combined into a value
            if (value & 1):  # whose least-significant bit is the sign value
                partition_residuals.append(-(value >> 1) - 1)
            else:
                partition_residuals.append(value >> 1)

        return partition_residuals

    def read_utf8(self):
        total_bytes = self.reader.unary(0)
        value = self.reader.read(7 - total_bytes)
        while (total_bytes > 1):
            value = ((value << 6) | self.reader.parse("2p 6u")[0])
            total_bytes -= 1
        return value

    def close(self):
        self.reader.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
Beispiel #6
0
class AuReader(object):
    def __init__(self, au_filename):
        from audiotools.bitstream import BitstreamReader
        from audiotools.text import (ERR_AU_INVALID_HEADER,
                                     ERR_AU_UNSUPPORTED_FORMAT)

        self.stream = BitstreamReader(open(au_filename, "rb"), False)
        (magic_number, self.data_offset, data_size, encoding_format,
         self.sample_rate, self.channels) = self.stream.parse("4b 5* 32u")

        if (magic_number != b'.snd'):
            self.stream.close()
            raise ValueError(ERR_AU_INVALID_HEADER)
        try:
            self.bits_per_sample = {2: 8, 3: 16, 4: 24}[encoding_format]
        except KeyError:
            self.stream.close()
            raise ValueError(ERR_AU_UNSUPPORTED_FORMAT)

        self.channel_mask = {1: 0x4, 2: 0x3}.get(self.channels, 0)
        self.bytes_per_pcm_frame = ((self.bits_per_sample // 8) *
                                    self.channels)
        self.total_pcm_frames = (data_size // self.bytes_per_pcm_frame)
        self.remaining_pcm_frames = self.total_pcm_frames

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def read(self, pcm_frames):
        # try to read requested PCM frames or remaining frames
        requested_pcm_frames = min(max(pcm_frames, 1),
                                   self.remaining_pcm_frames)
        requested_bytes = (self.bytes_per_pcm_frame * requested_pcm_frames)
        pcm_data = self.stream.read_bytes(requested_bytes)

        # raise exception if data block exhausted early
        if (len(pcm_data) < requested_bytes):
            from audiotools.text import ERR_AU_TRUNCATED_DATA
            raise IOError(ERR_AU_TRUNCATED_DATA)
        else:
            self.remaining_pcm_frames -= requested_pcm_frames

            # return parsed chunk
            return FrameList(pcm_data, self.channels, self.bits_per_sample,
                             True, True)

    def read_closed(self, pcm_frames):
        raise ValueError("cannot read closed stream")

    def seek(self, pcm_frame_offset):
        if (pcm_frame_offset < 0):
            from audiotools.text import ERR_NEGATIVE_SEEK
            raise ValueError(ERR_NEGATIVE_SEEK)

        # ensure one doesn't walk off the end of the file
        pcm_frame_offset = min(pcm_frame_offset, self.total_pcm_frames)

        # position file in data block
        self.stream.seek(
            self.data_offset + (pcm_frame_offset * self.bytes_per_pcm_frame),
            0)
        self.remaining_pcm_frames = (self.total_pcm_frames - pcm_frame_offset)

        return pcm_frame_offset

    def seek_closed(self, pcm_frame_offset):
        raise ValueError("cannot seek closed stream")

    def close(self):
        self.stream.close()
        self.read = self.read_closed
        self.seek = self.seek_closed
Beispiel #7
0
class AiffReader(object):
    """a PCMReader object for reading AIFF file contents"""
    def __init__(self, aiff_filename):
        """aiff_filename is a string"""

        from audiotools.bitstream import BitstreamReader

        self.stream = BitstreamReader(open(aiff_filename, "rb"), False)

        # ensure FORM<size>AIFF header is ok
        try:
            (form, total_size, aiff) = self.stream.parse("4b 32u 4b")
        except struct.error:
            from audiotools.text import ERR_AIFF_INVALID_AIFF
            raise InvalidAIFF(ERR_AIFF_INVALID_AIFF)

        if form != b'FORM':
            from audiotools.text import ERR_AIFF_NOT_AIFF
            raise ValueError(ERR_AIFF_NOT_AIFF)
        elif aiff != b'AIFF':
            from audiotools.text import ERR_AIFF_INVALID_AIFF
            raise ValueError(ERR_AIFF_INVALID_AIFF)
        else:
            total_size -= 4
            comm_chunk_read = False

        # walk through chunks until "SSND" chunk encountered
        while total_size > 0:
            try:
                (chunk_id, chunk_size) = self.stream.parse("4b 32u")
            except struct.error:
                from audiotools.text import ERR_AIFF_INVALID_AIFF
                raise ValueError(ERR_AIFF_INVALID_AIFF)

            if not frozenset(chunk_id).issubset(AiffAudio.PRINTABLE_ASCII):
                from audiotools.text import ERR_AIFF_INVALID_CHUNK_ID
                raise ValueError(ERR_AIFF_INVALID_CHUNK_ID)
            else:
                total_size -= 8

            if chunk_id == b"COMM":
                # when "COMM" chunk encountered,
                # use it to populate PCMReader attributes
                (self.channels, self.total_pcm_frames, self.bits_per_sample,
                 self.sample_rate, channel_mask) = parse_comm(self.stream)
                self.channel_mask = int(channel_mask)
                self.bytes_per_pcm_frame = ((self.bits_per_sample // 8) *
                                            self.channels)
                self.remaining_pcm_frames = self.total_pcm_frames
                comm_chunk_read = True
            elif chunk_id == b"SSND":
                # when "SSND" chunk encountered,
                # strip off the "offset" and "block_size" attributes
                # and ready PCMReader for reading
                if not comm_chunk_read:
                    from audiotools.text import ERR_AIFF_PREMATURE_SSND_CHUNK
                    raise ValueError(ERR_AIFF_PREMATURE_SSND_CHUNK)
                else:
                    self.stream.skip_bytes(8)
                    self.ssnd_start = self.stream.getpos()
                    return
            else:
                # all other chunks are ignored
                self.stream.skip_bytes(chunk_size)

            if chunk_size % 2:
                if len(self.stream.read_bytes(1)) < 1:
                    from audiotools.text import ERR_AIFF_INVALID_CHUNK
                    raise ValueError(ERR_AIFF_INVALID_CHUNK)
                total_size -= (chunk_size + 1)
            else:
                total_size -= chunk_size
        else:
            # raise an error if no "SSND" chunk is encountered
            from audiotools.text import ERR_AIFF_NO_SSND_CHUNK
            raise ValueError(ERR_AIFF_NO_SSND_CHUNK)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def read(self, pcm_frames):
        """try to read a pcm.FrameList with the given number of PCM frames"""

        # try to read requested PCM frames or remaining frames
        requested_pcm_frames = min(max(pcm_frames, 1),
                                   self.remaining_pcm_frames)
        requested_bytes = (self.bytes_per_pcm_frame * requested_pcm_frames)
        pcm_data = self.stream.read_bytes(requested_bytes)

        # raise exception if "SSND" chunk exhausted early
        if len(pcm_data) < requested_bytes:
            from audiotools.text import ERR_AIFF_TRUNCATED_SSND_CHUNK
            raise IOError(ERR_AIFF_TRUNCATED_SSND_CHUNK)
        else:
            self.remaining_pcm_frames -= requested_pcm_frames

            # return parsed chunk
            return FrameList(pcm_data, self.channels, self.bits_per_sample,
                             True, True)

    def read_closed(self, pcm_frames):
        raise ValueError("cannot read closed stream")

    def seek(self, pcm_frame_offset):
        """tries to seek to the given PCM frame offset
        returns the total amount of frames actually seeked over"""

        if pcm_frame_offset < 0:
            from audiotools.text import ERR_NEGATIVE_SEEK
            raise ValueError(ERR_NEGATIVE_SEEK)

        # ensure one doesn't walk off the end of the file
        pcm_frame_offset = min(pcm_frame_offset, self.total_pcm_frames)

        # position file in "SSND" chunk
        self.stream.setpos(self.ssnd_start)
        self.stream.seek((pcm_frame_offset * self.bytes_per_pcm_frame), 1)
        self.remaining_pcm_frames = (self.total_pcm_frames - pcm_frame_offset)

        return pcm_frame_offset

    def seek_closed(self, pcm_frame_offset):
        raise ValueError("cannot seek closed stream")

    def close(self):
        """closes the stream for reading"""

        self.stream.close()
        self.read = self.read_closed
        self.seek = self.seek_closed
Beispiel #8
0
class AiffReader(object):
    """a PCMReader object for reading AIFF file contents"""

    def __init__(self, aiff_filename):
        """aiff_filename is a string"""

        from audiotools.bitstream import BitstreamReader

        self.stream = BitstreamReader(open(aiff_filename, "rb"), False)

        # ensure FORM<size>AIFF header is ok
        try:
            (form,
             total_size,
             aiff) = self.stream.parse("4b 32u 4b")
        except struct.error:
            from audiotools.text import ERR_AIFF_INVALID_AIFF
            raise InvalidAIFF(ERR_AIFF_INVALID_AIFF)

        if form != b'FORM':
            from audiotools.text import ERR_AIFF_NOT_AIFF
            raise ValueError(ERR_AIFF_NOT_AIFF)
        elif aiff != b'AIFF':
            from audiotools.text import ERR_AIFF_INVALID_AIFF
            raise ValueError(ERR_AIFF_INVALID_AIFF)
        else:
            total_size -= 4
            comm_chunk_read = False

        # walk through chunks until "SSND" chunk encountered
        while total_size > 0:
            try:
                (chunk_id,
                 chunk_size) = self.stream.parse("4b 32u")
            except struct.error:
                from audiotools.text import ERR_AIFF_INVALID_AIFF
                raise ValueError(ERR_AIFF_INVALID_AIFF)

            if not frozenset(chunk_id).issubset(AiffAudio.PRINTABLE_ASCII):
                from audiotools.text import ERR_AIFF_INVALID_CHUNK_ID
                raise ValueError(ERR_AIFF_INVALID_CHUNK_ID)
            else:
                total_size -= 8

            if chunk_id == b"COMM":
                # when "COMM" chunk encountered,
                # use it to populate PCMReader attributes
                (self.channels,
                 self.total_pcm_frames,
                 self.bits_per_sample,
                 self.sample_rate,
                 channel_mask) = parse_comm(self.stream)
                self.channel_mask = int(channel_mask)
                self.bytes_per_pcm_frame = ((self.bits_per_sample // 8) *
                                            self.channels)
                self.remaining_pcm_frames = self.total_pcm_frames
                comm_chunk_read = True
            elif chunk_id == b"SSND":
                # when "SSND" chunk encountered,
                # strip off the "offset" and "block_size" attributes
                # and ready PCMReader for reading
                if not comm_chunk_read:
                    from audiotools.text import ERR_AIFF_PREMATURE_SSND_CHUNK
                    raise ValueError(ERR_AIFF_PREMATURE_SSND_CHUNK)
                else:
                    self.stream.skip_bytes(8)
                    self.ssnd_start = self.stream.getpos()
                    return
            else:
                # all other chunks are ignored
                self.stream.skip_bytes(chunk_size)

            if chunk_size % 2:
                if len(self.stream.read_bytes(1)) < 1:
                    from audiotools.text import ERR_AIFF_INVALID_CHUNK
                    raise ValueError(ERR_AIFF_INVALID_CHUNK)
                total_size -= (chunk_size + 1)
            else:
                total_size -= chunk_size
        else:
            # raise an error if no "SSND" chunk is encountered
            from audiotools.text import ERR_AIFF_NO_SSND_CHUNK
            raise ValueError(ERR_AIFF_NO_SSND_CHUNK)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def read(self, pcm_frames):
        """try to read a pcm.FrameList with the given number of PCM frames"""

        # try to read requested PCM frames or remaining frames
        requested_pcm_frames = min(max(pcm_frames, 1),
                                   self.remaining_pcm_frames)
        requested_bytes = (self.bytes_per_pcm_frame *
                           requested_pcm_frames)
        pcm_data = self.stream.read_bytes(requested_bytes)

        # raise exception if "SSND" chunk exhausted early
        if len(pcm_data) < requested_bytes:
            from audiotools.text import ERR_AIFF_TRUNCATED_SSND_CHUNK
            raise IOError(ERR_AIFF_TRUNCATED_SSND_CHUNK)
        else:
            self.remaining_pcm_frames -= requested_pcm_frames

            # return parsed chunk
            return FrameList(pcm_data,
                             self.channels,
                             self.bits_per_sample,
                             True,
                             True)

    def read_closed(self, pcm_frames):
        raise ValueError("cannot read closed stream")

    def seek(self, pcm_frame_offset):
        """tries to seek to the given PCM frame offset
        returns the total amount of frames actually seeked over"""

        if pcm_frame_offset < 0:
            from audiotools.text import ERR_NEGATIVE_SEEK
            raise ValueError(ERR_NEGATIVE_SEEK)

        # ensure one doesn't walk off the end of the file
        pcm_frame_offset = min(pcm_frame_offset,
                               self.total_pcm_frames)

        # position file in "SSND" chunk
        self.stream.setpos(self.ssnd_start)
        self.stream.seek((pcm_frame_offset * self.bytes_per_pcm_frame), 1)
        self.remaining_pcm_frames = (self.total_pcm_frames -
                                     pcm_frame_offset)

        return pcm_frame_offset

    def seek_closed(self, pcm_frame_offset):
        raise ValueError("cannot seek closed stream")

    def close(self):
        """closes the stream for reading"""

        self.stream.close()
        self.read = self.read_closed
        self.seek = self.seek_closed
    def wave_header_footer(self):
        """returns a pair of data strings before and after PCM data

        the first contains all data before the PCM content of the data chunk
        the second containing all data after the data chunk
        for example:

        >>> w = audiotools.open("input.wav")
        >>> (head, tail) = w.wave_header_footer()
        >>> f = open("output.wav", "wb")
        >>> f.write(head)
        >>> audiotools.transfer_framelist_data(w.to_pcm(), f.write)
        >>> f.write(tail)
        >>> f.close()

        should result in "output.wav" being identical to "input.wav"
        """

        from audiotools.bitstream import BitstreamReader
        from audiotools.bitstream import BitstreamRecorder

        head = BitstreamRecorder(1)
        tail = BitstreamRecorder(1)
        current_block = head
        fmt_found = False

        wave_file = BitstreamReader(open(self.filename, 'rb'), 1)
        try:
            # transfer the 12-byte "RIFFsizeWAVE" header to head
            (riff, size, wave) = wave_file.parse("4b 32u 4b")
            if (riff != 'RIFF'):
                from audiotools.text import ERR_WAV_NOT_WAVE
                raise ValueError(ERR_WAV_NOT_WAVE)
            elif (wave != 'WAVE'):
                from audiotools.text import ERR_WAV_INVALID_WAVE
                raise ValueError(ERR_WAV_INVALID_WAVE)
            else:
                current_block.build("4b 32u 4b", (riff, size, wave))
                total_size = size - 4

            while (total_size > 0):
                # transfer each chunk header
                (chunk_id, chunk_size) = wave_file.parse("4b 32u")
                if (not frozenset(chunk_id).issubset(self.PRINTABLE_ASCII)):
                    from audiotools.text import ERR_WAV_INVALID_CHUNK
                    raise ValueError(ERR_WAV_INVALID_CHUNK)
                else:
                    current_block.build("4b 32u", (chunk_id, chunk_size))
                    total_size -= 8

