Beispiel #1
0
def get_images_with_filenames(filenames):
    #### read a mini batch data
    inputs, targets = load_images(filenames, deterministic=True)
    new_inputs = []
    new_targets = []
    for image, target in zip(inputs, targets):
        ims, trs = testtime_augmentation(image[0],
                                         target)  # Take color channel of image
        new_inputs += ims
        new_targets += trs
    new_filenames = []
    for fname in filenames:
        for i in range(int(len(new_inputs) / len(filenames))):
            new_filenames.append(fname)
    return np.array(new_inputs,
                    dtype=np.float32), np.array(new_targets,
                                                dtype=np.int32), new_filenames
Beispiel #2
0
    def get_images_with_filenames(filenames):
        inputs, targets = load_images(filenames, deterministic=True)

        new_inputs = []
        new_targets = []

        for image, target in zip(inputs, targets):
            ims, trs = augment.testtime_augmentation(image[0], target) #Take color channel of image
            new_inputs += ims
            new_targets+=trs

        new_filenames = []
        for fname in filenames:
            for i in range(int(len(new_inputs)/len(filenames))):
                new_filenames.append(fname)

        return np.array(new_inputs,dtype=np.float32),np.array(new_targets,dtype=np.int32), new_filenames
Beispiel #3
0
def main():
    model_path = sys.argv[1]
    net_file = sys.argv[2]
    ### load all predicting filenames
    filenames = glob.glob(P.FILENAMES_PREDICTION)
    batch_size = P.BATCH_SIZE_PREDICTION
    ### get augmentation number
    test_im = np.zeros((64, 64))
    n_testtime_augmentation = len(testtime_augmentation(test_im, 0)[0])
    #### get the parallel data generator
    gen = ParallelBatchIterator(get_images_with_filenames,
                                filenames,
                                ordered=True,
                                batch_size=batch_size //
                                (3 * n_testtime_augmentation),
                                multiprocess=False,
                                n_producers=12)
    ### get wide resnet caffe model
    caffe_net = caffe.Net(net_file, model_path, caffe.TEST)
    ### do forward pass
    all_probabilities = []
    all_filenames = []
    print('begin predicting...')
    for i, batch in tqdm(enumerate(gen)):
        data, label, fnames = batch
        ### pass data and label to caff net, please set the batch size to 12(atomic batchsize) for both prediction batch size and train batch size
        if data.shape[0] == batch_size:
            caffe_net.blobs['data'].data[...] = data.astype(np.float32,
                                                            copy=False)
            caffe_net.blobs['label'].data[...] = label.astype(np.float32,
                                                              copy=False)
            caffe_net.forward()
            softmax_out = caffe_net.blobs['prob'].data.copy()
            all_probabilities += list(softmax_out[:, 1].tolist())
            all_filenames += list(fnames)
            # print("one batch done")
        else:
            break
    ### for all filenames get the probalilities(3 * n_testtime_augmentation)
    d = {f: [] for f in filenames}
    for probability, f in zip(all_probabilities, all_filenames):
        d[f].append(probability)
    ### the code will not run unless the batch size is not the atomic batch size(3 * n_testtime_augmentation)
    for key in d.keys():
        if len(d[key]) == 0:
            d.pop(key)
    print('end predicting')
    print('write to csv')
    cur_dir = os.path.dirname(os.path.abspath(__file__))
    candidates = pd.read_csv(
        os.path.join(cur_dir,
                     './../../../data/finalizedcandidates_unet_01.csv'))
    data = []
    ### get the mean prob for each filename and get the row number of the candidate
    for x in d.iteritems():
        fname, probabilities = x
        prob = np.mean(probabilities)
        candidates_row = int(os.path.split(fname)[1].replace('.pkl.gz',
                                                             '')) - 2
        print candidates_row
        data.append(
            list(candidates.iloc[candidates_row].values)[:-1] + [str(prob)])
    ### write the prob to a .csv
    submission = pd.DataFrame(
        columns=['seriesuid', 'coordX', 'coordY', 'coordZ', 'probability'],
        data=data)
    submission_path = os.path.join(cur_dir,
                                   './../../../data/submission_subset01.csv')
    submission.to_csv(
        submission_path,
        columns=['seriesuid', 'coordX', 'coordY', 'coordZ', 'probability'])
    print('finished!')
Beispiel #4
0
    print "Loading saved model", model_save_file
    with np.load(model_save_file) as f:
         param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    lasagne.layers.set_all_param_values(network, param_values)

