Beispiel #1
0
 def test_init_dfa(self):
     """Should copy DFA if passed into DFA constructor."""
     new_dfa = DFA.copy(self.dfa)
     self.assert_is_copy(new_dfa, self.dfa)
Beispiel #2
0
 def test_init_validation(self, validate):
     """Should validate DFA when initialized."""
     DFA.copy(self.dfa)
     validate.assert_called_once_with()
Beispiel #3
0
class VisualDFA:
    """A wrapper for an automata-lib deterministic finite automaton."""

    def __init__(
        self,
        dfa: DFA = None,
        *,
        states: set = None,
        input_symbols: set = None,
        transitions: dict = None,
        initial_state: str = None,
        final_states: set = None
    ):

        if dfa:
            self.dfa = dfa
        else:
            self.dfa = DFA(
                states=states,
                input_symbols=input_symbols,
                transitions=transitions,
                initial_state=initial_state,
                final_states=final_states,
            )

    # -------------------------------------------------------------------------
    # Mimic behavior of automata-lib DFA.

    @property
    def states(self):
        """Pass on .states from the DFA"""
        return self.dfa.states

    @states.setter
    def states(self, states: set):
        """Set .states on the DFA"""
        self.dfa.states = states

    @property
    def input_symbols(self):
        """Pass on .input_symbols from the DFA"""
        return self.dfa.input_symbols

    @input_symbols.setter
    def input_symbols(self, input_symbols: set):
        """Set .input_symbols on the DFA"""
        self.dfa.input_symbols = input_symbols

    @property
    def transitions(self):
        """Pass on .transitions from the DFA"""
        return self.dfa.transitions

    @transitions.setter
    def transitions(self, transitions: dict):
        """Set .transitions on the DFA"""
        self.dfa.transitions = transitions

    @property
    def initial_state(self):
        """Pass on .initial_state from the DFA"""
        return self.dfa.initial_state

    @initial_state.setter
    def initial_state(self, initial_state: str):
        """Set .initial_state on the DFA"""
        self.dfa.initial_state = initial_state

    @property
    def final_states(self):
        """Pass on .final_states from the DFA"""
        return self.dfa.final_states

    @final_states.setter
    def final_states(self, final_states: set):
        """Set .final_states on the DFA"""
        self.dfa.final_states = final_states

    def copy(self) -> DFA:
        """Create a deep copy of the automaton."""
        return self.__class__(**vars(self))

    def minify(self) -> DFA:
        """
        Create a minimal DFA which accepts the same inputs as this DFA.
        First, non-reachable states are removed.
        Then, similar states are merged using Hopcroft's Algorithm.
        retain_names: If True, merged states retain names.
                      If False, new states will be named 0, ..., n-1.

        Returns:
            DFA: A new minimal VisualDFA, if applicable.
        """
        new_dfa = self.dfa.copy()
        new_dfa = new_dfa.minify()
        new_dfa = VisualDFA(new_dfa)
        return new_dfa

    # -------------------------------------------------------------------------
    # Define new attributes.

    @property
    def table(self) -> DataFrame:
        """
        Generates a transition table of the given VisualDFA.

        Returns:
            DataFrame: A transition table of the VisualDFA.
        """
        initial_state = self.initial_state
        final_states = [str(x) for x in self.final_states]
        transitions = self.__transition_sort(self.transitions)

        table: dict = {}
        for state, transition in transitions.items():
            if state == initial_state and state in final_states:
                state = "→*" + state
            elif state == initial_state:
                state = "→" + state
            elif state in final_states:
                state = "*" + state

            row: dict = {}
            for input_symbol, next_state in transition.items():
                if next_state in final_states:
                    row[input_symbol] = "*" + next_state
                else:
                    row[input_symbol] = next_state
            table[state] = row

        table = pd.DataFrame.from_dict(table).T

        return table

    def __str__(self) -> str:
        return self.table.to_string()

    def __repr__(self) -> str:
        return self.table.to_string()

    # -------------------------------------------------------------------------
    # Adapt behavior of automata-lib DFA.

    # Works like DFA._get_next_current_state, without raising exceptions.
    # Defined as a an internal/private method, prefixed with "__" instead of "_".
    def __get_next_current_state(
        self, current_state: str, input_symbol: str
    ) -> str:
        """
        Follow the transition for the given input symbol on the current state.

        Args:
            current_state (str): Current state.
            input_symbol (str): Input symbol.