                # and transfer the full content of non-audio chunks
                if (chunk_id != "data"):
                    if (chunk_id == "fmt "):
                        if (not fmt_found):
                            fmt_found = True
                        else:
                            from audiotools.text import ERR_WAV_MULTIPLE_FMT
                            raise ValueError(ERR_WAV_MULTIPLE_FMT)

                    if (chunk_size % 2):
                        current_block.write_bytes(
                            wave_file.read_bytes(chunk_size + 1))
                        total_size -= (chunk_size + 1)
                    else:
                        current_block.write_bytes(
                            wave_file.read_bytes(chunk_size))
                        total_size -= chunk_size
                else:
                    wave_file.skip_bytes(chunk_size)
                    current_block = tail

                    if (chunk_size % 2):
                        current_block.write_bytes(wave_file.read_bytes(1))
                        total_size -= (chunk_size + 1)
                    else:
                        total_size -= chunk_size

            if (fmt_found):
                return (head.data(), tail.data())
            else:
                from audiotools.text import ERR_WAV_NO_FMT_CHUNK
                return ValueError(ERR_WAV_NO_FMT_CHUNK)
        finally:
            wave_file.close()
Beispiel #10
0
class AuReader(object):
    def __init__(self, au_filename):
        from audiotools.bitstream import BitstreamReader
        from audiotools.text import (ERR_AU_INVALID_HEADER,
                                     ERR_AU_UNSUPPORTED_FORMAT)

        self.stream = BitstreamReader(open(au_filename, "rb"), False)
        (magic_number,
         self.data_offset,
         data_size,
         encoding_format,
         self.sample_rate,
         self.channels) = self.stream.parse("4b 5* 32u")

        if magic_number != b'.snd':
            self.stream.close()
            raise ValueError(ERR_AU_INVALID_HEADER)
        try:
            self.bits_per_sample = {2: 8, 3: 16, 4: 24}[encoding_format]
        except KeyError:
            self.stream.close()
            raise ValueError(ERR_AU_UNSUPPORTED_FORMAT)

        self.channel_mask = {1: 0x4, 2: 0x3}.get(self.channels, 0)
        self.bytes_per_pcm_frame = ((self.bits_per_sample // 8) *
                                    self.channels)
        self.total_pcm_frames = (data_size // self.bytes_per_pcm_frame)
        self.remaining_pcm_frames = self.total_pcm_frames

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def read(self, pcm_frames):
        # try to read requested PCM frames or remaining frames
        requested_pcm_frames = min(max(pcm_frames, 1),
                                   self.remaining_pcm_frames)
        requested_bytes = (self.bytes_per_pcm_frame *
                           requested_pcm_frames)
        pcm_data = self.stream.read_bytes(requested_bytes)

        # raise exception if data block exhausted early
        if len(pcm_data) < requested_bytes:
            from audiotools.text import ERR_AU_TRUNCATED_DATA
            raise IOError(ERR_AU_TRUNCATED_DATA)
        else:
            self.remaining_pcm_frames -= requested_pcm_frames

            # return parsed chunk
            return FrameList(pcm_data,
                             self.channels,
                             self.bits_per_sample,
                             True,
                             True)

    def read_closed(self, pcm_frames):
        raise ValueError("cannot read closed stream")

    def seek(self, pcm_frame_offset):
        if pcm_frame_offset < 0:
            from audiotools.text import ERR_NEGATIVE_SEEK
            raise ValueError(ERR_NEGATIVE_SEEK)

        # ensure one doesn't walk off the end of the file
        pcm_frame_offset = min(pcm_frame_offset,
                               self.total_pcm_frames)

        # position file in data block
        self.stream.seek(self.data_offset +
                         (pcm_frame_offset *
                          self.bytes_per_pcm_frame), 0)
        self.remaining_pcm_frames = (self.total_pcm_frames -
                                     pcm_frame_offset)

        return pcm_frame_offset

    def seek_closed(self, pcm_frame_offset):
        raise ValueError("cannot seek closed stream")

    def close(self):
        self.stream.close()
        self.read = self.read_closed
        self.seek = self.seek_closed
Beispiel #11
0
class FlacDecoder:
    CHANNEL_COUNT = [1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2,
                     None, None, None, None, None]

    (SUBFRAME_CONSTANT,
     SUBFRAME_VERBATIM,
     SUBFRAME_FIXED,
     SUBFRAME_LPC) = range(4)

    def __init__(self, filename, channel_mask):
        self.reader = BitstreamReader(open(filename, "rb"), 0)

        if (self.reader.read_bytes(4) != 'fLaC'):
            raise ValueError("invalid FLAC file")

        self.current_md5sum = md5()

        #locate the STREAMINFO,
        #which is sometimes needed to handle non-subset streams
        for (block_id,
             block_size,
             block_reader) in self.metadata_blocks(self.reader):
            if (block_id == 0):
                #read STREAMINFO
                self.minimum_block_size = block_reader.read(16)
                self.maximum_block_size = block_reader.read(16)
                self.minimum_frame_size = block_reader.read(24)
                self.maximum_frame_size = block_reader.read(24)
                self.sample_rate = block_reader.read(20)
                self.channels = block_reader.read(3) + 1
                self.channel_mask = channel_mask
                self.bits_per_sample = block_reader.read(5) + 1
                self.total_frames = block_reader.read64(36)
                self.md5sum = block_reader.read_bytes(16)

                #these are frame header lookup tables
                #which vary slightly depending on STREAMINFO's values
                self.BLOCK_SIZE = [self.maximum_block_size,
                                   192,  576,  1152,
                                   2304, 4608,  None,  None,
                                   256,  512,  1024,  2048,
                                   4096, 8192, 16384, 32768]
                self.SAMPLE_RATE = [self.sample_rate,
                                    88200, 176400, 192000,
                                    8000,  16000,  22050, 24000,
                                    32000,  44100,  48000, 96000,
                                    None,   None,   None,  None]
                self.BITS_PER_SAMPLE = [self.bits_per_sample,
                                        8, 12, None, 16, 20, 24, None]

    def metadata_blocks(self, reader):
        """yields a (block_id, block_size, block_reader) tuple
        per metadata block where block_reader is a BitstreamReader substream"""

        (last_block, block_id, block_size) = self.reader.parse("1u 7u 24u")
        while (last_block == 0):
            yield (block_id, block_size, self.reader.substream(block_size))
            (last_block, block_id, block_size) = self.reader.parse("1u 7u 24u")
        else:
            yield (block_id, block_size, self.reader.substream(block_size))

    def read(self, pcm_frames):
        #if the stream is exhausted,
        #verify its MD5 sum and return an empty pcm.FrameList object
        if (self.total_frames < 1):
            if (self.md5sum == self.current_md5sum.digest()):
                return from_list([], self.channels, self.bits_per_sample, True)
            else:
                raise ValueError("MD5 checksum mismatch")

        crc16 = CRC16()
        self.reader.add_callback(crc16.update)

        #fetch the decoding parameters from the frame header
        (block_size,
         channel_assignment,
         bits_per_sample) = self.read_frame_header()
        channel_count = self.CHANNEL_COUNT[channel_assignment]
        if (channel_count is None):
            raise ValueError("invalid channel assignment")

        #channel data will be a list of signed sample lists, one per channel
        #such as  [[1, 2, 3, ...], [4, 5, 6, ...]]  for a 2 channel stream
        channel_data = []

        for channel_number in xrange(channel_count):
            if ((channel_assignment == 0x8) and (channel_number == 1)):
                #for left-difference assignment
                #the difference channel has 1 additional bit
                channel_data.append(self.read_subframe(block_size,
                                                       bits_per_sample + 1))
            elif ((channel_assignment == 0x9) and (channel_number == 0)):
                #for difference-right assignment
                #the difference channel has 1 additional bit
                channel_data.append(self.read_subframe(block_size,
                                                       bits_per_sample + 1))
            elif ((channel_assignment == 0xA) and (channel_number == 1)):
                #for mid-side assignment
                #the side channel has 1 additional bit
                channel_data.append(self.read_subframe(block_size,
                                                       bits_per_sample + 1))
            else:
                #otherwise, use the frame's bits-per-sample value
                channel_data.append(self.read_subframe(block_size,
                                                       bits_per_sample))

        #one all the subframes have been decoded,
        #reconstruct them depending on the channel assignment
        if (channel_assignment == 0x8):
            #left-difference
            samples = []
            for (left, difference) in zip(*channel_data):
                samples.append(left)
                samples.append(left - difference)
        elif (channel_assignment == 0x9):
            #difference-right
            samples = []
            for (difference, right) in zip(*channel_data):
                samples.append(difference + right)
                samples.append(right)
        elif (channel_assignment == 0xA):
            #mid-side
            samples = []
            for (mid, side) in zip(*channel_data):
                samples.append((((mid * 2) + (side % 2)) + side) / 2)
                samples.append((((mid * 2) + (side % 2)) - side) / 2)
        else:
            #independent
            samples = [0] * block_size * channel_count
            for (i, channel) in enumerate(channel_data):
                samples[i::channel_count] = channel

        self.reader.byte_align()

        #read and verify the frame's trailing CRC-16 footer
        self.reader.read(16)
        self.reader.pop_callback()
        if (int(crc16) != 0):
            raise ValueError("CRC16 mismatch in frame footer")

        #deduct the amount of PCM frames from the remaining amount
        self.total_frames -= block_size

        #build a pcm.FrameList object from the combined samples
        framelist = from_list(samples, channel_count, bits_per_sample, True)

        #update the running MD5 sum calculation with the frame's data
        self.current_md5sum.update(framelist.to_bytes(0, 1))

        #and finally return the frame data
        return framelist

    def read_frame_header(self):
        crc8 = CRC8()
        self.reader.add_callback(crc8.update)

        #read the 32-bit FLAC frame header
        sync_code = self.reader.read(14)
        if (sync_code != 0x3FFE):
            raise ValueError("invalid sync code")

        self.reader.skip(1)
        blocking_strategy = self.reader.read(1)
        block_size_bits = self.reader.read(4)
        sample_rate_bits = self.reader.read(4)
        channel_assignment = self.reader.read(4)
        bits_per_sample_bits = self.reader.read(3)
        self.reader.skip(1)

        #the frame number is a UTF-8 encoded value
        #which takes a variable number of whole bytes
        frame_number = self.read_utf8()

        #unpack the 4 bit block size field
        #which is the total PCM frames in the FLAC frame
        #and may require up to 16 more bits if the frame is usually-sized
        #(which typically happens at the end of the stream)
        if (block_size_bits == 0x6):
            block_size = self.reader.read(8) + 1
        elif (block_size_bits == 0x7):
            block_size = self.reader.read(16) + 1
        else:
            block_size = self.BLOCK_SIZE[block_size_bits]

        #unpack the 4 bit sample rate field
        #which is used for playback, but not needed for decoding
        #and may require up to 16 more bits
        #if the stream has a particularly unusual sample rate
        if (sample_rate_bits == 0xC):
            sample_rate = self.reader.read(8) * 1000
        elif (sample_rate_bits == 0xD):
            sample_rate = self.reader.read(16)
        elif (sample_rate_bits == 0xE):
            sample_rate = self.reader.read(16) * 10
        elif (sample_rate_bits == 0xF):
            raise ValueError("invalid sample rate")
        else:
            sample_rate = self.SAMPLE_RATE[sample_rate_bits]

        #unpack the 3 bit bits-per-sample field
        #this never requires additional bits
        if ((bits_per_sample_bits == 0x3) or (bits_per_sample_bits == 0x7)):
            raise ValueError("invalid bits per sample")
        else:
            bits_per_sample = self.BITS_PER_SAMPLE[bits_per_sample_bits]

        #read and verify frame's CRC-8 value
        self.reader.read(8)
        self.reader.pop_callback()
        if (int(crc8) != 0):
            raise ValueError("CRC8 mismatch in frame header")

        return (block_size, channel_assignment, bits_per_sample)

    def read_subframe_header(self):
        """returns a tuple of (subframe_type, subframe_order, wasted_bps)"""

        self.reader.skip(1)
        subframe_type = self.reader.read(6)
        if (self.reader.read(1) == 1):
            wasted_bps = self.reader.unary(1) + 1
        else:
            wasted_bps = 0

        #extract "order" value from 6 bit subframe type, if necessary
        if (subframe_type == 0):
            return (self.SUBFRAME_CONSTANT, None, wasted_bps)
        elif (subframe_type == 1):
            return (self.SUBFRAME_VERBATIM, None, wasted_bps)
        elif ((subframe_type & 0x38) == 0x08):
            return (self.SUBFRAME_FIXED, subframe_type & 0x07, wasted_bps)
        elif ((subframe_type & 0x20) == 0x20):
            return (self.SUBFRAME_LPC, (subframe_type & 0x1F) + 1, wasted_bps)
        else:
            raise ValueError("invalid subframe type")

    def read_subframe(self, block_size, bits_per_sample):
        (subframe_type,
         subframe_order,
         wasted_bps) = self.read_subframe_header()

        #read a list of signed sample values
        #depending on the subframe type, block size,
        #adjusted bits per sample and optional subframe order
        if (subframe_type == self.SUBFRAME_CONSTANT):
            subframe_samples = self.read_constant_subframe(
                block_size, bits_per_sample - wasted_bps)
        elif (subframe_type == self.SUBFRAME_VERBATIM):
            subframe_samples = self.read_verbatim_subframe(
                block_size, bits_per_sample - wasted_bps)
        elif (subframe_type == self.SUBFRAME_FIXED):
            subframe_samples = self.read_fixed_subframe(
                block_size, bits_per_sample - wasted_bps, subframe_order)
        else:
            subframe_samples = self.read_lpc_subframe(
                block_size, bits_per_sample - wasted_bps, subframe_order)

        #account for wasted bits-per-sample, if necessary
        if (wasted_bps):
            return [sample << wasted_bps for sample in subframe_samples]
        else:
            return subframe_samples

    def read_constant_subframe(self, block_size, bits_per_sample):
        sample = self.reader.read_signed(bits_per_sample)
        return [sample] * block_size

    def read_verbatim_subframe(self, block_size, bits_per_sample):
        return [self.reader.read_signed(bits_per_sample)
                for x in xrange(block_size)]

    def read_fixed_subframe(self, block_size, bits_per_sample, order):
        #"order" number of warm-up samples
        samples = [self.reader.read_signed(bits_per_sample)
                   for i in xrange(order)]

        #"block_size" - "order" number of residual values
        residuals = self.read_residual(block_size, order)

        #which are applied to the warm-up samples
        #depending on the FIXED subframe order
        #and results in "block_size" number of total samples
        if (order == 0):
            return residuals
        elif (order == 1):
            for residual in residuals:
                samples.append(
                    samples[-1] +
                    residual)
            return samples
        elif (order == 2):
            for residual in residuals:
                samples.append(
                    (2 * samples[-1]) -
                    samples[-2] +
                    residual)
            return samples
        elif (order == 3):
            for residual in residuals:
                samples.append(
                    (3 * samples[-1]) -
                    (3 * samples[-2]) +
                    samples[-3] +
                    residual)
            return samples
        elif (order == 4):
            for residual in residuals:
                samples.append(
                    (4 * samples[-1]) -
                    (6 * samples[-2]) +
                    (4 * samples[-3]) -
                    samples[-4] +
                    residual)
            return samples
        else:
            raise ValueError("unsupported FIXED subframe order")

    def read_lpc_subframe(self, block_size, bits_per_sample, order):
        #"order" number of warm-up samples
        samples = [self.reader.read_signed(bits_per_sample)
                   for i in xrange(order)]

