Beispiel #1
0
def recorg(pl, df_boll):
    sign = 0
    df = df_boll
    if 0: df = pd.DataFrame
    #计算参数

    #输出原始图片
    #closes, boll_up, boll_mid, boll_low = df[['c', 'upper','middle', colname.boll_lower]].to_list()
    closes = df['c'].values
    boll_up = df[colname.boll_upper].values
    boll_mid = pd.Series(df[colname.boll_middle]).values
    boll_low = pd.Series(df[colname.boll_lower]).values

    #转zz
    zz_boll_up = stock.ZigZag(boll_up)
    zz_boll_mid = stock.ZigZag(boll_mid)
    zz_boll_low = stock.ZigZag(boll_low)
    zz_close = stock.ZigZag(closes, percent=5)
    zz_close_short = stock.ZigZag(closes, percent=.5)
    adx = df[colname.adx].values[-1]
    bollw = stock.BOLLW(boll_up, boll_low, closes)

    #数值判断

    obj = boll_params()
    obj.h1 = closes[-1] - boll_mid[-1]
    obj.h2 = closes[-1] - boll_low[-1]
    boll_y = get_y_boll(closes[-1], boll_low, boll_mid)
    techs = calc_property()
    y1, y2 = stock.analyzeZZ(zz_close)
    techs.close_zz_0 = "%.3f" % y1
    techs.close_zz_1 = "%.3f" % y2
    y1, y2 = stock.analyzeZZ(zz_boll_low)
    techs.boll_low_zz_0 = "%.3f" % y1
    techs.boll_low_zz_1 = "%.3f" % y2
    techs.boll_w = "%.3f" % bollw[-1]
    techs.adx = "%.3f" % adx
    techs.boll_x = get_x_boll(closes[-1], boll_low)
    techs.boll_y = boll_y
    techs.boll_y = "%.2f%%" % (techs.boll_y * 100)
    #集中度计算, 使用黄金分割或者是三分之一
    techs.jzd = kurtosis.calc_kurtosis(
        stock.GuiYiHua(closes[-int(len(closes) * (1 - 0.618)):]))

    sign = False
    n = 1  # 如果是日线,n=10
    #第二次机会
    if sign_observation.assemble(0, obj.h1 < 0, adx > 25, bollw[-1] > 0.02 * n,
                                 boll_y < 0.02 * n, techs.boll_x > 10):
        techs.choice = 2
        sign = True
    if sign_observation.assemble(
            1,
            obj.h1 < 0,
            adx > 10,
            bollw[-1] > 0.03 * n,
            boll_y < 0.5 * n,
            techs.boll_x > 10,
            techs.jzd[1] * 1000 < 2,  #标准差与集中度相关, 偏度与峰度与集中度没有发现关联
            #abs(techs.jzd[-2]) < 1,
            #abs(techs.jzd[-1]) < 0.5,
            1):
        techs.choice = 3
        sign = True
    #第一次机会
    if sign_observation.assemble(0, obj.h1 < 0, adx > 25, bollw[-1] > 0.02 * n,
                                 float(techs.boll_low_zz_1) < -0.01 * n,
                                 techs.boll_x > 1, boll_y > 0.8, 1):
        sign = True
        techs.choice = 1

    #输出判断
    if sign:

        pl: publish.Publish
        pl.insertHtml("<tr><td>")
        ui.drawBoll(pl, closes, boll_up, boll_mid, boll_low)
        pl.insertHtml("</td><td>")

        ui.DrawZZ(pl, zz_boll_up, is_append=ui.draw_style.head)
        ui.DrawZZ(pl, zz_boll_mid, is_append=ui.draw_style.mid)
        ui.DrawZZ(pl, zz_close, c='b', is_append=ui.draw_style.mid)
        ui.DrawZZ(pl, zz_close_short, c='g', is_append=ui.draw_style.mid)
        ui.DrawZZ(pl, zz_boll_low, is_append=ui.draw_style.end)
        pl.insertHtml("</td><td>")
        vals = agl.get_print_object(techs)
        pl.insertHtml(vals)
        pl.insertHtml("<br>%.2f,%.3f,%.2f,%.2f" % techs.jzd)
        pl.insertHtml("</td>")
        #pl.insertHtml("<td>")
        #pl.insertHtml("</td>")
        pl.insertHtml("</tr>")

    return sign
Beispiel #2
0
    def Run(self):
        account = self._getAccount()
        code = self.data.get_code()
        hisdat = self.data.get_hisdat(code)
        #hisdat = hisdat.dropna()
        #closes = hisdat['c'].dropna()
        closes = hisdat['c']
        if len(closes) < 60:
            return