        Returns:
            str: The next current state after entering input symbol.
        """
        if input_symbol in self.dfa.transitions[current_state]:
            return self.dfa.transitions[current_state][input_symbol]

    # -------------------------------------------------------------------------
    # Define helper methods.

    @staticmethod
    def __transition_sort(transitions: dict) -> dict:
        """
        Sorts the transitions dictionary.

        Args:
            transitions (dict): Unsorted transitions.

        Returns:
            dict: Sorted transitions.
        """
        transitions = dict(
            sorted(
                transitions.items(),
                key=lambda k: k[0].replace("{", "").replace("}", ""),
            )
        )
        for state, transition in transitions.items():
            transitions[state] = dict(sorted(transition.items()))

        return transitions

    @staticmethod
    def __transitions_pairs(transitions: dict) -> list:
        """
        Generates a list of all possible transitions pairs for all input symbols.

        Args:
            transition_dict (dict): DFA transitions.

        Returns:
            list: All possible transitions for all the given input symbols.
        """
        transition_possibilities: list = []
        for state, transitions in transitions.items():
            for symbol, transition in transitions.items():
                transition_possibilities.append((state, transition, symbol))
        return transition_possibilities

    @staticmethod
    def __transition_steps(
        initial_state, final_states, input_str: str, transitions_taken: list, status: bool
    ) -> DataFrame:
        """
        Generates a table of taken transitions based on the input string and it's result.

        Args:
            initial_state (str): The DFA's initial state.
            final_states (set): The DFA's final states.
            input_str (str): The input string to run on the DFA.
            transitions_taken (list): Transitions taken from the input string.
            status (bool): The result of the input string.

        Returns:
            DataFrame: Table of taken transitions based on the input string and it's result.
        """
        current_states = transitions_taken.copy()
        for i, state in enumerate(current_states):
            if (
                state == initial_state and state in
                final_states
            ):
                current_states[i] = "→*" + state
            elif state == initial_state:
                current_states[i] = "→" + state
            elif state in final_states:
                current_states[i] = "*" + state

        new_states = current_states.copy()
        del current_states[-1]
        del new_states[0]
        inputs = [str(x) for x in input_str]

        transition_steps: dict = {
            "Current state:": current_states,
            "Input symbol:": inputs,
            "New state:": new_states,
        }

        transition_steps = pd.DataFrame.from_dict(
            transition_steps
        )
        transition_steps.index += 1
        transition_steps = pd.DataFrame.from_dict(
            transition_steps
        ).rename_axis("Step:", axis=1)
        if status:
            transition_steps.columns = pd.MultiIndex.from_product(
                [["[Accepted]"], transition_steps.columns]
            )
            return transition_steps
        else:
            transition_steps.columns = pd.MultiIndex.from_product(
                [["[Rejected]"], transition_steps.columns]
            )
            return transition_steps

    # -------------------------------------------------------------------------
    # Define new features.

    def input_check(
        self, input_str: str, return_result=False
    ) -> Union[bool, list, list]:
        """
        Checks if string of input symbols results in final state.

        Args:
            input_str (str): The input string to run on the DFA.
            return_result (bool, optional): Returns results to the show_diagram method. Defaults to False.

        Raises:
            TypeError: To let the user know a string has to be entered.

        Returns:
            Union[bool, list, list]: If the last state is the final state, transition pairs, and steps taken.
        """
        if not isinstance(input_str, str):
            raise TypeError(f"input_str should be a string. {input_str} is {type(input_str)}, not a string.")

        current_state = self.dfa.initial_state
        transitions_taken = [current_state]
        symbol_sequence: list = []
        status: bool = True

        for symbol in input_str:
            symbol_sequence.append(symbol)
            current_state = self.__get_next_current_state(
                current_state, symbol
            )
            transitions_taken.append(current_state)

        if transitions_taken[-1] not in self.dfa.final_states:
            status = False
        else:
            status = True

        taken_transitions_pairs = [
            (a, b, c)
            for a, b, c in zip(
                transitions_taken, transitions_taken[1:], symbol_sequence
            )
        ]
        taken_steps = self.__transition_steps(
            initial_state=self.dfa.initial_state,
            final_states=self.dfa.final_states,
            input_str=input_str,
            transitions_taken=transitions_taken,
            status=status,
        )
        if return_result:
            return status, taken_transitions_pairs, taken_steps
        else:
            return taken_steps  # .to_string(index=False)

    def show_diagram(
        self,
        input_str: str = None,
        filename: str = None,
        format_type: str = "png",
        path: str = None,
        *,
        view=False,
        cleanup: bool = True,
        horizontal: bool = True,
        reverse_orientation: bool = False,
        fig_size: tuple = (8, 8),
        font_size: float = 14.0,
        arrow_size: float = 0.85,
        state_seperation: float = 0.5,
    ) -> Digraph:
        """
        Generates the graph associated with the given DFA.