        #the size of each QLP coefficient, in bits
        qlp_precision = self.reader.read(4)

        #the amount of right shift to apply
        #during LPC calculation
        #(though this is a signed value, negative shifts are noops
        # in the reference FLAC decoder)
        qlp_shift_needed = max(self.reader.read_signed(5), 0)

        #"order" number of signed QLP coefficients
        qlp_coeffs = [self.reader.read_signed(qlp_precision + 1)
                      for i in xrange(order)]
        #QLP coefficients are applied in reverse order
        qlp_coeffs.reverse()

        #"block_size" - "order" number of residual values
        residuals = self.read_residual(block_size, order)

        #which are applied to the running LPC calculation
        for residual in residuals:
            samples.append((sum([coeff * sample for (coeff, sample) in
                                 zip(qlp_coeffs, samples[-order:])]) >>
                            qlp_shift_needed) + residual)

        return samples

    def read_residual(self, block_size, order):
        residuals = []

        coding_method = self.reader.read(2)
        partition_order = self.reader.read(4)

        #each parititon contains  block_size / 2 ** partition_order
        #number of residuals
        for partition_number in xrange(2 ** partition_order):
            if (partition_number == 0):
                #except for the first partition
                #which contains "order" less than the rest
                residuals.extend(
                    self.read_residual_partition(
                        coding_method,
                        (block_size / 2 ** partition_order) - order))
            else:
                residuals.extend(
                    self.read_residual_partition(
                        coding_method,
                        block_size / 2 ** partition_order))

        return residuals

    def read_residual_partition(self, coding_method, residual_count):
        if (coding_method == 0):
            #the Rice parameters determines the number of
            #least-significant bits to read for each residual
            rice_parameter = self.reader.read(4)
            if (rice_parameter == 0xF):
                escape_code = self.reader.read(5)
                return [self.reader.read_signed(escape_code)
                        for i in xrange(residual_count)]
        elif (coding_method == 1):
            #24 bps streams may use a 5-bit Rice parameter
            #for better compression
            rice_parameter = self.reader.read(5)
            if (rice_parameter == 0x1F):
                escape_code = self.reader.read(5)
                return [self.reader.read_signed(escape_code)
                        for i in xrange(residual_count)]
        else:
            raise ValueError("invalid Rice coding parameter")

        #a list of signed residual values
        partition_residuals = []

        for i in xrange(residual_count):
            msb = self.reader.unary(1)              # most-significant bits
            lsb = self.reader.read(rice_parameter)  # least-significant bits
            value = (msb << rice_parameter) | lsb   # combined into a value
            if (value & 1):   # whose least-significant bit is the sign value
                partition_residuals.append(-(value >> 1) - 1)
            else:
                partition_residuals.append(value >> 1)

        return partition_residuals

    def read_utf8(self):
        total_bytes = self.reader.unary(0)
        value = self.reader.read(7 - total_bytes)
        while (total_bytes > 1):
            value = ((value << 6) | self.reader.parse("2p 6u")[0])
            total_bytes -= 1
        return value

    def close(self):
        self.reader.close()
    def __read_info__(self):
        from audiotools.bitstream import BitstreamReader
        from audiotools import ChannelMask

        reader = BitstreamReader(open(self.filename, "rb"), 1)
        reader.mark()
        try:
            (block_id,
             total_samples,
             bits_per_sample,
             mono_output,
             initial_block,
             final_block,
             sample_rate) = reader.parse(
                "4b 64p 32u 64p 2u 1u 8p 1u 1u 5p 5p 4u 37p")

            if (block_id != 'wvpk'):
                from audiotools.text import ERR_WAVPACK_INVALID_HEADER
                raise InvalidWavPack(ERR_WAVPACK_INVALID_HEADER)

            if (sample_rate != 0xF):
                self.__samplerate__ = WavPackAudio.SAMPLING_RATE[sample_rate]
            else:
                # if unknown, pull from SAMPLE_RATE sub-block
                for (block_id,
                     nondecoder,
                     data_size,
                     data) in self.sub_blocks(reader):
                    if ((block_id == 0x7) and nondecoder):
                        self.__samplerate__ = data.read(data_size * 8)
                        break
                else:
                    # no SAMPLE RATE sub-block found
                    # so pull info from FMT chunk
                    reader.rewind()
                    (self.__samplerate__,) = self.fmt_chunk(reader).parse(
                        "32p 32u")

            self.__bitspersample__ = [8, 16, 24, 32][bits_per_sample]
            self.__total_frames__ = total_samples

            if (initial_block and final_block):
                if (mono_output):
                    self.__channels__ = 1
                    self.__channel_mask__ = ChannelMask(0x4)
                else:
                    self.__channels__ = 2
                    self.__channel_mask__ = ChannelMask(0x3)
            else:
                # if not mono or stereo, pull from CHANNEL INFO sub-block
                reader.rewind()
                for (block_id,
                     nondecoder,
                     data_size,
                     data) in self.sub_blocks(reader):
                    if ((block_id == 0xD) and not nondecoder):
                        self.__channels__ = data.read(8)
                        self.__channel_mask__ = ChannelMask(
                            data.read((data_size - 1) * 8))
                        break
                else:
                    # no CHANNEL INFO sub-block found
                    # so pull info from FMT chunk
                    reader.rewind()
                    fmt = self.fmt_chunk(reader)
                    compression_code = fmt.read(16)
                    self.__channels__ = fmt.read(16)
                    if (compression_code == 1):
                        # this is theoretically possible
                        # with very old .wav files,
                        # but shouldn't happen in practice
                        self.__channel_mask__ = \
                            {1: ChannelMask.from_fields(front_center=True),
                             2: ChannelMask.from_fields(front_left=True,
                                                        front_right=True),
                             3: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        front_center=True),
                             4: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        back_left=True,
                                                        back_right=True),
                             5: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        back_left=True,
                                                        back_right=True,
                                                        front_center=True),
                             6: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        back_left=True,
                                                        back_right=True,
                                                        front_center=True,
                                                        low_frequency=True)
                             }.get(self.__channels__, ChannelMask(0))
                    elif (compression_code == 0xFFFE):
                        fmt.skip(128)
                        mask = fmt.read(32)
                        self.__channel_mask__ = ChannelMask(mask)
                    else:
                        from audiotools.text import ERR_WAVPACK_UNSUPPORTED_FMT
                        raise InvalidWavPack(ERR_WAVPACK_UNSUPPORTED_FMT)

        finally:
            reader.unmark()
            reader.close()
Beispiel #13
0
    def __init__(self, filename):
        """filename is a plain string"""

        from audiotools.bitstream import BitstreamReader
        from audiotools import ChannelMask
        from io import BytesIO

        def read_unsigned(r, c):
            MSB = r.unary(1)
            LSB = r.read(c)
            return MSB * 2 ** c + LSB

        def read_long(r):
            return read_unsigned(r, read_unsigned(r, 2))

        WaveContainer.__init__(self, filename)
        try:
            reader = BitstreamReader(open(filename, "rb"), False)
        except IOError as msg:
            raise InvalidShorten(str(msg))
        try:
            if reader.parse("4b 8u") != [b"ajkg", 2]:
                raise InvalidShorten("invalid Shorten header")

            # populate channels and bits_per_sample from Shorten header
            (file_type,
             self.__channels__,
             block_length,
             max_LPC,
             number_of_means,
             bytes_to_skip) = [read_long(reader) for i in range(6)]

            if (1 <= file_type) and (file_type <= 2):
                self.__bits_per_sample__ = 8
            elif (3 <= file_type) and (file_type <= 6):
                self.__bits_per_sample__ = 16
            else:
                # FIXME
                raise InvalidShorten("unsupported Shorten file type")

            # setup some default dummy metadata
            self.__sample_rate__ = 44100
            if self.__channels__ == 1:
                self.__channel_mask__ = ChannelMask(0x4)
            elif self.__channels__ == 2:
                self.__channel_mask__ = ChannelMask(0x3)
            else:
                self.__channel_mask__ = ChannelMask(0)
            self.__total_frames__ = 0

            # populate sample_rate and total_frames
            # from first VERBATIM command
            command = read_unsigned(reader, 2)
            if command == 9:
                if sys.version_info[0] >= 3:
                    verbatim_bytes = \
                        bytes([read_unsigned(reader, 8) & 0xFF
                               for i in range(read_unsigned(reader, 5))])
                else:
                    verbatim_bytes = \
                        b"".join([chr(read_unsigned(reader, 8) & 0xFF)
                                  for i in range(read_unsigned(reader, 5))])
                try:
                    wave = BitstreamReader(BytesIO(verbatim_bytes), True)
                    header = wave.read_bytes(12)
                    if (header.startswith(b"RIFF") and
                        header.endswith(b"WAVE")):
                        # got RIFF/WAVE header,
                        # so parse wave blocks as needed
                        total_size = len(verbatim_bytes) - 12
                        while total_size >= 8:
                            (chunk_id, chunk_size) = wave.parse("4b 32u")
                            total_size -= 8
                            if chunk_id == b'fmt ':
                                from audiotools.wav import parse_fmt

                                (channels,
                                 self.__sample_rate__,
                                 bits_per_sample,
                                 self.__channel_mask__) = parse_fmt(
                                    wave.substream(chunk_size))
                            elif chunk_id == b'data':
                                self.__total_frames__ = \
                                    (chunk_size //
                                     (self.__channels__ *
                                      (self.__bits_per_sample__ // 8)))
                            else:
                                if chunk_size % 2:
                                    wave.read_bytes(chunk_size + 1)
                                    total_size -= (chunk_size + 1)
                                else:
                                    wave.read_bytes(chunk_size)
                                    total_size -= chunk_size
                except (IOError, ValueError):
                    pass

                try:
                    aiff = BitstreamReader(BytesIO(verbatim_bytes), False)
                    header = aiff.read_bytes(12)
                    if (header.startswith(b"FORM") and
                        header.endswith(b"AIFF")):
                        # got FORM/AIFF header
                        # so parse aiff blocks as needed
                        total_size = len(verbatim_bytes) - 12
                        while total_size >= 8:
                            (chunk_id, chunk_size) = aiff.parse("4b 32u")
                            total_size -= 8
                            if chunk_id == b'COMM':
                                from audiotools.aiff import parse_comm

                                (channels,
                                 total_sample_frames,
                                 bits_per_sample,
                                 self.__sample_rate__,
                                 self.__channel_mask__) = parse_comm(
                                    aiff.substream(chunk_size))
                            elif chunk_id == b'SSND':
                                # subtract 8 bytes for
                                # "offset" and "block size"
                                self.__total_frames__ = \
                                    ((chunk_size - 8) //
                                     (self.__channels__ *
                                      (self.__bits_per_sample__ // 8)))
                            else:
                                if chunk_size % 2:
                                    aiff.read_bytes(chunk_size + 1)
                                    total_size -= (chunk_size + 1)
                                else:
                                    aiff.read_bytes(chunk_size)
                                    total_size -= chunk_size
                except IOError:
                    pass
        except IOError as msg:
            raise InvalidShorten(str(msg))
        finally:
            reader.close()
Beispiel #14
0
class WaveReader(object):
    """a PCMReader object for reading wave file contents"""

    def __init__(self, wave_filename):
        """wave_filename is a string"""

        from audiotools.bitstream import BitstreamReader

        self.stream = BitstreamReader(open(wave_filename, "rb"), True)

        # ensure RIFF<size>WAVE header is ok
        try:
            (riff,
             total_size,
             wave) = self.stream.parse("4b 32u 4b")
        except struct.error:
            from audiotools.text import ERR_WAV_INVALID_WAVE
            self.stream.close()
            raise ValueError(ERR_WAV_INVALID_WAVE)

        if riff != b'RIFF':
            from audiotools.text import ERR_WAV_NOT_WAVE
            self.stream.close()
            raise ValueError(ERR_WAV_NOT_WAVE)
        elif wave != b'WAVE':
            from audiotools.text import ERR_WAV_INVALID_WAVE
            self.stream.close()
            raise ValueError(ERR_WAV_INVALID_WAVE)
        else:
            total_size -= 4
            fmt_chunk_read = False

        # walk through chunks until "data" chunk encountered
        while total_size > 0:
            try:
                (chunk_id,
                 chunk_size) = self.stream.parse("4b 32u")
            except struct.error:
                from audiotools.text import ERR_WAV_INVALID_WAVE
                self.stream.close()
                raise ValueError(ERR_WAV_INVALID_WAVE)
            if not frozenset(chunk_id).issubset(WaveAudio.PRINTABLE_ASCII):
                from audiotools.text import ERR_WAV_INVALID_CHUNK
                self.stream.close()
                raise ValueError(ERR_WAV_INVALID_CHUNK)
            else:
                total_size -= 8

            if chunk_id == b"fmt ":
                # when "fmt " chunk encountered,
                # use it to populate PCMReader attributes
                (self.channels,
                 self.sample_rate,
                 self.bits_per_sample,
                 channel_mask) = parse_fmt(self.stream)
                self.channel_mask = int(channel_mask)
                self.bytes_per_pcm_frame = ((self.bits_per_sample // 8) *
                                            self.channels)
                fmt_chunk_read = True
            elif chunk_id == b"data":
                # when "data" chunk encountered,
                # use its size to determine total PCM frames
                # and ready PCMReader for reading
                if not fmt_chunk_read:
                    from audiotools.text import ERR_WAV_PREMATURE_DATA
                    self.stream.close()
                    raise ValueError(ERR_WAV_PREMATURE_DATA)
                else:
                    self.total_pcm_frames = (chunk_size //
                                             self.bytes_per_pcm_frame)
                    self.remaining_pcm_frames = self.total_pcm_frames
                    self.data_start = self.stream.getpos()
                    return
            else:
                # all other chunks are ignored
                self.stream.skip_bytes(chunk_size)

            if chunk_size % 2:
                if len(self.stream.read_bytes(1)) < 1:
                    from audiotools.text import ERR_WAV_INVALID_CHUNK
                    self.stream.close()
                    raise ValueError(ERR_WAV_INVALID_CHUNK)
                total_size -= (chunk_size + 1)
            else:
                total_size -= chunk_size
        else:
            # raise an error if no "data" chunk is encountered
            from audiotools.text import ERR_WAV_NO_DATA_CHUNK
            self.stream.close()
            raise ValueError(ERR_WAV_NO_DATA_CHUNK)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def read(self, pcm_frames):
        """try to read a pcm.FrameList with the given number of PCM frames"""

        # try to read requested PCM frames or remaining frames
        requested_pcm_frames = min(max(pcm_frames, 1),
                                   self.remaining_pcm_frames)

        requested_bytes = (self.bytes_per_pcm_frame *
                           requested_pcm_frames)
        pcm_data = self.stream.read_bytes(requested_bytes)

        # raise exception if "data" chunk exhausted early
        if len(pcm_data) < requested_bytes:
            from audiotools.text import ERR_WAV_TRUNCATED_DATA_CHUNK
            raise IOError(ERR_WAV_TRUNCATED_DATA_CHUNK)
        else:
            self.remaining_pcm_frames -= requested_pcm_frames