        index = len(closes)
        #计算技术指标
        #four = stock.FOUR(closes)
        four = self.getCalcTech('four', index)
        #boll_up, boll_mid, boll_low ,boll_w= stock.TDX_BOLL2(closes)
        boll_up, boll_mid, boll_low, boll_w = self.getCalcTech('boll', index)
        #assert(agl.array_equal(boll_up, boll_up2))
        #adx = stock.TDX_ADX(hisdat['h'], hisdat['l'], closes)
        adx = self.getCalcTech('adx', index)
        #assert(agl.array_equal(adx, adx2))
        #收集使用过的技术指标,为了报告使用
        self.tech = closes, four, boll_up, boll_mid, boll_low, boll_w, adx

        four = four[-1]
        price = hisdat.iloc[-1]['c']
        #print self.getCurTime(), four, price, boll_low[-1], boll_w[-1]

        #基于价值回归及成本控制,加上技术指标择时
        #缺点, 资金利用率低, 选股必须选好, 否则碰到一直下跌的情况就会造成亏损
        #优点, 成本在相对安全区域
        #当成本亏base_ratio%时加倍买入
        df_stock_list = account.StockList()
        df_stock_list = df_stock_list[df_stock_list['证券代码'] == code]
        #第一次买
        if so.assemble(
                four < self.base_four[0],
                len(df_stock_list) == 0,
                #self.first_price == 0,
                #adx[-1] > 60,
                #price<boll_low[-1] ,
                #boll_w[-1]>2,
                #syl < 50,
        ):
            if hasattr(self, 'base_num_ratio'):
                total_money = ac.AccountMgr(self._getAccount(), price,
                                            code).init_money()
                self.base_num = ac.ShouShu(total_money * self.base_num_ratio /
                                           price)
            self._getAccount().Order(0, code, price, self.base_num)
            if self.first_price == 0:
                self.first_price = price
        if len(df_stock_list) > 0:
            chengben = float(df_stock_list['参考盈亏成本价'].loc[0])
            changwei = int(df_stock_list['库存数量'].loc[0])
            yinkui = calcYinKui(price, self.first_price)
            #agl.Print( '盈亏:', chengben, yinkui, changwei, '频繁')
            buchagn_ratio = self._Fire(yinkui)
            if buchagn_ratio != 0:  #补仓
                df_zhijing = account.ZhiJing()
                canuse_money = float(df_zhijing['可用'][-1])
                total_money = canuse_money + changwei * price
                use_money = total_money * buchagn_ratio
                num = ac.ShouShu(use_money / price)
                if num > 0:
                    account.Order(0, code, price, num)

            #当赚base_ratio%时加倍卖出
            chengben = float(df_stock_list['买入均价'].loc[0])
            if four > self.base_four[1]:  #第一次卖
                account.Order(1, code, price, self.base_num)
            #print '--',chengben, sell_avg_price.get()*(1+self.base_ratio)
            if price > self.first_price * (1 + abs(yinkui)):
                num = int(df_stock_list['可卖数量'].loc[0])
                num = num * 0.1
                num = ac.ShouShu(num)
                if num > 0:
                    account.Order(1, code, price, num)
Beispiel #3
0
    def Run(self):
        """
        """
        #self._log('Strategy_Boll_Pre')

        #以下为交易测试
        code = self.data.get_code()  #当前策略处理的股票
        self.code = code
        if not self.is_backtesting and not self.AllowCode(code):
            return

        df_hisdat = self.data.get_hisdat(code)  #日k线
        df_five_hisdat = self.data.get_hisdat(code, dtype='5min')  #5分钟k线
        df_fenshi = self.data.get_fenshi(code)  #日分时
        if len(df_fenshi) == 0:
            self.data.log(code + u"未取到分时数据")
            return
        account = self._getAccount()  #获取交易账户
        price = float(df_fenshi.tail(1)['p'])  #当前股价
        closes = df_hisdat['c']
        yestoday_close = closes[-2]  #昨日收盘价
        zhangfu = stock.ZhangFu(price, yestoday_close)
        self._log(
            'price=%.2f %s %s' %
            (price, str(df_fenshi.index[-1]), str(df_five_hisdat.iloc[-1])))
        account_mgr = ac.AccountMgr(account, price, code)
        trade_num = ac.ShouShu(account_mgr.init_money() *
                               self.trade_num_use_money_percent / price)
        trade_num = max(100, trade_num)

