Beispiel #1
0
    def run_task(self, fw_spec):
        # Read data from fw_spec
        pipe_config_dict = fw_spec["pipe_config"]
        target = fw_spec["target"]
        data_file = fw_spec["data_file"]
        learner_name = pipe_config_dict["learner_name"]
        learner_kwargs = pipe_config_dict["learner_kwargs"]
        reducer_kwargs = pipe_config_dict["reducer_kwargs"]
        cleaner_kwargs = pipe_config_dict["cleaner_kwargs"]
        autofeaturizer_kwargs = pipe_config_dict["autofeaturizer_kwargs"]

        # Modify data_file based on computing resource
        data_dir = os.environ["AMM_DATASET_DIR"]
        data_file = os.path.join(data_dir, data_file)

        # Modify save_dir based on computing resource
        bench_dir = os.environ["AMM_SINGLE_FIT_DIR"]
        base_save_dir = fw_spec["base_save_dir"]
        base_save_dir = os.path.join(bench_dir, base_save_dir)

        if not os.path.exists(base_save_dir):
            os.makedirs(base_save_dir)

        # Set up pipeline config
        if learner_name == "TPOTAdaptor":
            learner = TPOTAdaptor(**learner_kwargs)
        elif learner_name == "rf":
            warnings.warn(
                "Learner kwargs passed into RF regressor/classifiers bc. rf being used."
            )
            learner = SinglePipelineAdaptor(
                regressor=RandomForestRegressor(**learner_kwargs),
                classifier=RandomForestClassifier(**learner_kwargs),
            )
        else:
            raise ValueError("{} not supported yet!" "".format(learner_name))
        pipe_config = {
            "learner": learner,
            "reducer": FeatureReducer(**reducer_kwargs),
            "cleaner": DataCleaner(**cleaner_kwargs),
            "autofeaturizer": AutoFeaturizer(**autofeaturizer_kwargs),
        }
        pipe = MatPipe(**pipe_config)

        # Set up dataset
        # Dataset should already be set up correctly as json beforehand.
        # this includes targets being converted to classification, removing
        # extra columns, having the names of featurization cols set to the
        # same as the matpipe config, etc.
        df = load_dataframe_from_json(data_file)

        pipe.fit(df, target)
        pipe.save(os.path.join(base_save_dir, "pipe.p"))
Beispiel #2
0
    def test_user_features(self):
        pipe = MatPipe(**debug_config)
        df = self.df
        df["G_VRH"] = self.extra_features
        self.assertTrue("G_VRH" in df.columns)
        self.assertTrue("K_VRH" in df.columns)
        df_train = df.iloc[:200]
        df_test = df.iloc[201:250]
        pipe.fit(df_train, self.target)

        # If shear modulus is included as a feature it should probably show up
        # in the final pipeline
        self.assertTrue("G_VRH" in pipe.learner.features)
        df_test = pipe.predict(df_test, self.target)
        true = df_test[self.target]
        test = df_test[self.target + " predicted"]
        self.assertTrue(r2_score(true, test) > 0.75)
Beispiel #3
0
    def test_persistence_and_digest(self):
        pipe = MatPipe(**debug_config)
        with self.assertRaises(NotFittedError):
            pipe.save()
        df = self.df[-200:]
        pipe.fit(df, self.target)

        filename = os.path.join(test_dir, "test_pipe.p")
        pipe.save(filename=filename)
        pipe = MatPipe.load(filename, logger=False)
        df_test = pipe.predict(self.df[-220:-201], self.target)
        self.assertTrue(self.target in df_test.columns)
        self.assertTrue(self.target + " predicted" in df_test.columns)

        digest_file = os.path.join(test_dir, "matdigest.txt")
        digest = pipe.digest(filename=digest_file)
        self.assertTrue(os.path.isfile(digest_file))
        self.assertTrue(isinstance(digest, str))
Beispiel #4
0
    def test_transferability(self):
        df_train = self.df.iloc[:200]
        df_test = self.df.iloc[201:250]
        pipe = MatPipe(**debug_config)
        pipe.fit(df_train, self.target)
        df_test = pipe.predict(df_test, self.target)
        true = df_test[self.target]
        test = df_test[self.target + " predicted"]
        self.assertTrue("composition" not in df_test.columns)
        self.assertTrue(r2_score(true, test) > 0.5)