            # return parsed chunk
            return FrameList(pcm_data,
                             self.channels,
                             self.bits_per_sample,
                             False,
                             self.bits_per_sample != 8)

    def read_closed(self, pcm_frames):
        raise ValueError("cannot read closed stream")

    def seek(self, pcm_frame_offset):
        """tries to seek to the given PCM frame offset
        returns the total amount of frames actually seeked over"""

        if pcm_frame_offset < 0:
            from audiotools.text import ERR_NEGATIVE_SEEK
            raise ValueError(ERR_NEGATIVE_SEEK)

        # ensure one doesn't walk off the end of the file
        pcm_frame_offset = min(pcm_frame_offset, self.total_pcm_frames)

        # position file in "data" chunk
        self.stream.setpos(self.data_start)
        self.stream.seek(pcm_frame_offset * self.bytes_per_pcm_frame, 1)
        self.remaining_pcm_frames = (self.total_pcm_frames -
                                     pcm_frame_offset)

        return pcm_frame_offset

    def seek_closed(self, pcm_frame_offset):
        raise ValueError("cannot seek closed stream")

    def close(self):
        """closes the stream for reading"""

        self.stream.close()
        self.read = self.read_closed
        self.seek = self.seek_closed
Beispiel #15
0
class SHNDecoder(object):
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), False)

        (self.file_type, self.channels, self.block_length, self.max_LPC,
         self.number_of_means) = self.read_header()

        if ((1 <= self.file_type) and (self.file_type <= 2)):
            self.bits_per_sample = 8
            self.signed_samples = (self.file_type == 1)
        elif ((3 <= self.file_type) and (self.file_type <= 6)):
            self.bits_per_sample = 16
            self.signed_samples = (self.file_type in (3, 5))
        else:
            raise ValueError("unsupported Shorten file type")

        self.wrapped_samples = [[0] * 3 for c in range(self.channels)]
        self.means = [[0] * self.number_of_means for c in range(self.channels)]
        self.left_shift = 0
        self.stream_finished = False

        # try to read the first command for a wave/aiff header
        self.reader.mark()
        self.read_metadata()
        self.reader.rewind()
        self.reader.unmark()

    def read_metadata(self):
        from io import BytesIO

        command = self.unsigned(2)
        if (command == 9):
            # got verbatim, so read data
            verbatim_bytes = ints_to_bytes(
                [self.unsigned(8) & 0xFF for i in range(self.unsigned(5))])

            try:
                wave = BitstreamReader(BytesIO(verbatim_bytes), True)
                header = wave.read_bytes(12)
                if (header.startswith(b"RIFF") and header.endswith(b"WAVE")):
                    # got RIFF/WAVE header, so parse wave blocks as needed
                    total_size = len(verbatim_bytes) - 12
                    while (total_size > 0):
                        (chunk_id, chunk_size) = wave.parse("4b 32u")
                        total_size -= 8
                        if (chunk_id == b'fmt '):
                            (channels, self.sample_rate, bits_per_sample,
                             channel_mask) = parse_fmt(
                                 wave.substream(chunk_size))
                            self.channel_mask = int(channel_mask)
                            return
                        else:
                            if (chunk_size % 2):
                                wave.read_bytes(chunk_size + 1)
                                total_size -= (chunk_size + 1)
                            else:
                                wave.read_bytes(chunk_size)
                                total_size -= chunk_size
                    else:
                        # no fmt chunk, so use default metadata
                        pass
            except (IOError, ValueError):
                pass

            try:
                aiff = BitstreamReader(BytesIO(verbatim_bytes), False)
                header = aiff.read_bytes(12)
                if (header.startswith(b"FORM") and header.endswith(b"AIFF")):
                    # got FORM/AIFF header, so parse aiff blocks as needed
                    total_size = len(verbatim_bytes) - 12
                    while (total_size > 0):
                        (chunk_id, chunk_size) = aiff.parse("4b 32u")
                        total_size -= 8
                        if (chunk_id == b'COMM'):
                            (channels, total_sample_frames, bits_per_sample,
                             self.sample_rate, channel_mask) = parse_comm(
                                 aiff.substream(chunk_size))
                            self.channel_mask = int(channel_mask)
                            return
                        else:
                            if (chunk_size % 2):
                                aiff.read_bytes(chunk_size + 1)
                                total_size -= (chunk_size + 1)
                            else:
                                aiff.read_bytes(chunk_size)
                                total_size -= chunk_size
                    else:
                        # no COMM chunk, so use default metadata
                        pass
            except IOError:
                pass

        # got something else, so invent some PCM parameters
        self.sample_rate = 44100
        if (self.channels == 1):
            self.channel_mask = 0x4
        elif (self.channels == 2):
            self.channel_mask = 0x3
        else:
            self.channel_mask = 0

    def unsigned(self, c):
        MSB = self.reader.unary(1)
        LSB = self.reader.read(c)
        return MSB * 2**c + LSB

    def signed(self, c):
        u = self.unsigned(c + 1)
        if ((u % 2) == 0):
            return u // 2
        else:
            return -(u // 2) - 1

    def long(self):
        return self.unsigned(self.unsigned(2))

    def skip_unsigned(self, c):
        self.reader.skip_unary(1)
        self.reader.skip(c)

    def read_header(self):
        magic = self.reader.read_bytes(4)
        if (magic != b"ajkg"):
            raise ValueError("invalid magic number")
        version = self.reader.read(8)
        if (version != 2):
            raise ValueError("unsupported version")

        file_type = self.long()
        channels = self.long()
        block_length = self.long()
        max_LPC = self.long()
        number_of_means = self.long()
        bytes_to_skip = self.long()
        self.reader.read_bytes(bytes_to_skip)

        return (file_type, channels, block_length, max_LPC, number_of_means)

    def read(self, pcm_frames):
        if (self.stream_finished):
            return from_channels([
                empty_framelist(1, self.bits_per_sample)
                for channel in range(self.channels)
            ])

        c = 0
        samples = []
        unshifted = []
        while (True):
            command = self.unsigned(2)
            if (((0 <= command) and (command <= 3)
                 or (7 <= command) and (command <= 8))):
                # audio data commands
                if (command == 0):  # DIFF0
                    samples.append(
                        self.read_diff0(self.block_length, self.means[c]))
                elif (command == 1):  # DIFF1
                    samples.append(
                        self.read_diff1(self.block_length,
                                        self.wrapped_samples[c]))
                elif (command == 2):  # DIFF2
                    samples.append(
                        self.read_diff2(self.block_length,
                                        self.wrapped_samples[c]))
                elif (command == 3):  # DIFF3
                    samples.append(
                        self.read_diff3(self.block_length,
                                        self.wrapped_samples[c]))
                elif (command == 7):  # QLPC
                    samples.append(
                        self.read_qlpc(self.block_length, self.means[c],
                                       self.wrapped_samples[c]))
                elif (command == 8):  # ZERO
                    samples.append([0] * self.block_length)

                # update means for channel
                self.means[c].append(shnmean(samples[c]))
                self.means[c] = self.means[c][1:]

                # wrap samples for next command in channel
                self.wrapped_samples[c] = samples[c][-(max(3, self.max_LPC)):]

                # apply left shift to samples
                if (self.left_shift > 0):
                    unshifted.append(
                        [s << self.left_shift for s in samples[c]])
                else:
                    unshifted.append(samples[c])

                c += 1
                if (c == self.channels):
                    # return a FrameList from shifted data
                    return from_channels([
                        from_list(channel, 1, self.bits_per_sample,
                                  self.signed_samples) for channel in unshifted
                    ])
            else:
                # non audio commands
                if (command == 4):  # QUIT
                    self.stream_finished = True
                    return from_channels([
                        empty_framelist(1, self.bits_per_sample)
                        for channel in range(self.channels)
                    ])
                elif (command == 5):  # BLOCKSIZE
                    self.block_length = self.long()
                elif (command == 6):  # BITSHIFT
                    self.left_shift = self.unsigned(2)
                elif (command == 9):  # VERBATIM
                    # skip this command during reading
                    size = self.unsigned(5)
                    for i in range(size):
                        self.skip_unsigned(8)
                else:
                    raise ValueError("unsupported Shorten command")

    def read_diff0(self, block_length, means):
        offset = shnmean(means)
        energy = self.unsigned(3)
        samples = []
        for i in range(block_length):
            residual = self.signed(energy)
            samples.append(residual + offset)
        return samples

    def read_diff1(self, block_length, previous_samples):
        samples = previous_samples[-1:]
        energy = self.unsigned(3)
        for i in range(1, block_length + 1):
            residual = self.signed(energy)
            samples.append(samples[i - 1] + residual)
        return samples[1:]

    def read_diff2(self, block_length, previous_samples):
        samples = previous_samples[-2:]
        energy = self.unsigned(3)
        for i in range(2, block_length + 2):
            residual = self.signed(energy)
            samples.append((2 * samples[i - 1]) - samples[i - 2] + residual)
        return samples[2:]

    def read_diff3(self, block_length, previous_samples):
        samples = previous_samples[-3:]
        energy = self.unsigned(3)
        for i in range(3, block_length + 3):
            residual = self.signed(energy)
            samples.append((3 * (samples[i - 1] - samples[i - 2])) +
                           samples[i - 3] + residual)
        return samples[3:]

    def read_qlpc(self, block_length, means, previous_samples):
        offset = shnmean(means)
        energy = self.unsigned(3)
        LPC_count = self.unsigned(2)
        LPC_coeff = [self.signed(5) for i in range(LPC_count)]
        unoffset = []
        samples = previous_samples[-LPC_count:]
        for i in range(block_length):
            residual = self.signed(energy)
            LPC_sum = 2**5
            for j in range(LPC_count):
                if ((i - j - 1) < 0):
                    # apply offset to warm-up samples
                    LPC_sum += (LPC_coeff[j] * (samples[LPC_count +
                                                        (i - j - 1)] - offset))
                else:
                    LPC_sum += LPC_coeff[j] * unoffset[i - j - 1]
            unoffset.append(LPC_sum // 2**5 + residual)
        return [u + offset for u in unoffset]

    def close(self):
        self.reader.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
Beispiel #16
0
class TTADecoder(object):
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), True)
        crc = CRC32()
        self.reader.add_callback(crc.update)

        # read the header
        (signature,
         format_,
         self.channels,
         self.bits_per_sample,
         self.sample_rate,
         self.total_pcm_frames) = self.reader.parse(
            "4b 16u 16u 16u 32u 32u")

        self.reader.pop_callback()
        header_crc = self.reader.read(32)
        if int(crc) != header_crc:
            raise ValueError(
                "CRC32 mismatch in header (0x%8.8X != 0x%8.8X)" %
                (header_crc, int(crc)))

        self.channel_mask = {1: 0x4, 2: 0x3}.get(self.channels, 0)

        total_tta_frames = div_ceil(self.total_pcm_frames * 245,
                                    self.sample_rate * 256)

        self.pcm_frames_per_tta_frame = (self.sample_rate * 256) // 245

        # read the seektable
        crc = CRC32()
        self.reader.add_callback(crc.update)
        self.frame_sizes = [self.reader.read(32) for i in
                            range(total_tta_frames)]
        self.reader.pop_callback()
        seektable_crc = self.reader.read(32)
        if int(crc) != seektable_crc:
            raise ValueError(
                "CRC32 mismatch in seektable (0x%8.8X != 0x%8.8X)" %
                (header_crc, int(crc)))

        self.current_tta_frame = 0

    def read(self, pcm_frames):
        if self.total_pcm_frames == 0:
            return empty_framelist(self.channels, self.bits_per_sample)

        pcm_frames = min(self.pcm_frames_per_tta_frame, self.total_pcm_frames)

        frame_reader = self.reader.substream(
            self.frame_sizes[self.current_tta_frame])
        crc = CRC32()
        frame_reader.add_callback(crc.update)

        self.total_pcm_frames -= pcm_frames
        self.current_tta_frame += 1

        # setup Rice parameters for each channel
        k0 = [10] * self.channels
        k1 = [10] * self.channels
        sum0 = [2 ** 14] * self.channels
        sum1 = [2 ** 14] * self.channels

        # list of unfiltered output for each channel
        unfiltered = [[] for i in range(self.channels)]

        for f in range(pcm_frames):
            correlated = []

            for (c, ch_output) in enumerate(unfiltered):
                # read most-significant bits
                MSB = frame_reader.unary(0)
                if MSB == 0:
                    # read least-significant bits
                    unsigned = frame_reader.read(k0[c])
                else:
                    # read least-significant bits
                    LSB = frame_reader.read(k1[c])
                    unshifted = ((MSB - 1) << k1[c]) + LSB
                    unsigned = unshifted + (1 << k0[c])

                    # adjust sum1 and k1
                    sum1[c] += (unshifted - (sum1[c] >> 4))
                    if sum1[c] < (2 ** (k1[c] + 4)):
                        k1[c] = max(k1[c] - 1, 0)
                    elif sum1[c] > (2 ** (k1[c] + 5)):
                        k1[c] += 1

                # adjust sum0 and k0
                sum0[c] += (unsigned - (sum0[c] >> 4))
                if sum0[c] < (2 ** (k0[c] + 4)):
                    k0[c] = max(k0[c] - 1, 0)
                elif sum0[c] > (2 ** (k0[c] + 5)):
                    k0[c] += 1

                # apply sign bit
                if (unsigned % 2) == 1:
                    # positive
                    ch_output.append((unsigned + 1) // 2)
                else:
                    # negative
                    ch_output.append(-(unsigned // 2))

        # check frame's trailing CRC32 now that reading is finished
        frame_reader.byte_align()
        frame_reader.pop_callback()
        frame_crc = frame_reader.read(32)
        if int(crc) != frame_crc:
            raise ValueError("CRC32 mismatch in frame (0x%8.8X != 0x%8.8X)" %
                             (frame_crc, int(crc)))

        # run hybrid filter on each channel
        filtered = []
        for unfiltered_ch in unfiltered:
            filtered.append(
                tta_filter(self.bits_per_sample, unfiltered_ch))

        # run fixed order prediction on each channel
        predicted = []
        for filtered_ch in filtered:
            predicted.append(
                fixed_predictor(self.bits_per_sample, filtered_ch))

        if self.channels == 1:
            # send channel as-is
            return from_list(predicted[0],
                             1,
                             self.bits_per_sample,
                             True)
        else:
            # decorrelate channels
            decorrelated = decorrelate(predicted)

            # return all channels as single FrameList
            return from_channels([from_list(decorrelated_ch,
                                            1,
                                            self.bits_per_sample,
                                            True)
                                  for decorrelated_ch in decorrelated])

    def close(self):
        self.reader.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
Beispiel #17
0
class ALACDecoder(object):
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), False)

        stream_start = self.reader.getpos()

        # locate the "alac" atom
        # which is full of required decoding parameters
        try:
            stsd = self.find_sub_atom(b"moov", b"trak", b"mdia",
                                      b"minf", b"stbl", b"stsd")
        except KeyError:
            raise ValueError("required stsd atom not found")

