Beispiel #1
0
    dataset_train, dataset_test = get_dataset(args)

    time_limits = 5 * 60 * 60  # 5 days
    epochs = 12
    # use coco pre-trained model for custom datasets
    transfer = None if ('voc' in args.dataset_name) or (
        'coco' in args.dataset_name) else 'coco'
    detector = task.fit(dataset_train,
                        num_trials=30,
                        epochs=epochs,
                        net=ag.Categorical('darknet53', 'mobilenet1.0'),
                        meta_arch=args.meta_arch,
                        lr=ag.Categorical(1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5),
                        transfer=transfer,
                        data_shape=ag.Categorical(320, 416),
                        nthreads_per_trial=16,
                        ngpus_per_trial=1,
                        batch_size=8,
                        lr_decay_epoch=ag.Categorical('80,90', '85,95'),
                        warmup_epochs=ag.Int(1, 10),
                        warmup_iters=ag.Int(250, 1000),
                        wd=ag.Categorical(1e-4, 5e-4, 2.5e-4),
                        syncbn=ag.Bool(),
                        label_smooth=ag.Bool(),
                        time_limits=time_limits,
                        dist_ip_addrs=[])

    test_map = detector.evaluate(dataset_test)
    print("mAP on test dataset: {}".format(test_map[1][1]))
     ag.Categorical(5e-3, 2e-3, 5e-4, 2e-4),
     'batch_size':
     4,
     'epochs':
     ag.Categorical(30, 40, 50, 60),
     'nthreads_per_trial':
     16,
     'ngpus_per_trial':
     4,
     'data_shape': [640, 800],
     'lr_decay_epoch':
     ag.Categorical([24, 28], [35], [50, 55], [40], [45], [55],
                    [30, 35], [20]),
     # 'warmup_epochs': 2,
     'warmup_iters':
     ag.Int(5, 500),
     'wd':
     ag.Categorical(5e-4, 2.5e-4, 1e-4),
     'transfer':
     transfer,
     'label_smooth':
     False,
     'syncbn':
     ag.Bool(),
     'num_trials':
     30,
     'time_limits':
     time_limits,
     'dist_ip_addrs':
     None
 }
Beispiel #3
0
 False,
 'data_shape': (640, 800),
 'nthreads_per_trial':
 12,
 'verbose':
 False,
 'ngpus_per_trial':
 4,
 'batch_size':
 4,
 'hybridize':
 True,
 'lr_decay_epoch':
 ag.Categorical([24, 28], [35], [50, 55], [40], [45], [55], [30, 35], [20]),
 'warmup_iters':
 ag.Int(5, 500),
 'resume':
 False,
 'checkpoint':
 'checkpoint/exp1.ag',
 'visualizer':
 'none',
 'start_epoch':
 0,
 'lr_mode':
 'step',
 'lr_decay':
 0.1,
 'lr_decay_period':
 0,
 'warmup_lr':
Beispiel #4
0
    parser.add_argument('--index-file-name-trainval', type=str, default='', help="name of txt file which contains images for training and validation ")
    parser.add_argument('--index-file-name-test', type=str, default='', help="name of txt file which contains images for testing")
    parser.add_argument('--classes', type=tuple, default=None, help="classes for custom classes")
    parser.add_argument('--no-redownload',  action='store_true', help="whether need to re-download dataset")
    args = parser.parse_args()
    logging.info('args: {}'.format(args))

    dataset_train, dataset_test = get_dataset(args) 

    time_limits = 5*60*60 # 5 days
    epochs = 1
    detector = task.fit(dataset_train,
                        num_trials=30,
                        epochs=epochs,
                        net=ag.Categorical('darknet53', 'mobilenet1.0'),
                        lr=ag.Categorical(1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5),
                        data_shape=ag.Categorical(320, 416),
                        ngpus_per_trial=1,
                        batch_size=8,
                        lr_decay_epoch=ag.Categorical('80,90','85,95'),
                        warmup_epochs=ag.Int(1, 10),
                        syncbn=ag.Bool(), 
                        label_smooth=ag.Bool(), 
                        time_limits=time_limits,
                        dist_ip_addrs = [])

    test_map = detector.evaluate(dataset_test)
    print("mAP on test dataset: {}".format(test_map[1][1]))