        # Use the same pipe object by refitting and reusing
        df_train2 = self.df.iloc[250:450]
        df_test2 = self.df.iloc[451:500]
        pipe.fit(df_train2, self.target)
        df_test2 = pipe.predict(df_test2, self.target)
        true2 = df_test2[self.target]
        test2 = df_test2[self.target + " predicted"]
        self.assertTrue("composition" not in df_test2.columns)
        self.assertTrue(r2_score(true2, test2) > 0.5)
    class TestMatPipe(unittest.TestCase):
        def setUp(self):
            df = load_dataset("elastic_tensor_2015").rename(
                columns={"formula": "composition"})
            self.df = df[["composition", "K_VRH"]]
            self.df_struc = df[["composition", "structure", "K_VRH"]]
            self.extra_features = df["G_VRH"]
            self.target = "K_VRH"
            self.config = get_preset_config(config_preset, n_jobs=n_jobs)
            self.config_cached = get_preset_config(config_preset,
                                                   cache_src=CACHE_SRC,
                                                   n_jobs=n_jobs)
            self.pipe = MatPipe(**self.config)
            self.pipe_cached = MatPipe(**self.config_cached)

        @unittest.skipIf("transferability" in skip, reason)
        def test_transferability(self):
            df_train = self.df.iloc[:200]
            df_test = self.df.iloc[201:250]
            self.pipe.fit(df_train, self.target)
            df_test = self.pipe.predict(df_test)
            true = df_test[self.target]
            test = df_test[self.target + " predicted"]
            self.assertTrue("composition" not in df_test.columns)
            self.assertTrue(r2_score(true, test) > 0.5)

            # Use the same pipe object by refitting and reusing
            df_train2 = self.df.iloc[250:450]
            df_test2 = self.df.iloc[451:500]
            self.pipe.fit(df_train2, self.target)
            df_test2 = self.pipe.predict(df_test2)
            true2 = df_test2[self.target]
            test2 = df_test2[self.target + " predicted"]
            self.assertTrue("composition" not in df_test2.columns)
            self.assertTrue(r2_score(true2, test2) > 0.5)

        @unittest.skipIf("user_features" in skip, reason)
        def test_user_features(self):
            df = self.df
            df["G_VRH"] = self.extra_features
            self.assertTrue("G_VRH" in df.columns)
            self.assertTrue("K_VRH" in df.columns)
            df_train = df.iloc[:200]
            df_test = df.iloc[201:250]
            self.pipe.fit(df_train, self.target)

            # If shear modulus is included as a feature it should probably show up
            # in the final pipeline
            self.assertTrue("G_VRH" in self.pipe.learner.features)
            df_test = self.pipe.predict(df_test)
            true = df_test[self.target]
            test = df_test[self.target + " predicted"]
            self.assertTrue(r2_score(true, test) > 0.75)

        @unittest.skipIf("predict_kwargs" in skip, reason)
        def test_predict_kwargs(self):
            # Test mat_pipe.predict()'s ignore and output_col kwargs.
            df_train = self.df.iloc[:200]
            df_test = self.df.iloc[201:250]
            ef = "ExtraFeature"
            df_test[ef] = [i + 100 for i in range(df_test.shape[0])]
            self.pipe.fit(df_train, self.target)

            self.assertTrue(ef in df_test.columns)
            self.assertTrue("composition" in df_test.columns)

            ignore = [ef, "composition"]
            predicted_ignored = self.pipe.predict(df_test, ignore=ignore)
            self.assertTrue(ef in predicted_ignored.columns)
            self.assertTrue("composition" in predicted_ignored.columns)

            predicted_none = self.pipe.predict(df_test, ignore=None)
            self.assertFalse(ef in predicted_none.columns)
            self.assertFalse("composition" in predicted_none.columns)

            some = ["composition"]
            predicted_some = self.pipe.predict(df_test, ignore=some)
            self.assertFalse(ef in predicted_some.columns)
            self.assertTrue("composition" in predicted_some.columns)

            output_col_name = self.target + "_pred"
            predicted_custom_col = self.pipe.predict(
                df_test, output_col=output_col_name)
            self.assertTrue(output_col_name in predicted_custom_col)