        (stsd_version, descriptions) = stsd.parse("8u 24p 32u")
        (alac1,
         alac2,
         self.samples_per_frame,
         self.bits_per_sample,
         self.history_multiplier,
         self.initial_history,
         self.maximum_k,
         self.channels,
         self.sample_rate) = stsd.parse(
            # ignore much of the stuff in the "high" ALAC atom
            "32p 4b 6P 16p 16p 16p 4P 16p 16p 16p 16p 4P" +
            # and use the attributes in the "low" ALAC atom instead
            "32p 4b 4P 32u 8p 8u 8u 8u 8u 8u 16p 32p 32p 32u")

        self.channel_mask = {1: 0x0004,
                             2: 0x0003,
                             3: 0x0007,
                             4: 0x0107,
                             5: 0x0037,
                             6: 0x003F,
                             7: 0x013F,
                             8: 0x00FF}.get(self.channels, 0)

        if (alac1 != b'alac') or (alac2 != b'alac'):
            raise ValueError("Invalid alac atom")

        # also locate the "mdhd" atom
        # which contains the stream's length in PCM frames
        self.reader.setpos(stream_start)
        mdhd = self.find_sub_atom(b"moov", b"trak", b"mdia", b"mdhd")
        (version, ) = mdhd.parse("8u 24p")
        if version == 0:
            (self.total_pcm_frames,) = mdhd.parse(
                "32p 32p 32p 32u 2P 16p")
        elif version == 1:
            (self.total_pcm_frames,) = mdhd.parse(
                "64p 64p 32p 64U 2P 16p")
        else:
            raise ValueError("invalid mdhd version")

        # finally, set our stream to the "mdat" atom
        self.reader.setpos(stream_start)
        (atom_size, atom_name) = self.reader.parse("32u 4b")
        while atom_name != b"mdat":
            self.reader.skip_bytes(atom_size - 8)
            (atom_size, atom_name) = self.reader.parse("32u 4b")

    def find_sub_atom(self, *atom_names):
        reader = self.reader

        for (last, next_atom) in iter_last(iter(atom_names)):
            try:
                (length, stream_atom) = reader.parse("32u 4b")
                while stream_atom != next_atom:
                    reader.skip_bytes(length - 8)
                    (length, stream_atom) = reader.parse("32u 4b")
                if last:
                    return reader.substream(length - 8)
                else:
                    reader = reader.substream(length - 8)
            except IOError:
                raise KeyError(next_atom)

    def read(self, pcm_frames):
        # if the stream is exhausted, return an empty pcm.FrameList object
        if self.total_pcm_frames == 0:
            return empty_framelist(self.channels, self.bits_per_sample)

        # otherwise, read one ALAC frameset's worth of frame data
        frameset_data = []
        frame_channels = self.reader.read(3) + 1
        while frame_channels != 0x8:
            frameset_data.extend(self.read_frame(frame_channels))
            frame_channels = self.reader.read(3) + 1
        self.reader.byte_align()

        # reorder the frameset to Wave order, depending on channel count
        if (self.channels == 1) or (self.channels == 2):
            pass
        elif self.channels == 3:
            frameset_data = [frameset_data[1],
                             frameset_data[2],
                             frameset_data[0]]
        elif self.channels == 4:
            frameset_data = [frameset_data[1],
                             frameset_data[2],
                             frameset_data[0],
                             frameset_data[3]]
        elif self.channels == 5:
            frameset_data = [frameset_data[1],
                             frameset_data[2],
                             frameset_data[0],
                             frameset_data[3],
                             frameset_data[4]]
        elif self.channels == 6:
            frameset_data = [frameset_data[1],
                             frameset_data[2],
                             frameset_data[0],
                             frameset_data[5],
                             frameset_data[3],
                             frameset_data[4]]
        elif self.channels == 7:
            frameset_data = [frameset_data[1],
                             frameset_data[2],
                             frameset_data[0],
                             frameset_data[6],
                             frameset_data[3],
                             frameset_data[4],
                             frameset_data[5]]
        elif self.channels == 8:
            frameset_data = [frameset_data[3],
                             frameset_data[4],
                             frameset_data[0],
                             frameset_data[7],
                             frameset_data[5],
                             frameset_data[6],
                             frameset_data[1],
                             frameset_data[2]]
        else:
            raise ValueError("unsupported channel count")

        framelist = from_channels([from_list(channel,
                                             1,
                                             self.bits_per_sample,
                                             True)
                                   for channel in frameset_data])

        # deduct PCM frames from remainder
        self.total_pcm_frames -= framelist.frames

        # return samples as a pcm.FrameList object
        return framelist

    def read_frame(self, channel_count):
        """returns a list of PCM sample lists, one per channel"""

        # read the ALAC frame header
        self.reader.skip(16)
        has_sample_count = self.reader.read(1)
        uncompressed_lsb_size = self.reader.read(2)
        uncompressed = self.reader.read(1)
        if has_sample_count:
            sample_count = self.reader.read(32)
        else:
            sample_count = self.samples_per_frame

        if uncompressed == 1:
            # if the frame is uncompressed,
            # read the raw, interlaced samples
            samples = [self.reader.read_signed(self.bits_per_sample)
                       for i in range(sample_count * channel_count)]
            return [samples[i::channel_count] for i in range(channel_count)]
        else:
            # if the frame is compressed,
            # read the interlacing parameters
            interlacing_shift = self.reader.read(8)
            interlacing_leftweight = self.reader.read(8)

            # subframe headers
            subframe_headers = [self.read_subframe_header()
                                for i in range(channel_count)]

            # optional uncompressed LSB values
            if uncompressed_lsb_size > 0:
                uncompressed_lsbs = [
                    self.reader.read(uncompressed_lsb_size * 8)
                    for i in range(sample_count * channel_count)]
            else:
                uncompressed_lsbs = []

            sample_size = (self.bits_per_sample -
                           (uncompressed_lsb_size * 8) +
                           channel_count - 1)

            # and residual blocks
            residual_blocks = [self.read_residuals(sample_size,
                                                   sample_count)
                               for i in range(channel_count)]

            # calculate subframe samples based on
            # subframe header's QLP coefficients and QLP shift-needed
            decoded_subframes = [self.decode_subframe(header[0],
                                                      header[1],
                                                      sample_size,
                                                      residuals)
                                 for (header, residuals) in
                                 zip(subframe_headers,
                                     residual_blocks)]

            # decorrelate channels according interlacing shift and leftweight
            decorrelated_channels = self.decorrelate_channels(
                decoded_subframes,
                interlacing_shift,
                interlacing_leftweight)

            # if uncompressed LSB values are present,
            # prepend them to each sample of each channel
            if uncompressed_lsb_size > 0:
                channels = []
                for (i, channel) in enumerate(decorrelated_channels):
                    assert(len(channel) ==
                           len(uncompressed_lsbs[i::channel_count]))
                    channels.append([s << (uncompressed_lsb_size * 8) | l
                                     for (s, l) in
                                     zip(channel,
                                         uncompressed_lsbs[i::channel_count])])
                return channels
            else:
                return decorrelated_channels

    def read_subframe_header(self):
        prediction_type = self.reader.read(4)
        qlp_shift_needed = self.reader.read(4)
        rice_modifier = self.reader.read(3)
        qlp_coefficients = [self.reader.read_signed(16)
                            for i in range(self.reader.read(5))]

        return (qlp_shift_needed, qlp_coefficients)

    def read_residuals(self, sample_size, sample_count):
        residuals = []
        history = self.initial_history
        sign_modifier = 0
        i = 0

        while i < sample_count:
            # get an unsigned residual based on "history"
            # and on "sample_size" as a lst resort
            k = min(log2(history // (2 ** 9) + 3), self.maximum_k)

            unsigned = self.read_residual(k, sample_size) + sign_modifier

            # clear out old sign modifier, if any
            sign_modifier = 0

            # change unsigned residual to signed residual
            if unsigned & 1:
                residuals.append(-((unsigned + 1) // 2))
            else:
                residuals.append(unsigned // 2)

            # update history based on unsigned residual
            if unsigned <= 0xFFFF:
                history += ((unsigned * self.history_multiplier) -
                            ((history * self.history_multiplier) >> 9))
            else:
                history = 0xFFFF

            # if history gets too small, we may have a block of 0 samples
            # which can be compressed more efficiently
            if (history < 128) and ((i + 1) < sample_count):
                zeroes_k = min(7 -
                               log2(history) +
                               ((history + 16) // 64),
                               self.maximum_k)
                zero_residuals = self.read_residual(zeroes_k, 16)
                if zero_residuals > 0:
                    residuals.extend([0] * zero_residuals)
                    i += zero_residuals

                history = 0

                if zero_residuals <= 0xFFFF:
                    sign_modifier = 1

            i += 1

        return residuals

    def read_residual(self, k, sample_size):
        msb = self.reader.read_huffman_code(RESIDUAL)
        if msb == -1:
            return self.reader.read(sample_size)
        elif k == 0:
            return msb
        else:
            lsb = self.reader.read(k)
            if lsb > 1:
                return msb * ((1 << k) - 1) + (lsb - 1)
            elif lsb == 1:
                self.reader.unread(1)
                return msb * ((1 << k) - 1)
            else:
                self.reader.unread(0)
                return msb * ((1 << k) - 1)

    def decode_subframe(self, qlp_shift_needed, qlp_coefficients,
                        sample_size, residuals):
        # first sample is always copied verbatim
        samples = [residuals.pop(0)]

        if len(qlp_coefficients) < 31:
            # the next "coefficient count" samples
            # are applied as differences to the previous
            for i in range(len(qlp_coefficients)):
                samples.append(truncate_bits(samples[-1] + residuals.pop(0),
                                             sample_size))

            # remaining samples are processed much like LPC
            for residual in residuals:
                base_sample = samples[-len(qlp_coefficients) - 1]
                lpc_sum = sum([(s - base_sample) * c for (s, c) in
                               zip(samples[-len(qlp_coefficients):],
                                   reversed(qlp_coefficients))])
                outval = (1 << (qlp_shift_needed - 1)) + lpc_sum
                outval >>= qlp_shift_needed
                samples.append(truncate_bits(outval + residual + base_sample,
                                             sample_size))

                buf = samples[-len(qlp_coefficients) - 2:-1]

                # error value then adjusts the coefficients table
                if residual > 0:
                    predictor_num = len(qlp_coefficients) - 1

                    while (predictor_num >= 0) and residual > 0:
                        val = (buf[0] -
                               buf[len(qlp_coefficients) - predictor_num])

                        sign = sign_only(val)

                        qlp_coefficients[predictor_num] -= sign

                        val *= sign

                        residual -= ((val >> qlp_shift_needed) *
                                     (len(qlp_coefficients) - predictor_num))

                        predictor_num -= 1

                elif residual < 0:
                    # the same as above, but we break if residual goes positive
                    predictor_num = len(qlp_coefficients) - 1

                    while (predictor_num >= 0) and (residual < 0):
                        val = (buf[0] -
                               buf[len(qlp_coefficients) - predictor_num])

                        sign = -sign_only(val)

                        qlp_coefficients[predictor_num] -= sign

                        val *= sign

                        residual -= ((val >> qlp_shift_needed) *
                                     (len(qlp_coefficients) - predictor_num))

                        predictor_num -= 1
        else:
            # residuals are encoded as simple difference values
            for residual in residuals:
                samples.append(truncate_bits(samples[-1] + residual,
                                             sample_size))

        return samples

    def decorrelate_channels(self, channel_data,
                             interlacing_shift, interlacing_leftweight):
        if len(channel_data) != 2:
            return channel_data
        elif interlacing_leftweight == 0:
            return channel_data
        else:
            left = []
            right = []
            for (ch1, ch2) in zip(*channel_data):
                right.append(ch1 - ((ch2 * interlacing_leftweight) //
                                    (2 ** interlacing_shift)))
                left.append(ch2 + right[-1])
            return [left, right]

    def close(self):
        self.reader.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
Beispiel #18
0
class WavPackDecoder(object):
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), 1)

        # read initial block to populate
        # sample_rate, bits_per_sample, channels, and channel_mask
        self.reader.mark()
        block_header = Block_Header.read(self.reader)
        sub_blocks_size = block_header.block_size - 24
        sub_blocks_data = self.reader.substream(sub_blocks_size)
        if (block_header.sample_rate != 15):
            self.sample_rate = [
                6000, 8000, 9600, 11025, 12000, 16000, 22050, 24000, 32000,
                44100, 48000, 64000, 88200, 96000, 192000
            ][block_header.sample_rate]
        else:
            sub_blocks_data.mark()
            try:
                for sub_block in sub_blocks(sub_blocks_data, sub_blocks_size):
                    if (((sub_block.metadata_function == 7)
                         and (sub_block.nondecoder_data == 1))):
                        self.sample_rate = sub_block.data.read(
                            sub_block.data_size() * 8)
                        break
                else:
                    raise ValueError("invalid sample rate")
            finally:
                sub_blocks_data.rewind()
                sub_blocks_data.unmark()

        self.bits_per_sample = [8, 16, 24, 32][block_header.bits_per_sample]

        if (block_header.initial_block and block_header.final_block):
            if (((block_header.mono_output == 0)
                 or (block_header.false_stereo == 1))):
                self.channels = 2
                self.channel_mask = 0x3
            else:
                self.channels = 1
                self.channel_mask = 0x4
        else:
            # look for channel mask sub block
            sub_blocks_data.mark()
            for sub_block in sub_blocks(sub_blocks_data, sub_blocks_size):
                if (((sub_block.metadata_function == 13)
                     and (sub_block.nondecoder_data == 0))):
                    self.channels = sub_block.data.read(8)
                    self.channel_mask = sub_block.data.read(
                        (sub_block.data_size() - 1) * 8)
                    break
            else:
                # FIXME - handle case of no channel mask sub block
                raise NotImplementedError()
            sub_blocks_data.rewind()
            sub_blocks_data.unmark()

        self.reader.rewind()
        self.reader.unmark()

        self.pcm_finished = False
        self.md5_checked = False
        self.md5sum = md5()

    def read(self, pcm_frames):
        if (self.pcm_finished):
            if (not self.md5_checked):
                self.reader.mark()
                try:
                    try:
                        header = Block_Header.read(self.reader)
                        sub_blocks_size = header.block_size - 24
                        sub_blocks_data = \
                            self.reader.substream(sub_blocks_size)
                        for sub_block in sub_blocks(sub_blocks_data,
                                                    sub_blocks_size):
                            if (((sub_block.metadata_function == 6)
                                 and (sub_block.nondecoder_data == 1))):
                                if ((sub_block.data.read_bytes(16) !=
                                     self.md5sum.digest())):
                                    raise ValueError("invalid stream MD5 sum")
                    except (IOError, ValueError):
                        # no error if a block isn't found
                        pass
                finally:
                    self.reader.rewind()
                    self.reader.unmark()
            return from_list([], self.channels, self.bits_per_sample, True)

        channels = []

        while (True):  # in place of a do-while loop
            try:
                block_header = Block_Header.read(self.reader)
            except (ValueError, IOError):
                self.pcm_finished = True
                return from_list([], self.channels, self.bits_per_sample, True)
            sub_blocks_size = block_header.block_size - 24
            sub_blocks_data = self.reader.substream(sub_blocks_size)
            channels.extend(
                read_block(block_header, sub_blocks_size, sub_blocks_data))

            if (block_header.final_block == 1):
                break

        if ((block_header.block_index + block_header.block_samples) >=
                block_header.total_samples):
            self.pcm_finished = True

        # combine channels of audio data into single block
        block = from_channels(
            [from_list(ch, 1, self.bits_per_sample, True) for ch in channels])

