Beispiel #1
0
class BayesianSearcher(Searcher):
    def __init__(self,
                 n_classes,
                 input_shape,
                 path,
                 verbose,
                 trainer_args=None,
                 default_model_len=constant.MODEL_LEN,
                 default_model_width=constant.MODEL_WIDTH,
                 beta=constant.BETA,
                 kernel_lambda=constant.KERNEL_LAMBDA,
                 t_min=constant.T_MIN):
        super().__init__(n_classes, input_shape, path, verbose, trainer_args,
                         default_model_len, default_model_width)
        self.gpr = IncrementalGaussianProcess(kernel_lambda)
        self.search_tree = SearchTree()
        self.init_search_queue = None
        self.init_gpr_x = []
        self.init_gpr_y = []
        self.beta = beta
        self.t_min = t_min

    def search(self, x_train, y_train, x_test, y_test):
        if not self.history:
            model = DefaultClassifierGenerator(self.n_classes,
                                               self.input_shape).generate(
                                                   self.default_model_len,
                                                   self.default_model_width)
            history_item = self.add_model(model, x_train, y_train, x_test,
                                          y_test)
            self.search_tree.add_child(-1, history_item['model_id'])

            graph = Graph(model)
            self.init_search_queue = []
            # for child_graph in transform(graph):
            #     self.init_search_queue.append((child_graph, history_item['model_id']))
            self.init_gpr_x.append(graph.extract_descriptor())
            self.init_gpr_y.append(history_item['accuracy'])
            pickle_to_file(self, os.path.join(self.path, 'searcher'))
            return

        if self.init_search_queue:
            graph, father_id = self.init_search_queue.pop()
            model = graph.produce_model()
            history_item = self.add_model(model, x_train, y_train, x_test,
                                          y_test)
            self.search_tree.add_child(father_id, history_item['model_id'])
            self.init_gpr_x.append(graph.extract_descriptor())
            self.init_gpr_y.append(history_item['accuracy'])
            pickle_to_file(self, os.path.join(self.path, 'searcher'))
            return

        if not self.init_search_queue and not self.gpr.first_fitted:
            self.gpr.first_fit(self.init_gpr_x, self.init_gpr_y)

        new_model, father_id = self.maximize_acq()

        history_item = self.add_model(new_model, x_train, y_train, x_test,
                                      y_test)
        self.search_tree.add_child(father_id, history_item['model_id'])
        self.gpr.incremental_fit(
            Graph(new_model).extract_descriptor(), history_item['accuracy'])
        pickle_to_file(self, os.path.join(self.path, 'searcher'))

    def maximize_acq(self):
        model_ids = self.search_tree.adj_list.keys()
        target_graph = None
        father_id = None
        descriptors = self.descriptors

        pq = PriorityQueue()
        temp_list = []
        for model_id in model_ids:
            accuracy = self.get_accuracy_by_id(model_id)
            temp_list.append((accuracy, model_id))
        temp_list = sorted(temp_list)
        if len(temp_list) > 5:
            temp_list = temp_list[:-5]
        for accuracy, model_id in temp_list:
            model = self.load_model_by_id(model_id)
            graph = Graph(model, False)
            pq.put(Elem(accuracy, model_id, graph))

        t = 1.0
        t_min = self.t_min
        alpha = 0.9
        max_acq = -1
        while not pq.empty() and t > t_min:
            elem = pq.get()
            ap = math.exp((elem.accuracy - max_acq) / t)
            if ap > random.uniform(0, 1):
                graphs = transform(elem.graph)
                graphs = list(
                    filter(lambda x: x.extract_descriptor() not in descriptors,
                           graphs))
                if not graphs:
                    continue
                for temp_graph in graphs:
                    temp_acq_value = self.acq(temp_graph)
                    pq.put(Elem(temp_acq_value, elem.father_id, temp_graph))
                    descriptors[temp_graph.extract_descriptor()] = True
                    if temp_acq_value > max_acq:
                        max_acq = temp_acq_value
                        father_id = elem.father_id
                        target_graph = temp_graph
            t *= alpha

        model = self.load_model_by_id(father_id)
        nm_graph = Graph(model, True)
        if self.verbose:
            print('Father ID: ', father_id)
            print(target_graph.operation_history)
        for args in target_graph.operation_history:
            getattr(nm_graph, args[0])(*list(args[1:]))
        return nm_graph.produce_model(), father_id

    def acq(self, graph):
        mean, std = self.gpr.predict(np.array([graph.extract_descriptor()]))
        return mean + self.beta * std
Beispiel #2
0
class BayesianSearcher(Searcher):
    def __init__(self, n_classes, input_shape, path, verbose):
        super().__init__(n_classes, input_shape, path, verbose)
        self.gpr = IncrementalGaussianProcess()
        self.search_tree = SearchTree()

    def search(self, x_train, y_train, x_test, y_test):
        if not self.history:
            model = DefaultClassifierGenerator(self.n_classes,
                                               self.input_shape).generate()
            history_item = self.add_model(model, x_train, y_train, x_test,
                                          y_test)
            self.search_tree.add_child(-1, history_item['model_id'])
            self.gpr.first_fit(
                Graph(model).extract_descriptor(), history_item['accuracy'])
            pickle.dump(self, open(os.path.join(self.path, 'searcher'), 'wb'))
            del model
            backend.clear_session()

        else:
            model_ids = self.search_tree.get_leaves()
            new_model, father_id = self.maximize_acq(model_ids)

            history_item = self.add_model(new_model, x_train, y_train, x_test,
                                          y_test)
            self.search_tree.add_child(father_id, history_item['model_id'])
            self.gpr.incremental_fit(
                Graph(new_model).extract_descriptor(),
                history_item['accuracy'])
            pickle.dump(self, open(os.path.join(self.path, 'searcher'), 'wb'))
            del new_model
            backend.clear_session()

    def maximize_acq(self, model_ids):
        overall_max_acq_value = -1
        father_id = None
        target_graph = None

        # exploration
        for model_id in model_ids:
            model = self.load_model_by_id(model_id)
            graph = Graph(to_stub_model(model))
            graph.clear_operation_history()
            graphs = transform(graph)
            for temp_graph in graphs:
                temp_acq_value = self._acq(temp_graph)
                if temp_acq_value > overall_max_acq_value:
                    overall_max_acq_value = temp_acq_value
                    father_id = model_id
                    target_graph = temp_graph

        # exploitation
        for i in range(constant.ACQ_EXPLOITATION_DEPTH):
            graphs = transform(target_graph)
            for temp_graph in graphs:
                temp_acq_value = self._acq(temp_graph)
                if temp_acq_value > overall_max_acq_value:
                    overall_max_acq_value = temp_acq_value
                    target_graph = temp_graph

        model = self.load_model_by_id(father_id)
        nm_graph = NetworkMorphismGraph(model)
        for args in target_graph.operation_history:
            getattr(nm_graph, args[0])(*list(args[1:]))
        return nm_graph.produce_model(), father_id

    def _acq(self, graph):
        return self.gpr.predict(np.array([graph.extract_descriptor()]), )[0]