        Args:
            dfa (DFA): Deterministic Finite Automata to graph.
            input_str (str, optional): String list of input symbols. Defaults to None.
            filename (str, optional): Name of output file. Defaults to None.
            format_type (str, optional): File format [svg/png/...]. Defaults to "png".
            path (str, optional): Folder path for output file. Defaults to None.
            view (bool, optional): Storing and displaying the graph as a pdf. Defaults to False.
            cleanup (bool, optional): Garbage collection. Defaults to True.
            horizontal (bool, optional): Direction of node layout. Defaults to True.
            reverse_orientation (bool, optional): Reverse direction of node layout. Defaults to False.
            fig_size (tuple, optional): Figure size. Defaults to (8, 8).
            font_size (float, optional): Font size. Defaults to 14.0.
            arrow_size (float, optional): Arrow head size. Defaults to 0.85.
            state_seperation (float, optional): Node distance. Defaults to 0.5.

        Returns:
            Digraph: The graph in dot format.
        """
        # Converting to graphviz preferred input type,
        # keeping the conventional input styles; i.e fig_size(8,8)
        fig_size = ", ".join(map(str, fig_size))
        font_size = str(font_size)
        arrow_size = str(arrow_size)
        state_seperation = str(state_seperation)

        # Defining the graph.
        graph = Digraph(strict=False)
        graph.attr(
            size=fig_size,
            ranksep=state_seperation,
        )
        if horizontal:
            graph.attr(rankdir="LR")
        if reverse_orientation:
            if horizontal:
                graph.attr(rankdir="RL")
            else:
                graph.attr(rankdir="BT")

        # Defining arrow to indicate the initial state.
        graph.node("Initial", label="", shape="point", fontsize=font_size)

        # Defining all states.
        for state in sorted(self.dfa.states):
            if (
                state in self.dfa.initial_state and state in
                self.dfa.final_states
            ):
                graph.node(state, shape="doublecircle", fontsize=font_size)
            elif state in self.dfa.initial_state:
                graph.node(state, shape="circle", fontsize=font_size)
            elif state in self.dfa.final_states:
                graph.node(state, shape="doublecircle", fontsize=font_size)
            else:
                graph.node(state, shape="circle", fontsize=font_size)

        # Point initial arrow to the initial state.
        graph.edge("Initial", self.dfa.initial_state, arrowsize=arrow_size)

        # Define all tansitions in the finite state machine.
        all_transitions_pairs = self.__transitions_pairs(self.dfa.transitions)

        if input_str is None:
            for pair in all_transitions_pairs:
                graph.edge(
                    pair[0],
                    pair[1],
                    label=" {} ".format(pair[2]),
                    arrowsize=arrow_size,
                    fontsize=font_size,
                )
            status = None

        else:
            status, taken_transitions_pairs, taken_steps = self.input_check(
                input_str=input_str, return_result=True
            )
            remaining_transitions_pairs = [
                x
                for x in all_transitions_pairs
                if x not in taken_transitions_pairs
            ]

            # Define color palette for transitions
            if status:
                start_color = hex_to_rgb_color("#FFFF00")
                end_color = hex_to_rgb_color("#00FF00")
            else:
                start_color = hex_to_rgb_color("#FFFF00")
                end_color = hex_to_rgb_color("#FF0000")
            number_of_colors = len(input_str)
            palette = create_palette(
                start_color, end_color, number_of_colors, sRGBColor
            )
            color_gen = list_cycler(palette)

            # Define all tansitions in the finite state machine with traversal.
            counter = 0
            for pair in taken_transitions_pairs:
                counter += 1
                edge_color = next(color_gen)
                graph.edge(
                    pair[0],
                    pair[1],
                    label=" [{}]\n{} ".format(counter, pair[2]),
                    arrowsize=arrow_size,
                    fontsize=font_size,
                    color=edge_color,
                    penwidth="2.5",
                )

            for pair in remaining_transitions_pairs:
                graph.edge(
                    pair[0],
                    pair[1],
                    label=" {} ".format(pair[2]),
                    arrowsize=arrow_size,
                    fontsize=font_size,
                )

        # Write diagram to file. PNG, SVG, etc.
        if filename:
            graph.render(
                filename=filename,
                format=format_type,
                directory=path,
                cleanup=cleanup,
            )

        if view:
            graph.render(view=True)
        if input_str:
            display(taken_steps)
            return graph
        else:
            return graph