        # update MD5 sum
        self.md5sum.update(block.to_bytes(False, self.bits_per_sample > 8))

        # return single block of audio data
        return block

    def close(self):
        self.reader.close()
Beispiel #19
0
    def __init__(self, filename):
        """filename is a plain string"""

        from audiotools.bitstream import BitstreamReader
        from audiotools import ChannelMask
        from io import BytesIO

        def read_unsigned(r, c):
            MSB = r.unary(1)
            LSB = r.read(c)
            return MSB * 2 ** c + LSB

        def read_long(r):
            return read_unsigned(r, read_unsigned(r, 2))

        WaveContainer.__init__(self, filename)
        try:
            reader = BitstreamReader(open(filename, "rb"), False)
        except IOError as msg:
            raise InvalidShorten(str(msg))
        try:
            if (reader.parse("4b 8u") != [b"ajkg", 2]):
                raise InvalidShorten("invalid Shorten header")

            # populate channels and bits_per_sample from Shorten header
            (file_type,
             self.__channels__,
             block_length,
             max_LPC,
             number_of_means,
             bytes_to_skip) = [read_long(reader) for i in range(6)]

            if ((1 <= file_type) and (file_type <= 2)):
                self.__bits_per_sample__ = 8
            elif ((3 <= file_type) and (file_type <= 6)):
                self.__bits_per_sample__ = 16
            else:
                # FIXME
                raise InvalidShorten("unsupported Shorten file type")

            # setup some default dummy metadata
            self.__sample_rate__ = 44100
            if (self.__channels__ == 1):
                self.__channel_mask__ = ChannelMask(0x4)
            elif (self.__channels__ == 2):
                self.__channel_mask__ = ChannelMask(0x3)
            else:
                self.__channel_mask__ = ChannelMask(0)
            self.__total_frames__ = 0

            # populate sample_rate and total_frames
            # from first VERBATIM command
            command = read_unsigned(reader, 2)
            if (command == 9):
                if (sys.version_info[0] >= 3):
                    verbatim_bytes = \
                        bytes([read_unsigned(reader, 8) & 0xFF
                               for i in range(read_unsigned(reader, 5))])
                else:
                    verbatim_bytes = \
                        b"".join([chr(read_unsigned(reader, 8) & 0xFF)
                                  for i in range(read_unsigned(reader, 5))])
                try:
                    wave = BitstreamReader(BytesIO(verbatim_bytes), True)
                    header = wave.read_bytes(12)
                    if (header.startswith(b"RIFF") and
                        header.endswith(b"WAVE")):
                        # got RIFF/WAVE header,
                        # so parse wave blocks as needed
                        total_size = len(verbatim_bytes) - 12
                        while (total_size >= 8):
                            (chunk_id, chunk_size) = wave.parse("4b 32u")
                            total_size -= 8
                            if (chunk_id == b'fmt '):
                                from audiotools.wav import parse_fmt

                                (channels,
                                 self.__sample_rate__,
                                 bits_per_sample,
                                 self.__channel_mask__) = parse_fmt(
                                    wave.substream(chunk_size))
                            elif (chunk_id == b'data'):
                                self.__total_frames__ = \
                                    (chunk_size //
                                     (self.__channels__ *
                                      (self.__bits_per_sample__ // 8)))
                            else:
                                if (chunk_size % 2):
                                    wave.read_bytes(chunk_size + 1)
                                    total_size -= (chunk_size + 1)
                                else:
                                    wave.read_bytes(chunk_size)
                                    total_size -= chunk_size
                except (IOError, ValueError):
                    pass

                try:
                    aiff = BitstreamReader(BytesIO(verbatim_bytes), False)
                    header = aiff.read_bytes(12)
                    if (header.startswith(b"FORM") and
                        header.endswith(b"AIFF")):
                        # got FORM/AIFF header
                        # so parse aiff blocks as needed
                        total_size = len(verbatim_bytes) - 12
                        while (total_size >= 8):
                            (chunk_id, chunk_size) = aiff.parse("4b 32u")
                            total_size -= 8
                            if (chunk_id == b'COMM'):
                                from audiotools.aiff import parse_comm

                                (channels,
                                 total_sample_frames,
                                 bits_per_sample,
                                 self.__sample_rate__,
                                 self.__channel_mask__) = parse_comm(
                                    aiff.substream(chunk_size))
                            elif (chunk_id == b'SSND'):
                                # subtract 8 bytes for
                                # "offset" and "block size"
                                self.__total_frames__ = \
                                    ((chunk_size - 8) //
                                     (self.__channels__ *
                                      (self.__bits_per_sample__ // 8)))
                            else:
                                if (chunk_size % 2):
                                    aiff.read_bytes(chunk_size + 1)
                                    total_size -= (chunk_size + 1)
                                else:
                                    aiff.read_bytes(chunk_size)
                                    total_size -= chunk_size
                except IOError:
                    pass
        except IOError as msg:
            raise InvalidShorten(str(msg))
        finally:
            reader.close()
Beispiel #20
0
class ALACDecoder(object):
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), False)

        self.reader.mark()
        try:
            # locate the "alac" atom
            # which is full of required decoding parameters
            try:
                stsd = self.find_sub_atom(b"moov", b"trak", b"mdia", b"minf",
                                          b"stbl", b"stsd")
            except KeyError:
                raise ValueError("required stsd atom not found")

            (stsd_version, descriptions) = stsd.parse("8u 24p 32u")
            (alac1, alac2, self.samples_per_frame, self.bits_per_sample,
             self.history_multiplier, self.initial_history, self.maximum_k,
             self.channels, self.sample_rate) = stsd.parse(
                 # ignore much of the stuff in the "high" ALAC atom
                 "32p 4b 6P 16p 16p 16p 4P 16p 16p 16p 16p 4P" +
                 # and use the attributes in the "low" ALAC atom instead
                 "32p 4b 4P 32u 8p 8u 8u 8u 8u 8u 16p 32p 32p 32u")

            self.channel_mask = {
                1: 0x0004,
                2: 0x0003,
                3: 0x0007,
                4: 0x0107,
                5: 0x0037,
                6: 0x003F,
                7: 0x013F,
                8: 0x00FF
            }.get(self.channels, 0)

            if ((alac1 != b'alac') or (alac2 != b'alac')):
                raise ValueError("Invalid alac atom")

            # also locate the "mdhd" atom
            # which contains the stream's length in PCM frames
            self.reader.rewind()
            mdhd = self.find_sub_atom(b"moov", b"trak", b"mdia", b"mdhd")
            (version, ) = mdhd.parse("8u 24p")
            if (version == 0):
                (self.total_pcm_frames,
                 ) = mdhd.parse("32p 32p 32p 32u 2P 16p")
            elif (version == 1):
                (self.total_pcm_frames,
                 ) = mdhd.parse("64p 64p 32p 64U 2P 16p")
            else:
                raise ValueError("invalid mdhd version")

            # finally, set our stream to the "mdat" atom
            self.reader.rewind()
            (atom_size, atom_name) = self.reader.parse("32u 4b")
            while (atom_name != b"mdat"):
                self.reader.skip_bytes(atom_size - 8)
                (atom_size, atom_name) = self.reader.parse("32u 4b")

        finally:
            self.reader.unmark()

    def find_sub_atom(self, *atom_names):
        reader = self.reader

        for (last, next_atom) in iter_last(iter(atom_names)):
            try:
                (length, stream_atom) = reader.parse("32u 4b")
                while (stream_atom != next_atom):
                    reader.skip_bytes(length - 8)
                    (length, stream_atom) = reader.parse("32u 4b")
                if (last):
                    return reader.substream(length - 8)
                else:
                    reader = reader.substream(length - 8)
            except IOError:
                raise KeyError(next_atom)

    def read(self, pcm_frames):
        # if the stream is exhausted, return an empty pcm.FrameList object
        if (self.total_pcm_frames == 0):
            return empty_framelist(self.channels, self.bits_per_sample)

        # otherwise, read one ALAC frameset's worth of frame data
        frameset_data = []
        frame_channels = self.reader.read(3) + 1
        while (frame_channels != 0x8):
            frameset_data.extend(self.read_frame(frame_channels))
            frame_channels = self.reader.read(3) + 1
        self.reader.byte_align()

        # reorder the frameset to Wave order, depending on channel count
        if ((self.channels == 1) or (self.channels == 2)):
            pass
        elif (self.channels == 3):
            frameset_data = [
                frameset_data[1], frameset_data[2], frameset_data[0]
            ]
        elif (self.channels == 4):
            frameset_data = [
                frameset_data[1], frameset_data[2], frameset_data[0],
                frameset_data[3]
            ]
        elif (self.channels == 5):
            frameset_data = [
                frameset_data[1], frameset_data[2], frameset_data[0],
                frameset_data[3], frameset_data[4]
            ]
        elif (self.channels == 6):
            frameset_data = [
                frameset_data[1], frameset_data[2], frameset_data[0],
                frameset_data[5], frameset_data[3], frameset_data[4]
            ]
        elif (self.channels == 7):
            frameset_data = [
                frameset_data[1], frameset_data[2], frameset_data[0],
                frameset_data[6], frameset_data[3], frameset_data[4],
                frameset_data[5]
            ]
        elif (self.channels == 8):
            frameset_data = [
                frameset_data[3], frameset_data[4], frameset_data[0],
                frameset_data[7], frameset_data[5], frameset_data[6],
                frameset_data[1], frameset_data[2]
            ]
        else:
            raise ValueError("unsupported channel count")

        framelist = from_channels([
            from_list(channel, 1, self.bits_per_sample, True)
            for channel in frameset_data
        ])

        # deduct PCM frames from remainder
        self.total_pcm_frames -= framelist.frames

        # return samples as a pcm.FrameList object
        return framelist

    def read_frame(self, channel_count):
        """returns a list of PCM sample lists, one per channel"""

        # read the ALAC frame header
        self.reader.skip(16)
        has_sample_count = self.reader.read(1)
        uncompressed_lsb_size = self.reader.read(2)
        uncompressed = self.reader.read(1)
        if (has_sample_count):
            sample_count = self.reader.read(32)
        else:
            sample_count = self.samples_per_frame

        if (uncompressed == 1):
            # if the frame is uncompressed,
            # read the raw, interlaced samples
            samples = [
                self.reader.read_signed(self.bits_per_sample)
                for i in range(sample_count * channel_count)
            ]
            return [samples[i::channel_count] for i in range(channel_count)]
        else:
            # if the frame is compressed,
            # read the interlacing parameters
            interlacing_shift = self.reader.read(8)
            interlacing_leftweight = self.reader.read(8)

            # subframe headers
            subframe_headers = [
                self.read_subframe_header() for i in range(channel_count)
            ]

            # optional uncompressed LSB values
            if (uncompressed_lsb_size > 0):
                uncompressed_lsbs = [
                    self.reader.read(uncompressed_lsb_size * 8)
                    for i in range(sample_count * channel_count)
                ]
            else:
                uncompressed_lsbs = []

            sample_size = (self.bits_per_sample - (uncompressed_lsb_size * 8) +
                           channel_count - 1)

            # and residual blocks
            residual_blocks = [
                self.read_residuals(sample_size, sample_count)
                for i in range(channel_count)
            ]

            # calculate subframe samples based on
            # subframe header's QLP coefficients and QLP shift-needed
            decoded_subframes = [
                self.decode_subframe(header[0], header[1], sample_size,
                                     residuals)
                for (header,
                     residuals) in zip(subframe_headers, residual_blocks)
            ]

            # decorrelate channels according interlacing shift and leftweight
            decorrelated_channels = self.decorrelate_channels(
                decoded_subframes, interlacing_shift, interlacing_leftweight)

            # if uncompressed LSB values are present,
            # prepend them to each sample of each channel
            if (uncompressed_lsb_size > 0):
                channels = []
                for (i, channel) in enumerate(decorrelated_channels):
                    assert (len(channel) == len(
                        uncompressed_lsbs[i::channel_count]))
                    channels.append([
                        s << (uncompressed_lsb_size * 8) | l for (s, l) in zip(
                            channel, uncompressed_lsbs[i::channel_count])
                    ])
                return channels
            else:
                return decorrelated_channels

    def read_subframe_header(self):
        prediction_type = self.reader.read(4)
        qlp_shift_needed = self.reader.read(4)
        rice_modifier = self.reader.read(3)
        qlp_coefficients = [
            self.reader.read_signed(16) for i in range(self.reader.read(5))
        ]

        return (qlp_shift_needed, qlp_coefficients)

    def read_residuals(self, sample_size, sample_count):
        residuals = []
        history = self.initial_history
        sign_modifier = 0
        i = 0

        while (i < sample_count):
            # get an unsigned residual based on "history"
            # and on "sample_size" as a lst resort
            k = min(log2(history // (2**9) + 3), self.maximum_k)

            unsigned = self.read_residual(k, sample_size) + sign_modifier

            # clear out old sign modifier, if any
            sign_modifier = 0

            # change unsigned residual to signed residual
            if (unsigned & 1):
                residuals.append(-((unsigned + 1) // 2))
            else:
                residuals.append(unsigned // 2)

            # update history based on unsigned residual
            if (unsigned <= 0xFFFF):
                history += ((unsigned * self.history_multiplier) -
                            ((history * self.history_multiplier) >> 9))
            else:
                history = 0xFFFF

            # if history gets too small, we may have a block of 0 samples
            # which can be compressed more efficiently
            if ((history < 128) and ((i + 1) < sample_count)):
                zeroes_k = min(7 - log2(history) + ((history + 16) // 64),
                               self.maximum_k)
                zero_residuals = self.read_residual(zeroes_k, 16)
                if (zero_residuals > 0):
                    residuals.extend([0] * zero_residuals)
                    i += zero_residuals

                history = 0

                if (zero_residuals <= 0xFFFF):
                    sign_modifier = 1

            i += 1

        return residuals

    def read_residual(self, k, sample_size):
        msb = self.reader.read_huffman_code(RESIDUAL)
        if (msb == -1):
            return self.reader.read(sample_size)
        elif (k == 0):
            return msb
        else:
            lsb = self.reader.read(k)
            if (lsb > 1):
                return msb * ((1 << k) - 1) + (lsb - 1)
            elif (lsb == 1):
                self.reader.unread(1)
                return msb * ((1 << k) - 1)
            else:
                self.reader.unread(0)
                return msb * ((1 << k) - 1)

    def decode_subframe(self, qlp_shift_needed, qlp_coefficients, sample_size,
                        residuals):
        # first sample is always copied verbatim
        samples = [residuals.pop(0)]

        if (len(qlp_coefficients) < 31):
            # the next "coefficient count" samples
            # are applied as differences to the previous
            for i in range(len(qlp_coefficients)):
                samples.append(
                    truncate_bits(samples[-1] + residuals.pop(0), sample_size))

            # remaining samples are processed much like LPC
            for residual in residuals:
                base_sample = samples[-len(qlp_coefficients) - 1]
                lpc_sum = sum([(s - base_sample) * c
                               for (s,
                                    c) in zip(samples[-len(qlp_coefficients):],
                                              reversed(qlp_coefficients))])
                outval = (1 << (qlp_shift_needed - 1)) + lpc_sum
                outval >>= qlp_shift_needed
                samples.append(
                    truncate_bits(outval + residual + base_sample,
                                  sample_size))

                buf = samples[-len(qlp_coefficients) - 2:-1]

