def max_likelihood(self, data, weights=None, stats=None, lmbda=0.1):
        """
        As an alternative to MCMC with Polya-gamma augmentation,
        we also implement maximum likelihood learning via gradient
        descent with autograd. This follows the pybasicbayes
        convention.

        :param data: list of tuples, (x,y), for each dataset.
        :param weights: Not used in this implementation.
        :param stats: Not used in this implementation.
        """
        import autograd.numpy as anp
        from autograd import value_and_grad, hessian_vector_product
        from scipy.optimize import minimize

        assert weights is None
        assert stats is None
        if not isinstance(data, list):
            assert isinstance(data, tuple) and len(data) == 2
            data = [data]

        # Define a helper function for the log of the logistic fn
        def loglogistic(psi):
            return psi - anp.log(1+anp.exp(psi))

        # optimize each row of A and b
        for n in range(self.D_out):

            # Define an objective function for the n-th row of hstack((A, b))
            # This is the negative log likelihood of the n-th column of data.
            def nll(abn):
                an, bn = abn[:-1], abn[-1]
                T = 0
                ll = 0
                for (x, y) in data:
                    T += x.shape[0]
                    yn = y[:, n]
                    psi = anp.dot(x, an) + bn
                    ll += anp.sum(yn * loglogistic(psi))
                    ll += anp.sum((1 - yn) * loglogistic(-1. * psi))

                # Include a penalty on the weights
                ll -= lmbda * T * anp.sum(an**2)
                ll -= lmbda * T * bn**2

                return -1 * ll / T

            abn0 = np.concatenate((self.A[n], self.b[n]))
            res = minimize(value_and_grad(nll), abn0,
                           tol=1e-3,
                           method="Newton-CG",
                           jac=True,
                           hessp=hessian_vector_product(nll))

            assert res.success
            self.A[n] = res.x[:-1]
            self.b[n] = res.x[-1]
Beispiel #2
0
def test_hessian_tensor_product():
    fun = lambda a: np.sum(np.sin(a))
    a = npr.randn(5, 4, 3)
    V = npr.randn(5, 4, 3)
    H = hessian(fun)(a)
    check_equivalent(np.tensordot(H, V, axes=np.ndim(V)), hessian_vector_product(fun)(a, V))
Beispiel #3
0
def test_hessian_matrix_product():
    fun = lambda a: np.sum(np.sin(a))
    a = npr.randn(5, 4)
    V = npr.randn(5, 4)
    H = hessian(fun)(a)
    check_equivalent(np.tensordot(H, V), hessian_vector_product(fun)(a, V))
Beispiel #4
0
def test_hessian_vector_product():
    fun = lambda a: np.sum(np.sin(a))
    a = npr.randn(5)
    v = npr.randn(5)
    H = hessian(fun)(a)
    check_equivalent(np.dot(H, v), hessian_vector_product(fun)(a, v))
Beispiel #5
0
def test_hessian_vector_product():
    fun = lambda a: np.sum(np.sin(a))
    a = npr.randn(5)
    v = npr.randn(5)
    H = hessian(fun)(a)
    check_equivalent(np.dot(H, v), hessian_vector_product(fun)(a, v))
Beispiel #6
0
def test_hessian_tensor_product():
    fun = lambda a: np.sum(np.sin(a))
    a = npr.randn(5, 4, 3)
    V = npr.randn(5, 4, 3)
    H = hessian(fun)(a)
    check_equivalent(np.tensordot(H, V, axes=np.ndim(V)), hessian_vector_product(fun)(a, V))
Beispiel #7
0
    def __init__(self, configurations, parameters, controls,
                 simulation_first_confirmed):

        self.configurations = configurations
        self.parameters = parameters
        self.controls = controls
        self.simulation_first_confirmed = simulation_first_confirmed

        flat_args, self.unflatten = flatten(self.controls)

        # self.obs = obs
        # self.loc = loc
        # if noise_covariance is not None:
        #     self.Gamma_noise_inv = np.linalg.inv(noise_covariance)

        self.gx = grad(self.cost)
        self.J = jacobian(self.forward)
        self.hx = hessian_vector_product(self.cost)
        self.hvp = hvp(self.hx)

        y0, t_total, N_total, number_group, population_proportion, \
        t_control, number_days_per_control_change, number_control_change_times, number_time_dependent_controls = configurations

        self.N_total = N_total
        self.number_group = number_group
        self.t_control = t_control
        self.dimension = len(self.t_control)
        self.number_time_dependent_controls = number_time_dependent_controls
        self.y0 = y0
        self.t_total = t_total

        self.interpolation = piecewiseLinear

        if number_group > 1:
            # contact matrix
            school_closure = True