    print "Defining updates.."
    train_fn, val_fn, l_r = resnet.define_updates(network, input_var, target_var)

    in_pattern = '/media/diskB/guido/luna16/candidates_v2_0.5mm_96x96_xy_xz_yz/subset[{}]/*/*.pkl.gz'.format(subsets)
    filenames = glob(in_pattern)

    batch_size = 1200
    multiprocess = True

    test_im = np.zeros((64,64))
    n_testtime_augmentation = len(augment.testtime_augmentation(test_im, 0)[0])

    def get_images_with_filenames(filenames):
        inputs, targets = load_images(filenames, deterministic=True)

        new_inputs = []
        new_targets = []

        for image, target in zip(inputs, targets):
            ims, trs = augment.testtime_augmentation(image[0], target) #Take color channel of image
            new_inputs += ims
            new_targets+=trs

        new_filenames = []
        for fname in filenames:
            for i in range(int(len(new_inputs)/len(filenames))):
    lasagne.layers.set_all_param_values(network, param_values)

    print "Defining updates.."
    train_fn, val_fn, l_r = resnet.define_updates(network, input_var,
                                                  target_var)

    #in_pattern = '../../data/cadV2_0.5mm_64x64_xy_xz_yz/subset[{}]/*/*.pkl.gz'.format(subsets)
    in_pattern = '/scratch-shared/vdgugten/data/cadOWN_0.5mm_96x96_xy_xz_yz/subset[{}]/*/*.pkl.gz'.format(
        subsets)
    filenames = glob(in_pattern)

    batch_size = 1200
    multiprocess = True

    test_im = np.zeros((64, 64))
    n_testtime_augmentation = len(augment.testtime_augmentation(test_im, 0)[0])

    def get_images_with_filenames(filenames):
        inputs, targets = load_images(filenames, deterministic=True)

        new_inputs = []
        new_targets = []

        for image, target in zip(inputs, targets):
            ims, trs = augment.testtime_augmentation(
                image[0], target)  #Take color channel of image
            new_inputs += ims
            new_targets += trs

        new_filenames = []
        for fname in filenames:
Beispiel #6
0
from skimage import util
import matplotlib.pyplot as plt
from matplotlib.pyplot import imread
import scipy
import numpy as np

if __name__ == "__main__":
    image = imread("example.jpg")
    # print image
    image = image[:, :, 1]
    # plt.subplot(211)
    # image=np.array(image)
    # print image.shape
    # plt.imshow(list(image))
    # image2  = augment.augment([image])
    # plt.subplot(212)
    # plt.imshow(image2[0])
    # print image2[0].shape
    # plt.show()
    images = augment.testtime_augmentation(np.array(image))
    print len(images)
    plt.subplot(221)
    plt.imshow(images[0])
    plt.subplot(222)
    plt.imshow(images[1])
    plt.subplot(223)
    plt.imshow(images[2])
    plt.subplot(224)
    plt.imshow(images[3])
    plt.show()
Beispiel #7
0
import matplotlib.pyplot as plt
from matplotlib.pyplot import imread
import scipy
import numpy as np


if __name__ == "__main__":
    image = imread("example.jpg")
    #print image
    image = image[:,:,1]
    # plt.subplot(211)
    # image=np.array(image)
    # print image.shape
    # plt.imshow(list(image))
    # image2  = augment.augment([image])
    # plt.subplot(212)
    # plt.imshow(image2[0])
    # print image2[0].shape
    # plt.show()
    images = augment.testtime_augmentation(np.array(image))
    print len(images)
    plt.subplot(221)
    plt.imshow(images[0])
    plt.subplot(222)
    plt.imshow(images[1])
    plt.subplot(223)
    plt.imshow(images[2])
    plt.subplot(224)
    plt.imshow(images[3])
    plt.show()