                # error value then adjusts the coefficients table
                if (residual > 0):
                    predictor_num = len(qlp_coefficients) - 1

                    while ((predictor_num >= 0) and residual > 0):
                        val = (buf[0] -
                               buf[len(qlp_coefficients) - predictor_num])

                        sign = sign_only(val)

                        qlp_coefficients[predictor_num] -= sign

                        val *= sign

                        residual -= ((val >> qlp_shift_needed) *
                                     (len(qlp_coefficients) - predictor_num))

                        predictor_num -= 1

                elif (residual < 0):
                    # the same as above, but we break if residual goes positive
                    predictor_num = len(qlp_coefficients) - 1

                    while ((predictor_num >= 0) and residual < 0):
                        val = (buf[0] -
                               buf[len(qlp_coefficients) - predictor_num])

                        sign = -sign_only(val)

                        qlp_coefficients[predictor_num] -= sign

                        val *= sign

                        residual -= ((val >> qlp_shift_needed) *
                                     (len(qlp_coefficients) - predictor_num))

                        predictor_num -= 1
        else:
            # residuals are encoded as simple difference values
            for residual in residuals:
                samples.append(
                    truncate_bits(samples[-1] + residual, sample_size))

        return samples

    def decorrelate_channels(self, channel_data, interlacing_shift,
                             interlacing_leftweight):
        if (len(channel_data) != 2):
            return channel_data
        elif (interlacing_leftweight == 0):
            return channel_data
        else:
            left = []
            right = []
            for (ch1, ch2) in zip(*channel_data):
                right.append(ch1 - ((ch2 * interlacing_leftweight) //
                                    (2**interlacing_shift)))
                left.append(ch2 + right[-1])
            return [left, right]

    def close(self):
        self.reader.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
Beispiel #21
0
    def wave_header_footer(self):
        """returns a pair of data strings before and after PCM data

        the first contains all data before the PCM content of the data chunk
        the second containing all data after the data chunk
        for example:

        >>> w = audiotools.open("input.wav")
        >>> (head, tail) = w.wave_header_footer()
        >>> f = open("output.wav", "wb")
        >>> f.write(head)
        >>> audiotools.transfer_framelist_data(w.to_pcm(), f.write)
        >>> f.write(tail)
        >>> f.close()

        should result in "output.wav" being identical to "input.wav"
        """

        from audiotools.bitstream import BitstreamReader
        from audiotools.bitstream import BitstreamRecorder

        head = BitstreamRecorder(1)
        tail = BitstreamRecorder(1)
        current_block = head
        fmt_found = False

        wave_file = BitstreamReader(open(self.filename, 'rb'), 1)
        try:
            # transfer the 12-byte "RIFFsizeWAVE" header to head
            (riff, size, wave) = wave_file.parse("4b 32u 4b")
            if (riff != 'RIFF'):
                from audiotools.text import ERR_WAV_NOT_WAVE
                raise ValueError(ERR_WAV_NOT_WAVE)
            elif (wave != 'WAVE'):
                from audiotools.text import ERR_WAV_INVALID_WAVE
                raise ValueError(ERR_WAV_INVALID_WAVE)
            else:
                current_block.build("4b 32u 4b", (riff, size, wave))
                total_size = size - 4

            while (total_size > 0):
                # transfer each chunk header
                (chunk_id, chunk_size) = wave_file.parse("4b 32u")
                if (not frozenset(chunk_id).issubset(self.PRINTABLE_ASCII)):
                    from audiotools.text import ERR_WAV_INVALID_CHUNK
                    raise ValueError(ERR_WAV_INVALID_CHUNK)
                else:
                    current_block.build("4b 32u", (chunk_id, chunk_size))
                    total_size -= 8

                # and transfer the full content of non-audio chunks
                if (chunk_id != "data"):
                    if (chunk_id == "fmt "):
                        if (not fmt_found):
                            fmt_found = True
                        else:
                            from audiotools.text import ERR_WAV_MULTIPLE_FMT
                            raise ValueError(ERR_WAV_MULTIPLE_FMT)

                    if (chunk_size % 2):
                        current_block.write_bytes(
                            wave_file.read_bytes(chunk_size + 1))
                        total_size -= (chunk_size + 1)
                    else:
                        current_block.write_bytes(
                            wave_file.read_bytes(chunk_size))
                        total_size -= chunk_size
                else:
                    wave_file.skip_bytes(chunk_size)
                    current_block = tail

                    if (chunk_size % 2):
                        current_block.write_bytes(wave_file.read_bytes(1))
                        total_size -= (chunk_size + 1)
                    else:
                        total_size -= chunk_size

            if (fmt_found):
                return (head.data(), tail.data())
            else:
                from audiotools.text import ERR_WAV_NO_FMT_CHUNK
                return ValueError(ERR_WAV_NO_FMT_CHUNK)
        finally:
            wave_file.close()
Beispiel #22
0
class TTADecoder(object):
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), True)
        crc = CRC32()
        self.reader.add_callback(crc.update)

        # read the header
        (signature,
         format_,
         self.channels,
         self.bits_per_sample,
         self.sample_rate,
         self.total_pcm_frames) = self.reader.parse(
            "4b 16u 16u 16u 32u 32u")

        self.reader.pop_callback()
        header_crc = self.reader.read(32)
        if (int(crc) != header_crc):
            raise ValueError(
                "CRC32 mismatch in header (0x%8.8X != 0x%8.8X)" %
                (header_crc, int(crc)))

        self.channel_mask = {1: 0x4, 2: 0x3}.get(self.channels, 0)

        total_tta_frames = div_ceil(self.total_pcm_frames * 245,
                                    self.sample_rate * 256)

        self.pcm_frames_per_tta_frame = (self.sample_rate * 256) // 245

        # read the seektable
        crc = CRC32()
        self.reader.add_callback(crc.update)
        self.frame_sizes = [self.reader.read(32) for i in
                            range(total_tta_frames)]
        self.reader.pop_callback()
        seektable_crc = self.reader.read(32)
        if (int(crc) != seektable_crc):
            raise ValueError(
                "CRC32 mismatch in seektable (0x%8.8X != 0x%8.8X)" %
                (header_crc, int(crc)))

        self.current_tta_frame = 0

    def read(self, pcm_frames):
        if (self.total_pcm_frames == 0):
            return empty_framelist(self.channels, self.bits_per_sample)

        pcm_frames = min(self.pcm_frames_per_tta_frame, self.total_pcm_frames)

        frame_reader = self.reader.substream(
            self.frame_sizes[self.current_tta_frame])
        crc = CRC32()
        frame_reader.add_callback(crc.update)

        self.total_pcm_frames -= pcm_frames
        self.current_tta_frame += 1

        # setup Rice parameters for each channel
        k0 = [10] * self.channels
        k1 = [10] * self.channels
        sum0 = [2 ** 14] * self.channels
        sum1 = [2 ** 14] * self.channels

        # list of unfiltered output for each channel
        unfiltered = [[] for i in range(self.channels)]

        for f in range(pcm_frames):
            correlated = []

            for (c, ch_output) in enumerate(unfiltered):
                # read most-significant bits
                MSB = frame_reader.unary(0)
                if (MSB == 0):
                    # read least-significant bits
                    unsigned = frame_reader.read(k0[c])
                else:
                    # read least-significant bits
                    LSB = frame_reader.read(k1[c])
                    unshifted = ((MSB - 1) << k1[c]) + LSB
                    unsigned = unshifted + (1 << k0[c])

                    # adjust sum1 and k1
                    sum1[c] += (unshifted - (sum1[c] >> 4))
                    if (sum1[c] < (2 ** (k1[c] + 4))):
                        k1[c] = max(k1[c] - 1, 0)
                    elif (sum1[c] > (2 ** (k1[c] + 5))):
                        k1[c] += 1

                # adjust sum0 and k0
                sum0[c] += (unsigned - (sum0[c] >> 4))
                if (sum0[c] < (2 ** (k0[c] + 4))):
                    k0[c] = max(k0[c] - 1, 0)
                elif (sum0[c] > (2 ** (k0[c] + 5))):
                    k0[c] += 1

                # apply sign bit
                if ((unsigned % 2) == 1):
                    # positive
                    ch_output.append((unsigned + 1) // 2)
                else:
                    # negative
                    ch_output.append(-(unsigned // 2))

        # check frame's trailing CRC32 now that reading is finished
        frame_reader.byte_align()
        frame_reader.pop_callback()
        frame_crc = frame_reader.read(32)
        if (int(crc) != frame_crc):
            raise ValueError("CRC32 mismatch in frame (0x%8.8X != 0x%8.8X)" %
                             (frame_crc, int(crc)))

        # run hybrid filter on each channel
        filtered = []
        for unfiltered_ch in unfiltered:
            filtered.append(
                tta_filter(self.bits_per_sample, unfiltered_ch))

        # run fixed order prediction on each channel
        predicted = []
        for filtered_ch in filtered:
            predicted.append(
                fixed_predictor(self.bits_per_sample, filtered_ch))

        if (self.channels == 1):
            # send channel as-is
            return from_list(predicted[0],
                             1,
                             self.bits_per_sample,
                             True)
        else:
            # decorrelate channels
            decorrelated = decorrelate(predicted)

            # return all channels as single FrameList
            return from_channels([from_list(decorrelated_ch,
                                            1,
                                            self.bits_per_sample,
                                            True)
                                  for decorrelated_ch in decorrelated])

    def close(self):
        self.reader.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
Beispiel #23
0
    def aiff_header_footer(self):
        """returns (header, footer) tuple of strings
        containing all data before and after the PCM stream

        if self.has_foreign_aiff_chunks() is False,
        may raise ValueError if the file has no header and footer
        for any reason"""

        from audiotools.bitstream import BitstreamReader
        from audiotools.bitstream import BitstreamRecorder
        from audiotools.text import (ERR_AIFF_NOT_AIFF,
                                     ERR_AIFF_INVALID_AIFF,
                                     ERR_AIFF_INVALID_CHUNK_ID)

        head = BitstreamRecorder(0)
        tail = BitstreamRecorder(0)
        current_block = head

        aiff_file = BitstreamReader(open(self.filename, 'rb'), 0)
        try:
            # transfer the 12-byte "RIFFsizeWAVE" header to head
            (form, size, aiff) = aiff_file.parse("4b 32u 4b")
            if (form != 'FORM'):
                raise InvalidAIFF(ERR_AIFF_NOT_AIFF)
            elif (aiff != 'AIFF'):
                raise InvalidAIFF(ERR_AIFF_INVALID_AIFF)
            else:
                current_block.build("4b 32u 4b", (form, size, aiff))
                total_size = size - 4

            while (total_size > 0):
                # transfer each chunk header
                (chunk_id, chunk_size) = aiff_file.parse("4b 32u")
                if (not frozenset(chunk_id).issubset(self.PRINTABLE_ASCII)):
                    raise InvalidAIFF(ERR_AIFF_INVALID_CHUNK_ID)
                else:
                    current_block.build("4b 32u", (chunk_id, chunk_size))
                    total_size -= 8

                # and transfer the full content of non-audio chunks
                if (chunk_id != "SSND"):
                    if (chunk_size % 2):
                        current_block.write_bytes(
                            aiff_file.read_bytes(chunk_size + 1))
                        total_size -= (chunk_size + 1)
                    else:
                        current_block.write_bytes(
                            aiff_file.read_bytes(chunk_size))
                        total_size -= chunk_size
                else:
                    # transfer alignment as part of SSND's chunk header
                    align = aiff_file.parse("32u 32u")
                    current_block.build("32u 32u", align)
                    aiff_file.skip_bytes(chunk_size - 8)
                    current_block = tail

                    if (chunk_size % 2):
                        current_block.write_bytes(aiff_file.read_bytes(1))
                        total_size -= (chunk_size + 1)
                    else:
                        total_size -= chunk_size

            return (head.data(), tail.data())
        finally:
            aiff_file.close()
Beispiel #24
0
    def __read_info__(self):
        from audiotools.bitstream import BitstreamReader
        from audiotools import ChannelMask

        reader = BitstreamReader(open(self.filename, "rb"), 1)
        reader.mark()
        try:
            (block_id,
             total_samples,
             bits_per_sample,
             mono_output,
             initial_block,
             final_block,
             sample_rate) = reader.parse(
                "4b 64p 32u 64p 2u 1u 8p 1u 1u 5p 5p 4u 37p")

            if (block_id != b"wvpk"):
                from audiotools.text import ERR_WAVPACK_INVALID_HEADER
                raise InvalidWavPack(ERR_WAVPACK_INVALID_HEADER)

            if (sample_rate != 0xF):
                self.__samplerate__ = WavPackAudio.SAMPLING_RATE[sample_rate]
            else:
                # if unknown, pull from SAMPLE_RATE sub-block
                for (block_id,
                     nondecoder,
                     data_size,
                     data) in self.sub_blocks(reader):
                    if ((block_id == 0x7) and nondecoder):
                        self.__samplerate__ = data.read(data_size * 8)
                        break
                else:
                    # no SAMPLE RATE sub-block found
                    # so pull info from FMT chunk
                    reader.rewind()
                    (self.__samplerate__,) = self.fmt_chunk(reader).parse(
                        "32p 32u")

            self.__bitspersample__ = [8, 16, 24, 32][bits_per_sample]
            self.__total_frames__ = total_samples

            if (initial_block and final_block):
                if (mono_output):
                    self.__channels__ = 1
                    self.__channel_mask__ = ChannelMask(0x4)
                else:
                    self.__channels__ = 2
                    self.__channel_mask__ = ChannelMask(0x3)
            else:
                # if not mono or stereo, pull from CHANNEL INFO sub-block
                reader.rewind()
                for (block_id,
                     nondecoder,
                     data_size,
                     data) in self.sub_blocks(reader):
                    if ((block_id == 0xD) and not nondecoder):
                        self.__channels__ = data.read(8)
                        self.__channel_mask__ = ChannelMask(
                            data.read((data_size - 1) * 8))
                        break
                else:
                    # no CHANNEL INFO sub-block found
                    # so pull info from FMT chunk
                    reader.rewind()
                    fmt = self.fmt_chunk(reader)
                    compression_code = fmt.read(16)
                    self.__channels__ = fmt.read(16)
                    if (compression_code == 1):
                        # this is theoretically possible
                        # with very old .wav files,
                        # but shouldn't happen in practice
                        self.__channel_mask__ = \
                            {1: ChannelMask.from_fields(front_center=True),
                             2: ChannelMask.from_fields(front_left=True,
                                                        front_right=True),
                             3: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        front_center=True),
                             4: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        back_left=True,
                                                        back_right=True),
                             5: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        back_left=True,
                                                        back_right=True,
                                                        front_center=True),
                             6: ChannelMask.from_fields(front_left=True,
                                                        front_right=True,
                                                        back_left=True,
                                                        back_right=True,
                                                        front_center=True,
                                                        low_frequency=True)
                             }.get(self.__channels__, ChannelMask(0))
                    elif (compression_code == 0xFFFE):
                        fmt.skip(128)
                        mask = fmt.read(32)
                        self.__channel_mask__ = ChannelMask(mask)
                    else:
                        from audiotools.text import ERR_WAVPACK_UNSUPPORTED_FMT
                        raise InvalidWavPack(ERR_WAVPACK_UNSUPPORTED_FMT)

        finally:
            reader.unmark()
            reader.close()
Beispiel #25
0
class SHNDecoder(object):
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), False)