        @unittest.skipIf("benchmarking" in skip, reason)
        def test_benchmarking_no_cache(self):
            pipe = self.pipe
            # Make sure we can't run a cached run with no cache AF and cache pipe
            with self.assertRaises(AutomatminerError):
                self._run_benchmark(cache=True, pipe=pipe)

            self._run_benchmark(cache=False, pipe=pipe)

        @unittest.skipIf("benchmarking" in skip, reason)
        def test_benchmarking_cache(self):
            pipe = self.pipe_cached

            # Make sure we can't run a cached run with no cache AF and cache pipe
            with self.assertRaises(AutomatminerError):
                self._run_benchmark(cache=False, pipe=pipe)
            self._run_benchmark(cache=True, pipe=pipe)

        @unittest.skipIf("persistence" in skip, reason)
        def test_persistence(self):
            with self.assertRaises(NotFittedError):
                self.pipe.save()
            df = self.df[-200:]
            self.pipe.fit(df, self.target)

            # Load test
            self.pipe.save(filename=PIPE_PATH)
            self.pipe = MatPipe.load(PIPE_PATH)
            df_test = self.pipe.predict(self.df[-220:-201])
            self.assertTrue(self.target in df_test.columns)
            self.assertTrue(self.target + " predicted" in df_test.columns)

            # Version test
            self.pipe.version = "not a real version"
            self.pipe.save(VERSION_PIPE_PATH)
            with self.assertRaises(AutomatminerError):
                MatPipe.load(VERSION_PIPE_PATH)

        @unittest.skipIf("digests" in skip, reason)
        def test_summarize_and_inspect(self):
            df = self.df[-200:]
            self.pipe.fit(df, self.target)

            for ext in AMM_SUPPORTED_EXTS:
                digest = self.pipe.inspect(filename=DIGEST_PATH + ext)
                self.assertTrue(os.path.isfile(DIGEST_PATH + ext))
                self.assertTrue(isinstance(digest, dict))

            for ext in AMM_SUPPORTED_EXTS:
                digest = self.pipe.summarize(filename=DIGEST_PATH + ext)
                self.assertTrue(os.path.isfile(DIGEST_PATH + ext))
                self.assertTrue(isinstance(digest, dict))

        def _run_benchmark(self, cache, pipe):
            # Test static, regular benchmark (no fittable featurizers)
            df = self.df.iloc[500:600]
            kfold = KFold(n_splits=2)
            df_tests = pipe.benchmark(df, self.target, kfold, cache=cache)
            self.assertEqual(len(df_tests), kfold.n_splits)

            # Make sure we retain a good amount of test samples...
            df_tests_all = pd.concat(df_tests)
            self.assertGreaterEqual(len(df_tests_all), 0.95 * len(df))

            # Test static subset of kfold
            df2 = self.df.iloc[500:550]
            df_tests2 = pipe.benchmark(df2,
                                       self.target,
                                       kfold,
                                       fold_subset=[0],
                                       cache=cache)
            self.assertEqual(len(df_tests2), 1)

        def tearDown(self) -> None:
            digests = [DIGEST_PATH + ext for ext in AMM_SUPPORTED_EXTS]
            for remnant in [CACHE_SRC, PIPE_PATH, VERSION_PIPE_PATH, *digests]:
                if os.path.exists(remnant):
                    os.remove(remnant)
Beispiel #6
0
class TestMatPipe(unittest.TestCase):
    def setUp(self):
        df = load_dataset("elastic_tensor_2015").rename(
            columns={"formula": "composition"})
        self.df = df[["composition", "K_VRH"]]
        self.df_struc = df[["composition", "structure", "K_VRH"]]
        self.extra_features = df["G_VRH"]
        self.target = "K_VRH"
        self.config = get_preset_config("debug_single")
        self.config_cached = get_preset_config("debug_single",
                                               cache_src=CACHE_SRC)
        self.pipe = MatPipe(**self.config)
        self.pipe_cached = MatPipe(**self.config_cached)

    def test_transferability(self):
        df_train = self.df.iloc[:200]
        df_test = self.df.iloc[201:250]
        self.pipe.fit(df_train, self.target)
        df_test = self.pipe.predict(df_test, self.target)
        true = df_test[self.target]
        test = df_test[self.target + " predicted"]
        self.assertTrue("composition" not in df_test.columns)
        self.assertTrue(r2_score(true, test) > 0.5)