        # 信号计算
        four = stock.FOUR(closes)
        four = four[-1]
        upper, middle, lower = stock.TDX_BOLL(df_five_hisdat['c'])
        highs, lows, closes = df_five_hisdat['h'], df_five_hisdat[
            'l'], df_five_hisdat['c']
        adx = stock.TDX_ADX(highs, lows, closes)
        self._log('boll : %.2f,%.2f,%.2f' % (upper[-1], middle[-1], lower[-1]))
        boll_w = abs(upper[-1] - lower[-1]) / middle[-1] * 100
        #50个周期内最高值
        is_high = abs(price - max(df_five_hisdat[-1000:]['h'])) / price < 0.005

        boll_poss = [
            upper[-1],
            (upper[-1] - middle[-1]) / 2 + middle[-1],
            middle[-1],
            (middle[-1] - lower[-1]) / 2 + lower[-1],
            lower[-1],
        ]
        self._log('boll_poss: %.2f, %.2f boll_w=%.2f adx=%.2f' %
                  (boll_poss[0], boll_poss[1], boll_w, adx[-1]))

        #上一个成交的价位
        pre_price = account_mgr.last_chengjiao_price()
        pre_pre_price = account_mgr.last_chengjiao_price(index=-2)
        sell_count = account_mgr.queryTradeCount(1)
        buy_count = account_mgr.queryTradeCount(0)
        #买入均价

        adx = adx[-1]
        boll_up_ratio = 0.02
        #信号判断
        num = 0
        if so.assemble(
                price > boll_poss[1],
                price > pre_price * (1 + self.trade_ratio),
                #price > boll_poss[2],
                #price > self.max_buy_price*(1+self.trade_ratio),
                #boll_w > 3.5,
                #adx > 60,
                #sell_count < 2,
                #pr.horizontal(df_five_hisdat),
                0,
        ):
            num = -trade_num
            self.trade_status = self.enum.boll_up_mid
            #if self.order(1, code, price, num):
            #self._log(agl.utf8_to_ascii('一档卖出%s, %.2f, %d'%(code, price, num)))
        if so.assemble(
                price > boll_poss[0],
                price > pre_price * (1 + self.trade_ratio),
                #price > self.max_buy_price*(1+self.trade_ratio),
                #boll_w > 3,
                adx > 60,
                is_high,
                #four > self.trade_four[1],
                #sell_count < 2,
                #self.trade_status == self.enum.nothing,
                #0,
        ):
            num = -trade_num * 3
            self.trade_status = self.enum.boll_up
            #if self.order(1, code, price, num):
            #self._log(agl.utf8_to_ascii('二档卖出%s, %.2f, %d'%(code, price, num)))
        if so.assemble(
                price < boll_poss[-2] * (1 + boll_up_ratio),
                price < pre_price * (1 - self.trade_ratio),
                #price < boll_poss[2],
                #price < self.min_sell_price*(1-0.03),
                #boll_w > 3.5,
                #adx>60,
                #buy_count < 2,
                #pr.horizontal(df_five_hisdat),
                0,
        ):
            num = trade_num
            self.trade_status = self.enum.boll_down_mid
            #if boll_w > 6:
            #num *= self.trade_num_ratio
            #if self.order(0, code, price, num):
            #self._log(agl.utf8_to_ascii('一档买入%s, %.2f, %d'%(code, price, num)))
        if so.assemble(
                price < boll_poss[-1],
                price < pre_price * (1 - self.trade_ratio),
                #price < self.min_sell_price*(1-0.03),
                #boll_w > 3,
                #buy_count < 2,
                #self.trade_status == self.enum.nothing,
                #adx>70,
                #four < self.trade_four[0],
                #0,
        ):
            num = trade_num * 3
            #num = account_mgr.last_chengjiao_num()
            self.trade_status = self.enum.boll_down
            #if self.order(0, code, price, num):
            #self._log(agl.utf8_to_ascii('二档买入%s, %.2f, %d'%(code, price, num)))

        #成本区间
        if so.assemble(
                price < pre_price * (1 - 0.05),
                four < -0.1,
                self.trade_status == self.enum.boll_up,
                0,
        ):
            num = trade_num * self.trade_num_ratio
            self.trade_status = self.enum.nothing
        if so.assemble(
                price > pre_price * (1 + 0.05),
                four > 0.1,
                self.trade_status == self.enum.boll_down,
                0,
        ):
            num = -trade_num * self.trade_num_ratio
            self.trade_status = self.enum.nothing

