def plot_images_encoded_in_latent_space(latent_representations, sample_labels):
    plt.figure(figsize=(10, 10))
    plt.scatter(latent_representations[:, 0],
                latent_representations[:, 1],
                cmap="rainbow",
                c=sample_labels,
                alpha=0.5,
                s=2)
    plt.colorbar()
    plt.show()


if __name__ == "__main__":
    autoencoder = VAE.load("model")
    x_train, y_train, x_test, y_test = load_mnist()

    num_sample_images_to_show = 8
    sample_images, _ = select_images(x_test, y_test, num_sample_images_to_show)
    reconstructed_images, _ = autoencoder.reconstruct(sample_images)
    plot_reconstructed_images(sample_images, reconstructed_images)

    num_images = 6000
    sample_images, sample_labels = select_images(x_test, y_test, num_images)
    _, latent_representations = autoencoder.reconstruct(sample_images)
    plot_images_encoded_in_latent_space(latent_representations, sample_labels)



Beispiel #2
0
        min_max_values[file_path] for file_path in file_paths
    ]
    print(file_paths)
    print(sampled_min_max_values)
    return sampled_spectrogrmas, sampled_min_max_values


def save_signals(signals, save_dir, sample_rate=22050):
    for i, signal in enumerate(signals):
        save_path = os.path.join(save_dir, str(i) + ".wav")
        sf.write(save_path, signal, sample_rate)


if __name__ == "__main__":
    # initialise sound generator
    vae = VAE.load("model")
    sound_generator = SoundGenerator(vae, HOP_LENGTH)

    # load spectrograms + min max values
    with open(MIN_MAX_VALUES_PATH, "rb") as f:
        min_max_values = pickle.load(f)

    specs, file_paths = load_fsdd(SPECTROGRAMS_PATH)

    # sample spectrograms + min max values
    sampled_specs, sampled_min_max_values = select_spectrograms(
        specs, file_paths, min_max_values, 5)

    # generate audio for sampled spectrograms
    signals, _ = sound_generator.generate(sampled_specs,
                                          sampled_min_max_values)