def predict(self, inputs: Tensor) -> Tensor: # inputs will be (batch_size, 10) x1 = inputs @ self.w1 + self.b1 # (batch_size, num_hidden) x2 = tanh(x1) # (batch_size, num_hidden) x3 = x2 @ self.w2 + self.b2 # (batch_size, 4) return x3
def forward(self, x: Tensor) -> Tensor: # inputs will be (batch_size, 10) x1 = x @ self.w1 x1 = x1 + self.b1 # (batch_size, num_hidden) x2 = tanh(x1) # (batch_size, num_hidden) x3 = x2 @ self.w2 + self.b2 # (batch_size, 4) return x3
def predict(self, inputs: Tensor) -> Tensor: x1 = inputs @ self.w1 + self.b1 x2 = tanh(x1) x3 = x2 @ self.w2 + self.b2 return x3