        #zz顶抛出后回补
        if so.assemble(
                price < pre_price * (1 - 0.02),
                #sell_count >= 2,
                self.trade_status == self.enum.zz_up,
                0,
        ):
            #上次zz卖出的数量
            num = account_mgr.last_chengjiao_num()
            self.trade_status = self.enum.zz_hui_bu
        if so.assemble(
                price > pre_price * (1 + 0.02),
                #sell_count >= 2,
                self.trade_status == self.enum.zz_down,
                0,
        ):
            #上次zz卖出的数量
            num = account_mgr.last_chengjiao_num()
            self.trade_status = self.enum.zz_hui_bu

        #计算分时zz
        zz_sign = 0
        closes = df_five_hisdat['c'][-200:].values
        zz = stock.ZigZag(closes)
        if len(zz) > 2:
            zz_result = stock.analyzeZZ(zz)
            zz_line_ratio = zz_result[1] / zz_result[0]  #线段比率
            #扑捉大涨回头的信号
            if abs(zz_result[0]) > 0.05 and abs(zz_line_ratio) > 0.05 and abs(
                    zz_line_ratio) < 0.2 and abs(zz_result[0]) > 0.04:
                zz_sign = agl.where(zz_result[1] > 0, 1, -1)

        if num != 0:
            bSell = agl.where(num > 0, 0, 1)
            num = abs(num)
            #if bSell:
            #num = self._compensate(num, bSell, code)
            #基本上每天的振幅都在1个点以上
            if abs(stock.ZhangFu(price, yestoday_close)) > 0.01:
                self.order(bSell, code, price, num)

        zz_pre_price = myredis.createRedisVal('policy_basesign_zz_pre_price',
                                              price)
        if so.assemble(
                zz_sign != 0,
                0,
        ):
            #print self.price, getZZPrePrice(self.price),abs(self.price-getZZPrePrice(self.price))/self.price
            num = trade_num * 12
            bSell = agl.where(zz_sign > 0, 0, 1)
            num = self._compensate(num, bSell, code)
            bCanOrder = False
            if so.assemble(
                    bSell,
                    price > zz_pre_price.get() * (1 + 0.03),
                    #price > pre_price*(1+self.trade_ratio),
            ):
                bCanOrder = True
                self.trade_status = self.enum.zz_up
            if so.assemble(
                (not bSell),
                    price < zz_pre_price.get() * (1 - 0.03),
                    #price < pre_price*(1-self.trade_ratio)
            ):
                bCanOrder = True
                self.trade_status = self.enum.zz_down
            if bCanOrder:
                self._getAccount().Order(bSell, code, price, num)
                zz_pre_price.set(price)

        #信号发生时语音播报, 并通知界面回显
        if not self.is_backtesting and (price > boll_poss[1]
                                        or price < boll_poss[-2]):
            codename = stock.GetCodeName(code)
            s = '%s, %.2f' % (codename, price)
            self.data.show(codename)  #通知界面显示
            self.data.speak2(s)  #语音播报

        #tick report
        if self.is_backtesting and self.is_tick_report:
            self._getAccount().TickReport(df_five_hisdat, 'win')
        return
Beispiel #4
0
    def Run(self):
        """
        """
        #self._log('Strategy_Boll_Pre')

        #以下为交易测试
        code = self.data.get_code()  #当前策略处理的股票
        self.code = code
        if not self.is_backtesting and not self.AllowCode(code):
            return

        self._log(self.getCurTime())
        df_hisdat = self.data.get_hisdat(code)  #日k线
        df_five_hisdat = self.data.get_hisdat(code, dtype='5min')  #5分钟k线
        if len(df_five_hisdat) <= 30:
            return

        account = self._getAccount()  #获取交易账户
        price = float(df_five_hisdat.iloc[-1]['c'])  #当前股价
        closes = df_hisdat['c']
        yestoday_close = closes[-2]  #昨日收盘价
        account_mgr = ac.AccountMgr(account, price, code)
        trade_num = ac.ShouShu(account_mgr.init_money() * self.trade_num[0] /
                               price)