            # calendar from February 15th
            weekday = [2, 3, 4, 5, 6]
            # calendar from April 1st
            # weekday = [0, 1, 2, 5, 6]
            # calendar from May 1st
            # weekday = [0, 3, 4, 5, 6]
            calendar = np.zeros(1000 + 1, dtype=int)
            # set work days as 1 and school days as 2
            for i in range(1001):
                if np.remainder(i, 7) in weekday:
                    calendar[i] = 1
                    if not school_closure:  # and i < 45
                        calendar[i] = 2
            self.calendar = calendar

            contact = np.load("utils/contact_matrix.npz")
            self.c_home = contact["home"]
            self.c_school = contact["school"]
            self.c_work = contact["work"]
            self.c_other = contact["other"]

            self.contact_full = self.c_home + 5. / 7 * (
                (1 - school_closure) * self.c_school +
                self.c_work) + self.c_other

        self.load_data(fips)
    def test_optimization_objective(self):
        def objective_fun(x):
            return np.sum(x ** 4)

        x0 = np.random.random(5)
        obj = paragami.OptimizationObjective(
            objective_fun, print_every=0)
        assert_array_almost_equal(objective_fun(x0), obj.f(x0))
        assert_array_almost_equal(
            autograd.grad(objective_fun)(x0), obj.grad(x0))
        assert_array_almost_equal(
            autograd.hessian(objective_fun)(x0), obj.hessian(x0))
        assert_array_almost_equal(
            autograd.hessian_vector_product(objective_fun)(
                x0, x0),
            obj.hessian_vector_product(x0, x0))

        def test_print_and_log(num_evals, expected_prints, expected_logs):
            with captured_output() as (out, err):
                init_num_iterations = obj.num_iterations()
                for iter in range(num_evals):
                    # Funtion evaluations should be printed and logged.
                    obj.f(x0)

                    # Derivatives should not count towards printing or logging.
                    obj.grad(x0)
                    obj.hessian(x0)
                    obj.hessian_vector_product(x0, x0)

            lines = out.getvalue().splitlines()
            self.assertEqual(init_num_iterations + num_evals,
                             obj.num_iterations())
            self.assertEqual(len(lines), expected_prints)
            self.assertEqual(len(obj.optimization_log), expected_logs)

        # Test reset.
        obj.set_print_every(1)
        obj.set_log_every(1)
        obj.reset()
        test_print_and_log(num_evals=1, expected_prints=1, expected_logs=1)
        obj.reset()
        test_print_and_log(num_evals=1, expected_prints=1, expected_logs=1)

        # Test that the first iteration prints and logs no matter what.
        obj.set_print_every(2)
        obj.set_log_every(2)
        obj.reset()
        test_print_and_log(num_evals=1, expected_prints=1, expected_logs=1)
        test_print_and_log(num_evals=1, expected_prints=0, expected_logs=1)

        # Test combinations of print and log.
        for print_every, log_every in itertools.product([0, 1], [0, 1]):
            obj.set_print_every(print_every)
            obj.set_log_every(log_every)
            obj.reset()
            test_print_and_log(
                num_evals=3,
                expected_prints=3 * print_every,
                expected_logs=3 * log_every)

        for print_every, log_every in itertools.product([0, 3], [0, 3]):
            obj.set_print_every(print_every)
            obj.set_log_every(log_every)
            obj.reset()
            test_print_and_log(
                num_evals=6,
                expected_prints=(print_every != 0) * 2,
                expected_logs=(log_every != 0) * 2)

        # Test reset only printing or logging.
        obj.set_print_every(2)
        obj.set_log_every(1)

        obj.reset()
        test_print_and_log(num_evals=1, expected_prints=1, expected_logs=1)
        test_print_and_log(num_evals=1, expected_prints=0, expected_logs=2)

        obj.reset()
        test_print_and_log(num_evals=1, expected_prints=1, expected_logs=1)
        obj.reset_iteration_count()
        test_print_and_log(num_evals=1, expected_prints=1, expected_logs=2)

        obj.reset()
        test_print_and_log(num_evals=1, expected_prints=1, expected_logs=1)
        obj.reset_log()
        test_print_and_log(num_evals=1, expected_prints=0, expected_logs=1)
Beispiel #9
0
 def set_hvp(self, gamma):
     self.hvp = lambda theta, v: \
         autograd.hessian_vector_product(self.f)(theta, v) + np.sum(gamma * theta)
Beispiel #10
0
 def hvp(x, vec):
     result = hessian_vector_product(loss)(x, vec)
     print('hessian-vector product evaluated at: ({}, {})'.format(x, vec))
     hvp_traj.append((x, vec, result))
     return result
Beispiel #11
0
                         num_per_class=100,
                         rate=0.4)

    def objective(params):
        return -gmm_log_likelihood(params, data)

    flattened_obj, unflatten, flattened_init_params =\
        flatten_func(objective, init_params)

    fig = plt.figure(figsize=(12, 8), facecolor='white')
    ax = fig.add_subplot(111, frameon=False)
    plt.show(block=False)

