Beispiel #1
0
 def __init__(self, search_space):
     search_config = {}
     search_config['learning_rate'] = ag.Real(1e-3, 1e-2, log=True)
     search_config['epochs'] = ag.Choice(40, 80)
     for config in search_config.keys():
         if not config in search_space.keys():
             search_space[config] = search_config[config]
     self.search_space = search_space
Beispiel #2
0
    def __init__(self,dictionary_of_hyperparameters):
        search_config = {}
        search_config['learning_rate'] = ag.Real(1e-3, 1e-2, log=True)
        search_config['epochs'] = ag.Choice(40, 80)
        self.dictionary_of_hyperparameters = dictionary_of_hyperparameters
        for config in search_config.keys():
            if not config in self.dictionary_of_hyperparameters .keys():
                self.dictionary_of_hyperparameters [config] = search_config[config]

        self.dataset = dataset
        self.init_estimator  = SimpleFeedForwardEstimator(
            num_hidden_dimensions=[10],
            prediction_length=dataset.metadata.prediction_length,
            context_length=100,
            freq=dataset.metadata.freq,
            trainer=Trainer(ctx="cpu",
                            epochs=5,
                            learning_rate=1e-3,
                            num_batches_per_epoch=100
                           )
            )
        transformation = estimator.create_transformation()
        dtype = np.float32
        num_workers = None
        num_prefetch = None
        shuffle_buffer_length = None
        trainer = Trainer(ctx="cpu",
                          epochs=1,
                          learning_rate=0.01,
                          num_batches_per_epoch=100
                          )
        self.training_data_loader = TrainDataLoader(
            dataset=dataset.train,
            transform=transformation,
            batch_size=trainer.batch_size,
            num_batches_per_epoch=trainer.num_batches_per_epoch,
            ctx=trainer.ctx,
            dtype=dtype,
            num_workers=num_workers,
            num_prefetch=num_prefetch,
        )
Beispiel #3
0
"""Train a BERT model using AutoGluon."""
import sys

import autogluon as ag

from bert_model import train_bert


@ag.args(
    data_file=sys.argv[1],
    epochs=ag.Choice(40, 80),
    lr=ag.Real(1e-5, 1e-4, log=True),
    batch_size=ag.Choice(256, 512, 1024),
    wd=ag.Real(1e-3, 10, log=True),
    num_heads=ag.Choice(8, 16, 32, 64),
    num_pred_hiddens=ag.Choice(256, 512, 1024, 2048),
    ffn_num_hiddens=ag.Choice(512, 1024, 2048),
    num_layers=ag.Choice(6, 8, 12),
    dropout=ag.Real(1e-1, 8e-1, log=True),
)
def run_training(args, reporter):
    """Launch training process."""
    args.num_hiddens = args.num_heads
    return train_bert(args, reporter)


def run():
    """Run tuning."""
    scheduler = ag.scheduler.FIFOScheduler(run_training,
                                           resource={
                                               'num_cpus': 1,
Beispiel #4
0
from asset import optimizer
from gluonts.dataset.loader import TrainDataLoader
from gluonts.trainer import Trainer

with tqdm(training_data_loader) as it:
    for batch_no, data_entry in enumerate(it, start=1):

        if False:
            break

    inputs = [data_entry[k] for k in input_names]

dictionary_of_hyperparameters = {}
#dictionary_of_hyperparameters ['learning_rate'] = ag.Real(1e-3, 1e-2, log=True)
dictionary_of_hyperparameters['epochs']=ag.Choice(10, 20)

class auto:
    def __init__(self,dictionary_of_hyperparameters):
        search_config = {}
        search_config['learning_rate'] = ag.Real(1e-3, 1e-2, log=True)
        search_config['epochs'] = ag.Choice(40, 80)
        self.dictionary_of_hyperparameters = dictionary_of_hyperparameters
        for config in search_config.keys():
            if not config in self.dictionary_of_hyperparameters .keys():
                self.dictionary_of_hyperparameters [config] = search_config[config]

        self.dataset = dataset
        self.init_estimator  = SimpleFeedForwardEstimator(
            num_hidden_dimensions=[10],
            prediction_length=dataset.metadata.prediction_length,