        # 指标计算
        index = len(df_five_hisdat)
        four = self.getCalcTech('four', index)
        upper, middle, lower = self.getCalcTech('boll', index)
        df_five_hisdat.is_copy = False
        df_five_hisdat['boll_up'] = upper
        df_five_hisdat['boll_mid'] = middle
        df_five_hisdat['boll_lower'] = lower
        adx = self.getCalcTech('adx', index)
        self._log('boll : %.2f,%.2f,%.2f' % (upper[-1], middle[-1], lower[-1]))
        boll_w = abs(upper[-1] - lower[-1]) / middle[-1] * 100
        #zz_up = stock.ZigZag(upper[-60:], percent=.1)
        #zz_low = stock.ZigZag(lower[-60:], percent=0.1)
        boll_poss = [
            upper[-1],
            (upper[-1] - middle[-1]) / 2 + middle[-1],
            middle[-1],
            (middle[-1] - lower[-1]) / 2 + lower[-1],
            lower[-1],
        ]
        self.tech = np.array(df_five_hisdat['c']), four, adx
        four = four[-1]
        adx = adx[-1]
        self._log('boll_poss: %.2f, %.2f boll_w=%.2f adx=%.2f' %
                  (boll_poss[0], boll_poss[1], boll_w, adx))
        if np.isnan(four):
            return

        #形态识别
        #shape_is_matched = True
        shape_is_matched = False
        if price > boll_poss[2]:
            base_boll_up = pr.get_boll_up_base()
            recognizer = pr.Recognize_boll(base_boll_up, df_five_hisdat)
            shape_is_matched = recognizer.is_matched()
        else:
            base_boll_lower = pr.get_boll_lower_base()
            recognizer = pr.Recognize_boll(base_boll_lower, df_five_hisdat)
            shape_is_matched = recognizer.is_matched()

        #帐户信息
        pre_price = account_mgr.last_chengjiao_price(is_sell=-1)  #上一个成交的价位
        pre_buy_price = account_mgr.last_chengjiao_price(is_sell=0)
        if np.isnan(pre_buy_price):
            pre_buy_price = pre_price
        pre_sell_num = account_mgr.last_chengjiao_num()  #上次的成交数量
        pre_pre_price = account_mgr.last_chengjiao_price(index=-2)
        sell_count = account_mgr.queryTradeCount(1)
        buy_count = account_mgr.queryTradeCount(0)
        chen_ben = account_mgr.get_BuyAvgPrice()  #买入成本
        yin_kui = account_mgr.yin_kui()  #盈亏成本
        canwei = account_mgr.getCurCanWei()

        #信号判断
        num = 0
        #卖
        if so.assemble(
                #price > boll_poss[1]*1.001,
                price > pre_price * (1 + self.trade_ratio),
                #price > boll_poss[2],
                #price > self.max_buy_price*(1+self.trade_ratio),
                #boll_w > 3.5,
                #adx > self.trade_adx,
                #four > self.trade_four[1],
                #sell_count < 2,
                #pr.horizontal(df_five_hisdat),
                shape_is_matched,
                #0,
        ):
            num = -trade_num
        #if so.assemble(price > boll_poss[0] ,
        #price > pre_price*(1+self.trade_ratio),
        ##price > self.max_buy_price*(1+self.trade_ratio),
        #boll_w > 3.5,∂
        ##adx>60,
        ##four > self.trade_four[1],
        ##sell_count < 2,
        ##self.trade_status == self.enum.nothing,
        ##0,
        #):
        #if pre_sell_num>0:
        #num = (pre_sell_num * self.trade_num_ratio)
        #else:
        #num = ac.ShouShu(account_mgr.getCurCanWei() * 0.5)
        #order = 1

        #买
        if so.assemble(
                #price < boll_poss[-2]*0.999,
                price < pre_price * (1 - self.trade_ratio),
                #price < boll_poss[2],
                #price < self.min_sell_price*(1-0.03),
                #boll_w > 3.5,
                four < self.trade_four[0],
                #adx>self.trade_adx,
                #buy_count < 2,
                #pr.horizontal(df_five_hisdat),
                shape_is_matched,
                #0,
        ):
            num = trade_num
        #if so.assemble(
        #price < pre_buy_price*(1-self.trade_ratio),
        ##price < self.min_sell_price*(1-0.03),
        ##boll_w > 3.5,
        ##buy_count < 2,
        ##self.trade_status == self.enum.nothing,
        ##adx>70,
        #four < self.trade_four[0]-0.02,
        ##0,
        #):
        ###加仓买入
        #num = self._compensate(trade_num, 0, code)
        ##order = 0

        if abs(num) > 0:
            order = num < 0 and 1 or 0
            self.order(order, code, price, abs(num))

        #tick report
        if self.is_backtesting and self.is_tick_report:
            self._getAccount().TickReport(df_five_hisdat, 'win')
        return