        # Use the same pipe object by refitting and reusing
        df_train2 = self.df.iloc[250:450]
        df_test2 = self.df.iloc[451:500]
        self.pipe.fit(df_train2, self.target)
        df_test2 = self.pipe.predict(df_test2, self.target)
        true2 = df_test2[self.target]
        test2 = df_test2[self.target + " predicted"]
        self.assertTrue("composition" not in df_test2.columns)
        self.assertTrue(r2_score(true2, test2) > 0.5)

    def test_user_features(self):
        df = self.df
        df["G_VRH"] = self.extra_features
        self.assertTrue("G_VRH" in df.columns)
        self.assertTrue("K_VRH" in df.columns)
        df_train = df.iloc[:200]
        df_test = df.iloc[201:250]
        self.pipe.fit(df_train, self.target)

        # If shear modulus is included as a feature it should probably show up
        # in the final pipeline
        self.assertTrue("G_VRH" in self.pipe.learner.features)
        df_test = self.pipe.predict(df_test, self.target)
        true = df_test[self.target]
        test = df_test[self.target + " predicted"]
        self.assertTrue(r2_score(true, test) > 0.75)

    @unittest.skipIf(int(os.environ.get("SKIP_INTENSIVE", 0)),
                     "Test too intensive for CircleCI commit builds.")
    def test_benchmarking_no_cache(self):
        pipe = self.pipe
        # Make sure we can't run a cached run with no cache AF and cache pipe
        with self.assertRaises(AutomatminerError):
            self._run_benchmark(cache=True, pipe=pipe)

        self._run_benchmark(cache=False, pipe=pipe)

    @unittest.skipIf(int(os.environ.get("SKIP_INTENSIVE", 0)),
                     "Test too intensive for CircleCI commit builds.")
    def test_benchmarking_cache(self):
        pipe = self.pipe_cached

        # Make sure we can't run a cached run with no cache AF and cache pipe
        with self.assertRaises(AutomatminerError):
            self._run_benchmark(cache=False, pipe=pipe)
        self._run_benchmark(cache=True, pipe=pipe)

    def test_persistence_and_digest(self):
        with self.assertRaises(NotFittedError):
            self.pipe.save()
        df = self.df[-200:]
        self.pipe.fit(df, self.target)

        filename = os.path.join(test_dir, PIPE_PATH)
        self.pipe.save(filename=filename)
        self.pipe = MatPipe.load(filename, logger=False)
        df_test = self.pipe.predict(self.df[-220:-201], self.target)
        self.assertTrue(self.target in df_test.columns)
        self.assertTrue(self.target + " predicted" in df_test.columns)

        digest_file = os.path.join(test_dir, DIGEST_PATH)
        digest = self.pipe.digest(filename=digest_file)
        self.assertTrue(os.path.isfile(digest_file))
        self.assertTrue(isinstance(digest, str))

    def _run_benchmark(self, cache, pipe):
        # Test static, regular benchmark (no fittable featurizers)
        df = self.df.iloc[500:600]
        kfold = KFold(n_splits=5)
        df_tests = pipe.benchmark(df, self.target, kfold, cache=cache)
        self.assertEqual(len(df_tests), kfold.n_splits)

        # Make sure we retain a good amount of test samples...
        df_tests_all = pd.concat(df_tests)
        self.assertGreaterEqual(len(df_tests_all), 0.95 * len(df))

        # Test static subset of kfold
        df2 = self.df.iloc[500:550]
        df_tests2 = pipe.benchmark(df2,
                                   self.target,
                                   kfold,
                                   fold_subset=[0, 3],
                                   cache=cache)
        self.assertEqual(len(df_tests2), 2)

    def tearDown(self):
        for remnant in [CACHE_SRC, PIPE_PATH, DIGEST_PATH]:
            if os.path.exists(remnant):
                os.remove(remnant)