    def callback(flattened_params):
        params = unflatten(flattened_params)
        print("Log likelihood {}".format(-objective(params)))
        ax.cla()
        ax.plot(data[:, 0], data[:, 1], 'k.')
        ax.set_xticks([])
        ax.set_yticks([])
        plot_gaussian_mixture(params, ax)
        plt.draw()
        plt.pause(1.0 / 60.0)

    minimize(flattened_obj,
             flattened_init_params,
             jac=grad(flattened_obj),
             hessp=hessian_vector_product(flattened_obj),
             method='Newton-CG',
             callback=callback)
Beispiel #12
0
def test_hessian_matrix_product():
    fun = lambda a: np.sum(np.sin(a))
    a = npr.randn(5, 4)
    V = npr.randn(5, 4)
    H = hessian(fun)(a)
    check_equivalent(np.tensordot(H, V), hessian_vector_product(fun)(a, V))
Beispiel #13
0
    data = make_pinwheel(radial_std=0.3, tangential_std=0.05, num_classes=3,
                         num_per_class=100, rate=0.4)

    def objective(params):
        return -gmm_log_likelihood(params, data)

    flattened_obj, unflatten, flattened_init_params =\
        flatten_func(objective, init_params)

    fig = plt.figure(figsize=(12,8), facecolor='white')
    ax = fig.add_subplot(111, frameon=False)
    plt.show(block=False)

    def callback(flattened_params):
        params = unflatten(flattened_params)
        print("Log likelihood {}".format(-objective(params)))
        ax.cla()
        ax.plot(data[:, 0], data[:, 1], 'k.')
        ax.set_xticks([])
        ax.set_yticks([])
        plot_gaussian_mixture(params, ax)
        plt.draw()
        plt.pause(1.0/60.0)

    minimize(flattened_obj, flattened_init_params,
             jac=grad(flattened_obj),
             hessp=hessian_vector_product(flattened_obj),
             method='Newton-CG', callback=callback)

Beispiel #14
0
    def test_objective(self):
        model = Model(dim=3)
        objective = obj_lib.Objective(par=model.x, fun=model.f)

        model.set_inits()
        x_free = model.x.get_free()
        x_vec = model.x.get_vector()

        model.set_opt()
        self.assertTrue(objective.fun_free(x_free) > 0.0)
        np_test.assert_array_almost_equal(objective.fun_free(x_free),
                                          objective.fun_vector(x_vec))

        grad = objective.fun_free_grad(x_free)
        hess = objective.fun_free_hessian(x_free)
        np_test.assert_array_almost_equal(np.matmul(hess, grad),
                                          objective.fun_free_hvp(x_free, grad))

        self.assertTrue(objective.fun_vector(x_vec) > 0.0)
        grad = objective.fun_vector_grad(x_vec)
        hess = objective.fun_vector_hessian(x_vec)
        np_test.assert_array_almost_equal(
            np.matmul(hess, grad), objective.fun_vector_hvp(x_free, grad))

        # Test Jacobians.
        vec_objective = obj_lib.Objective(par=model.x, fun=model.get_x_vec)
        vec_jac = vec_objective.fun_vector_jacobian(x_vec)
        np_test.assert_array_almost_equal(model.b_mat, vec_jac)

        free_jac = vec_objective.fun_free_jacobian(x_free)
        x_free_to_vec_jac = \
            model.x.free_to_vector_jac(x_free).todense()
        np_test.assert_array_almost_equal(
            np.matmul(model.b_mat, np.transpose(x_free_to_vec_jac)), free_jac)

        # Test the preconditioning
        preconditioner = 2.0 * np.eye(model.dim)
        preconditioner[model.dim - 1, 0] = 0.1  # Add asymmetry for testing!
        objective.preconditioner = preconditioner

        np_test.assert_array_almost_equal(
            objective.fun_free_cond(x_free),
            objective.fun_free(np.matmul(preconditioner, x_free)),
            err_msg='Conditioned function values')

        fun_free_cond_grad = autograd.grad(objective.fun_free_cond)
        grad_cond = objective.fun_free_grad_cond(x_free)
        np_test.assert_array_almost_equal(
            fun_free_cond_grad(x_free),
            grad_cond,
            err_msg='Conditioned gradient values')

        fun_free_cond_hessian = autograd.hessian(objective.fun_free_cond)
        hess_cond = objective.fun_free_hessian_cond(x_free)
        np_test.assert_array_almost_equal(fun_free_cond_hessian(x_free),
                                          hess_cond,
                                          err_msg='Conditioned Hessian values')

        fun_free_cond_hvp = autograd.hessian_vector_product(
            objective.fun_free_cond)
        np_test.assert_array_almost_equal(
            fun_free_cond_hvp(x_free, grad_cond),
            objective.fun_free_hvp_cond(x_free, grad_cond),
            err_msg='Conditioned Hessian vector product values')