def deeper_conv_block(conv_layer, kernel_size, weighted=True):
    filter_shape = (kernel_size,) * 2
    n_filters = conv_layer.filters
    weight = np.zeros((n_filters, n_filters) + filter_shape)
    center = tuple(map(lambda x: int((x - 1) / 2), filter_shape))
    for i in range(n_filters):
        filter_weight = np.zeros((n_filters,) + filter_shape)
        index = (i,) + center
        filter_weight[index] = 1
        weight[i, ...] = filter_weight
    bias = np.zeros(n_filters)
    new_conv_layer = StubConv(conv_layer.filters, n_filters, kernel_size=kernel_size)
    bn = StubBatchNormalization(n_filters)

    if weighted:
        new_conv_layer.set_weights((add_noise(weight, np.array([0, 1])), add_noise(bias, np.array([0, 1]))))
        new_weights = [add_noise(np.ones(n_filters, dtype=np.float32), np.array([0, 1])),
                       add_noise(np.zeros(n_filters, dtype=np.float32), np.array([0, 1])),
                       add_noise(np.zeros(n_filters, dtype=np.float32), np.array([0, 1])),
                       add_noise(np.ones(n_filters, dtype=np.float32), np.array([0, 1]))]
        bn.set_weights(new_weights)

    return [StubReLU(),
            new_conv_layer,
            bn]
Beispiel #2
0
def get_conv_dense_model():
    graph = Graph((32, 32, 3), False)
    output_node_id = 0

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id)
    output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id)

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id)
    output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id)

    output_node_id = graph.add_layer(StubFlatten(), output_node_id)
    output_node_id = graph.add_layer(StubDropout(Constant.DENSE_DROPOUT_RATE),
                                     output_node_id)

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(
        StubDense(graph.node_list[output_node_id].shape[0], 5), output_node_id)

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubDense(5, 5), output_node_id)
    graph.add_layer(StubSoftmax(), output_node_id)

    graph.produce_model().set_weight_to_graph()

    return graph
Beispiel #3
0
    def generate(self,
                 model_len=Constant.MODEL_LEN,
                 model_width=Constant.MODEL_WIDTH):
        pooling_len = int(model_len / 4)
        graph = Graph(self.input_shape, False)
        temp_input_channel = self.input_shape[-1]
        output_node_id = 0
        for i in range(model_len):
            output_node_id = graph.add_layer(StubReLU(), output_node_id)
            output_node_id = graph.add_layer(
                StubConv(temp_input_channel, model_width, kernel_size=3),
                output_node_id)
            output_node_id = graph.add_layer(
                StubBatchNormalization(model_width), output_node_id)
            temp_input_channel = model_width
            if pooling_len == 0 or ((i + 1) % pooling_len == 0
                                    and i != model_len - 1):
                output_node_id = graph.add_layer(StubPooling(), output_node_id)

        output_node_id = graph.add_layer(StubGlobalPooling(), output_node_id)
        output_node_id = graph.add_layer(
            StubDropout(Constant.CONV_DROPOUT_RATE), output_node_id)
        output_node_id = graph.add_layer(
            StubDense(graph.node_list[output_node_id].shape[0], model_width),
            output_node_id)
        output_node_id = graph.add_layer(StubReLU(), output_node_id)
        graph.add_layer(StubDense(model_width, self.n_output_node),
                        output_node_id)
        return graph
def wider_bn(layer, start_dim, total_dim, n_add, weighted=True):
    if not weighted:
        return StubBatchNormalization(layer.num_features + n_add)

    weights = layer.get_weights()

    new_weights = [add_noise(np.ones(n_add, dtype=np.float32), np.array([0, 1])),
                   add_noise(np.zeros(n_add, dtype=np.float32), np.array([0, 1])),
                   add_noise(np.zeros(n_add, dtype=np.float32), np.array([0, 1])),
                   add_noise(np.ones(n_add, dtype=np.float32), np.array([0, 1]))]

    student_w = tuple()
    for weight, new_weight in zip(weights, new_weights):
        temp_w = weight.copy()
        temp_w = np.concatenate((temp_w[:start_dim], new_weight, temp_w[start_dim:total_dim]))
        student_w += (temp_w,)
    new_layer = StubBatchNormalization(layer.num_features + n_add)
    new_layer.set_weights(student_w)
    return new_layer