        (self.file_type,
         self.channels,
         self.block_length,
         self.max_LPC,
         self.number_of_means) = self.read_header()

        if (1 <= self.file_type) and (self.file_type <= 2):
            self.bits_per_sample = 8
            self.signed_samples = (self.file_type == 1)
        elif (3 <= self.file_type) and (self.file_type <= 6):
            self.bits_per_sample = 16
            self.signed_samples = (self.file_type in (3, 5))
        else:
            raise ValueError("unsupported Shorten file type")

        self.wrapped_samples = [[0] * 3 for c in range(self.channels)]
        self.means = [[0] * self.number_of_means
                      for c in range(self.channels)]
        self.left_shift = 0
        self.stream_finished = False

        # try to read the first command for a wave/aiff header
        data_start = self.reader.getpos()
        self.read_metadata()
        self.reader.setpos(data_start)

    def read_metadata(self):
        from io import BytesIO

        command = self.unsigned(2)
        if command == 9:
            # got verbatim, so read data
            verbatim_bytes = ints_to_bytes([self.unsigned(8) & 0xFF
                                            for i in range(self.unsigned(5))])

            try:
                wave = BitstreamReader(BytesIO(verbatim_bytes), True)
                header = wave.read_bytes(12)
                if header.startswith(b"RIFF") and header.endswith(b"WAVE"):
                    # got RIFF/WAVE header, so parse wave blocks as needed
                    total_size = len(verbatim_bytes) - 12
                    while total_size > 0:
                        (chunk_id, chunk_size) = wave.parse("4b 32u")
                        total_size -= 8
                        if chunk_id == b'fmt ':
                            (channels,
                             self.sample_rate,
                             bits_per_sample,
                             channel_mask) = parse_fmt(
                                wave.substream(chunk_size))
                            self.channel_mask = int(channel_mask)
                            return
                        else:
                            if chunk_size % 2:
                                wave.read_bytes(chunk_size + 1)
                                total_size -= (chunk_size + 1)
                            else:
                                wave.read_bytes(chunk_size)
                                total_size -= chunk_size
                    else:
                        # no fmt chunk, so use default metadata
                        pass
            except (IOError, ValueError):
                pass

            try:
                aiff = BitstreamReader(BytesIO(verbatim_bytes), False)
                header = aiff.read_bytes(12)
                if header.startswith(b"FORM") and header.endswith(b"AIFF"):
                    # got FORM/AIFF header, so parse aiff blocks as needed
                    total_size = len(verbatim_bytes) - 12
                    while total_size > 0:
                        (chunk_id, chunk_size) = aiff.parse("4b 32u")
                        total_size -= 8
                        if chunk_id == b'COMM':
                            (channels,
                             total_sample_frames,
                             bits_per_sample,
                             self.sample_rate,
                             channel_mask) = parse_comm(
                                aiff.substream(chunk_size))
                            self.channel_mask = int(channel_mask)
                            return
                        else:
                            if chunk_size % 2:
                                aiff.read_bytes(chunk_size + 1)
                                total_size -= (chunk_size + 1)
                            else:
                                aiff.read_bytes(chunk_size)
                                total_size -= chunk_size
                    else:
                        # no COMM chunk, so use default metadata
                        pass
            except IOError:
                pass

        # got something else, so invent some PCM parameters
        self.sample_rate = 44100
        if self.channels == 1:
            self.channel_mask = 0x4
        elif self.channels == 2:
            self.channel_mask = 0x3
        else:
            self.channel_mask = 0

    def unsigned(self, c):
        MSB = self.reader.unary(1)
        LSB = self.reader.read(c)
        return MSB * 2 ** c + LSB

    def signed(self, c):
        u = self.unsigned(c + 1)
        if (u % 2) == 0:
            return u // 2
        else:
            return -(u // 2) - 1

    def long(self):
        return self.unsigned(self.unsigned(2))

    def skip_unsigned(self, c):
        self.reader.skip_unary(1)
        self.reader.skip(c)

    def read_header(self):
        magic = self.reader.read_bytes(4)
        if magic != b"ajkg":
            raise ValueError("invalid magic number")
        version = self.reader.read(8)
        if version != 2:
            raise ValueError("unsupported version")

        file_type = self.long()
        channels = self.long()
        block_length = self.long()
        max_LPC = self.long()
        number_of_means = self.long()
        bytes_to_skip = self.long()
        self.reader.read_bytes(bytes_to_skip)

        return (file_type, channels, block_length, max_LPC, number_of_means)

    def read(self, pcm_frames):
        if self.stream_finished:
            return from_channels([empty_framelist(1, self.bits_per_sample)
                                  for channel in range(self.channels)])

        c = 0
        samples = []
        unshifted = []
        while True:
            command = self.unsigned(2)
            if (((0 <= command) and (command <= 3) or
                 (7 <= command) and (command <= 8))):
                # audio data commands
                if command == 0:    # DIFF0
                    samples.append(self.read_diff0(self.block_length,
                                                   self.means[c]))
                elif command == 1:  # DIFF1
                    samples.append(self.read_diff1(self.block_length,
                                                   self.wrapped_samples[c]))
                elif command == 2:  # DIFF2
                    samples.append(self.read_diff2(self.block_length,
                                                   self.wrapped_samples[c]))
                elif command == 3:  # DIFF3
                    samples.append(self.read_diff3(self.block_length,
                                                   self.wrapped_samples[c]))
                elif command == 7:  # QLPC
                    samples.append(self.read_qlpc(self.block_length,
                                                  self.means[c],
                                                  self.wrapped_samples[c]))
                elif command == 8:  # ZERO
                    samples.append([0] * self.block_length)

                # update means for channel
                self.means[c].append(shnmean(samples[c]))
                self.means[c] = self.means[c][1:]

                # wrap samples for next command in channel
                self.wrapped_samples[c] = samples[c][-(max(3, self.max_LPC)):]

                # apply left shift to samples
                if self.left_shift > 0:
                    unshifted.append([s << self.left_shift
                                      for s in samples[c]])
                else:
                    unshifted.append(samples[c])

                c += 1
                if c == self.channels:
                    # return a FrameList from shifted data
                    return from_channels([from_list(channel, 1,
                                                    self.bits_per_sample,
                                                    self.signed_samples)
                                          for channel in unshifted])
            else:
                # non audio commands
                if command == 4:  # QUIT
                    self.stream_finished = True
                    return from_channels(
                        [empty_framelist(1, self.bits_per_sample)
                         for channel in range(self.channels)])
                elif command == 5:  # BLOCKSIZE
                    self.block_length = self.long()
                elif command == 6:  # BITSHIFT
                    self.left_shift = self.unsigned(2)
                elif command == 9:  # VERBATIM
                    # skip this command during reading
                    size = self.unsigned(5)
                    for i in range(size):
                        self.skip_unsigned(8)
                else:
                    raise ValueError("unsupported Shorten command")

    def read_diff0(self, block_length, means):
        offset = shnmean(means)
        energy = self.unsigned(3)
        samples = []
        for i in range(block_length):
            residual = self.signed(energy)
            samples.append(residual + offset)
        return samples

    def read_diff1(self, block_length, previous_samples):
        samples = previous_samples[-1:]
        energy = self.unsigned(3)
        for i in range(1, block_length + 1):
            residual = self.signed(energy)
            samples.append(samples[i - 1] + residual)
        return samples[1:]

    def read_diff2(self, block_length, previous_samples):
        samples = previous_samples[-2:]
        energy = self.unsigned(3)
        for i in range(2, block_length + 2):
            residual = self.signed(energy)
            samples.append((2 * samples[i - 1]) - samples[i - 2] + residual)
        return samples[2:]

    def read_diff3(self, block_length, previous_samples):
        samples = previous_samples[-3:]
        energy = self.unsigned(3)
        for i in range(3, block_length + 3):
            residual = self.signed(energy)
            samples.append((3 * (samples[i - 1] - samples[i - 2])) +
                           samples[i - 3] + residual)
        return samples[3:]

    def read_qlpc(self, block_length, means, previous_samples):
        offset = shnmean(means)
        energy = self.unsigned(3)
        LPC_count = self.unsigned(2)
        LPC_coeff = [self.signed(5) for i in range(LPC_count)]
        unoffset = []
        samples = previous_samples[-LPC_count:]
        for i in range(block_length):
            residual = self.signed(energy)
            LPC_sum = 2 ** 5
            for j in range(LPC_count):
                if (i - j - 1) < 0:
                    # apply offset to warm-up samples
                    LPC_sum += (LPC_coeff[j] *
                                (samples[LPC_count + (i - j - 1)] - offset))
                else:
                    LPC_sum += LPC_coeff[j] * unoffset[i - j - 1]
            unoffset.append(LPC_sum // 2 ** 5 + residual)
        return [u + offset for u in unoffset]

    def close(self):
        self.reader.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
class WavPackDecoder:
    def __init__(self, filename):
        self.reader = BitstreamReader(open(filename, "rb"), 1)

        #read initial block to populate
        #sample_rate, bits_per_sample, channels, and channel_mask
        self.reader.mark()
        block_header = Block_Header.read(self.reader)
        sub_blocks_size = block_header.block_size - 24
        sub_blocks_data = self.reader.substream(sub_blocks_size)
        if (block_header.sample_rate != 15):
            self.sample_rate = [6000,  8000,  9600,  11025, 12000,
                                16000, 22050, 24000, 32000, 44100,
                                48000, 64000, 88200, 96000,
                                192000][block_header.sample_rate]
        else:
            sub_blocks_data.mark()
            try:
                for sub_block in sub_blocks(sub_blocks_data, sub_blocks_size):
                    if ((sub_block.metadata_function == 7) and
                        (sub_block.nondecoder_data == 1)):
                        self.sample_rate = sub_block.data.read(
                            sub_block.data_size() * 8)
                        break
                else:
                    raise ValueError("invalid sample rate")
            finally:
                sub_blocks_data.rewind()
                sub_blocks_data.unmark()

        self.bits_per_sample = [8, 16, 24, 32][block_header.bits_per_sample]

        if (block_header.initial_block and block_header.final_block):
            if ((block_header.mono_output == 0) or
                (block_header.false_stereo == 1)):
                self.channels = 2
                self.channel_mask = 0x3
            else:
                self.channels = 1
                self.channel_mask = 0x4
        else:
            #look for channel mask sub block
            sub_blocks_data.mark()
            for sub_block in sub_blocks(sub_blocks_data, sub_blocks_size):
                if ((sub_block.metadata_function == 13) and
                    (sub_block.nondecoder_data == 0)):
                    self.channels = sub_block.data.read(8)
                    self.channel_mask = sub_block.data.read(
                        (sub_block.data_size() - 1) * 8)
                    break
            else:
                #FIXME - handle case of no channel mask sub block
                raise NotImplementedError()
            sub_blocks_data.rewind()
            sub_blocks_data.unmark()

        self.reader.rewind()
        self.reader.unmark()

        self.pcm_finished = False
        self.md5_checked = False
        self.md5sum = md5()

    def read(self, bytes):
        if (self.pcm_finished):
            if (not self.md5_checked):
                self.reader.mark()
                try:
                    try:
                        header = Block_Header.read(self.reader)
                        sub_blocks_size = header.block_size - 24
                        sub_blocks_data = self.reader.substream(sub_blocks_size)
                        for sub_block in sub_blocks(sub_blocks_data,
                                                    sub_blocks_size):
                            if ((sub_block.metadata_function == 6) and
                                (sub_block.nondecoder_data == 1)):
                                if (sub_block.data.read_bytes(16) !=
                                    self.md5sum.digest()):
                                    raise ValueError("invalid stream MD5 sum")
                    except (IOError, ValueError):
                        #no error if a block isn't found
                        pass
                finally:
                    self.reader.rewind()
                    self.reader.unmark()
            return from_list([], self.channels, self.bits_per_sample, True)

        channels = []

        while (True):  #in place of a do-while loop
            try:
                block_header = Block_Header.read(self.reader)
            except (ValueError, IOError):
                self.pcm_finished = True
                return from_list([], self.channels, self.bits_per_sample, True)
            sub_blocks_size = block_header.block_size - 24
            sub_blocks_data = self.reader.substream(sub_blocks_size)
            channels.extend(read_block(block_header,
                                       sub_blocks_size,
                                       sub_blocks_data))

            if (block_header.final_block == 1):
                break

        if ((block_header.block_index + block_header.block_samples) >=
            block_header.total_samples):
            self.pcm_finished = True

        #combine channels of audio data into single block
        block = from_channels([from_list(ch, 1, self.bits_per_sample, True)
                               for ch in channels])

        #update MD5 sum
        self.md5sum.update(block.to_bytes(False, self.bits_per_sample > 8))

        #return single block of audio data
        return block

    def close(self):
        self.reader.close()
Beispiel #27
0
    def aiff_header_footer(self):
        """returns (header, footer) tuple of strings
        containing all data before and after the PCM stream

        if self.has_foreign_aiff_chunks() is False,
        may raise ValueError if the file has no header and footer
        for any reason"""

        from audiotools.bitstream import BitstreamReader
        from audiotools.bitstream import BitstreamRecorder
        from audiotools.text import (ERR_AIFF_NOT_AIFF, ERR_AIFF_INVALID_AIFF,
                                     ERR_AIFF_INVALID_CHUNK_ID)

        head = BitstreamRecorder(0)
        tail = BitstreamRecorder(0)
        current_block = head

        aiff_file = BitstreamReader(open(self.filename, 'rb'), 0)
        try:
            # transfer the 12-byte "RIFFsizeWAVE" header to head
            (form, size, aiff) = aiff_file.parse("4b 32u 4b")
            if (form != 'FORM'):
                raise InvalidAIFF(ERR_AIFF_NOT_AIFF)
            elif (aiff != 'AIFF'):
                raise InvalidAIFF(ERR_AIFF_INVALID_AIFF)
            else:
                current_block.build("4b 32u 4b", (form, size, aiff))
                total_size = size - 4

            while (total_size > 0):
                # transfer each chunk header
                (chunk_id, chunk_size) = aiff_file.parse("4b 32u")
                if (not frozenset(chunk_id).issubset(self.PRINTABLE_ASCII)):
                    raise InvalidAIFF(ERR_AIFF_INVALID_CHUNK_ID)
                else:
                    current_block.build("4b 32u", (chunk_id, chunk_size))
                    total_size -= 8

                # and transfer the full content of non-audio chunks
                if (chunk_id != "SSND"):
                    if (chunk_size % 2):
                        current_block.write_bytes(
                            aiff_file.read_bytes(chunk_size + 1))
                        total_size -= (chunk_size + 1)
                    else:
                        current_block.write_bytes(
                            aiff_file.read_bytes(chunk_size))
                        total_size -= chunk_size
                else:
                    # transfer alignment as part of SSND's chunk header
                    align = aiff_file.parse("32u 32u")
                    current_block.build("32u 32u", align)
                    aiff_file.skip_bytes(chunk_size - 8)
                    current_block = tail

                    if (chunk_size % 2):
                        current_block.write_bytes(aiff_file.read_bytes(1))
                        total_size -= (chunk_size + 1)
                    else:
                        total_size -= chunk_size

            return (head.data(), tail.data())
        finally:
            aiff_file.close()