Beispiel #1
0
def get_args():
  parser = argparse.ArgumentParser()

  # BASICS
  parser.add_argument('--seed', type=int, default=None, help='sets random seed')
  parser.add_argument('--log-interval', type=int, default=100, help='print updates after n steps')
  parser.add_argument('--base-log-dir', type=str, default='logs/gen/', help='path where logs for all runs are stored')
  parser.add_argument('--log-name', type=str, default=None, help='subdirectory for this run')
  parser.add_argument('--log-dir', type=str, default=None, help='override save path. constructed if None')
  parser.add_argument('--data', type=str, default='digits', help='options are digits, fashion and 2d')
  parser.add_argument('--create-dataset', action='store_true', default=True, help='if true, make 60k synthetic code_balanced')

  # OPTIMIZATION
  parser.add_argument('--batch-size', '-bs', type=int, default=500)
  parser.add_argument('--test-batch-size', '-tbs', type=int, default=1000)
  parser.add_argument('--gen-batch-size', '-gbs', type=int, default=1000)
  parser.add_argument('--epochs', '-ep', type=int, default=5)
  parser.add_argument('--lr', '-lr', type=float, default=0.01, help='learning rate')
  parser.add_argument('--lr-decay', type=float, default=0.9, help='per epoch learning rate decay factor')

  # MODEL DEFINITION
  # parser.add_argument('--batch-norm', action='store_true', default=True, help='use batch norm in model')
  parser.add_argument('--conv-gen', action='store_true', default=True, help='use convolutional generator')
  parser.add_argument('--d-code', '-dcode', type=int, default=5, help='random code dimensionality')
  parser.add_argument('--gen-spec', type=str, default='200', help='specifies hidden layers of generator')
  parser.add_argument('--kernel-sizes', '-ks', type=str, default='5,5', help='specifies conv gen kernel sizes')
  parser.add_argument('--n-channels', '-nc', type=str, default='16,8', help='specifies conv gen kernel sizes')

  # DP SPEC
  parser.add_argument('--d-rff', type=int, default=1000, help='number of random filters for apprixmate mmd')
  parser.add_argument('--rff-sigma', '-rffsig', type=str, default=None, help='standard dev. for filter sampling')
  parser.add_argument('--noise-factor', '-noise', type=float, default=5.0, help='privacy noise parameter')

  # ALTERNATE MODES
  parser.add_argument('--single-release', action='store_true', default=True, help='get 1 data mean embedding only')

  parser.add_argument('--loss-type', type=str, default='rff', help='how to approx mmd',
                      choices=['rff', 'kmeans', 'real_mmd'])
  # parser.add_argument('--real-mmd', action='store_true', default=False, help='for debug: dont approximate mmd')
  # parser.add_argument('--kmeans-mmd', action='store_true', default=False, help='for debug: dont approximate mmd')

  parser.add_argument('--n-means', type=int, default=10, help='number of means to find per class')
  parser.add_argument('--dp-kmeans-encoding-dim', type=int, default=10, help='dimension the data is projected to')
  parser.add_argument('--tgt-epsilon', type=float, default=1.0, help='privacy epsilon for dp k-means')
  parser.add_argument('--kmeans-delta', type=float, default=0.01, help='soft failure probability in dp k-means')
  parser.add_argument('--mmd-type', type=str, default='sphere', help='how to approx mmd', choices=['sphere', 'r+r'])

  parser.add_argument('--center-data', action='store_true', default=False, help='k-means requires centering')

  # synth_d2 data
  parser.add_argument('--synth-spec-string', type=str, default='disc_k5_n10000_row5_col5_noise0.2', help='')
  parser.add_argument('--test-split', type=float, default=0.1, help='only relevant for synth_2d so far')

  ar = parser.parse_args()

  preprocess_args(ar)
  log_args(ar.log_dir, ar)
  return ar
Beispiel #2
0
def get_args():
  parser = argparse.ArgumentParser()

  # BASICS
  parser.add_argument('--seed', type=int, default=None, help='sets random seed')
  parser.add_argument('--n-labels', type=int, default=10, help='number of labels/classes in data')
  parser.add_argument('--log-interval', type=int, default=10000, help='print updates after n steps')
  parser.add_argument('--base-log-dir', type=str, default='logs/gen/', help='path where logs for all runs are stored')
  parser.add_argument('--log-name', type=str, default=None, help='subdirectory for this run')
  parser.add_argument('--log-dir', type=str, default=None, help='override save path. constructed if None')
  parser.add_argument('--data', type=str, default='digits', help='options are digits and fashion')
  parser.add_argument('--synth-code_balanced', action='store_true', default=True, help='if true, make 60k synthetic code_balanced')

  # OPTIMIZATION
  parser.add_argument('--batch-size', '-bs', type=int, default=100)
  parser.add_argument('--test-batch-size', '-tbs', type=int, default=1000)
  parser.add_argument('--epochs', '-ep', type=int, default=5)
  parser.add_argument('--lr', '-lr', type=float, default=0.01, help='learning rate')
  parser.add_argument('--lr-decay', type=float, default=0.9, help='per epoch learning rate decay factor')

  # MODEL DEFINITION
  # parser.add_argument('--batch-norm', action='store_true', default=True, help='use batch norm in model')
  parser.add_argument('--d-code', '-dcode', type=int, default=5, help='random code dimensionality')
  parser.add_argument('--gen-spec', type=str, default='200', help='specifies hidden layers of generator')
  parser.add_argument('--kernel-sizes', '-ks', type=str, default='5,5', help='specifies conv gen kernel sizes')
  parser.add_argument('--n-channels', '-nc', type=str, default='16,8', help='specifies conv gen kernel sizes')
  parser.add_argument('--mmd-type', type=str, default='sphere', help='how to approx mmd', choices=['sphere', 'r+r'])

  # DP SPEC
  parser.add_argument('--d-rff', type=int, default=1000, help='number of random filters for apprixmate mmd')
  parser.add_argument('--rff-sigma', '-rffsig', type=str, default=None, help='standard dev. for filter sampling')
  parser.add_argument('--noise-factor', '-noise', type=float, default=5.0, help='privacy noise parameter')

  parser.add_argument('--flip-mnist', action='store_true', default=False, help='')

  ar = parser.parse_args()

  preprocess_args(ar)
  log_args(ar.log_dir, ar)
  return ar
def get_args():
    parser = argparse.ArgumentParser()

    # BASICS
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='turns off gpu')
    parser.add_argument('--seed',
                        type=int,
                        default=None,
                        help='sets random seed')
    parser.add_argument('--n-labels',
                        type=int,
                        default=10,
                        help='number of labels/classes in data')
    parser.add_argument('--log-interval',
                        type=int,
                        default=100,
                        help='print updates after n steps')
    parser.add_argument('--base-log-dir',
                        type=str,
                        default='logs/gen/',
                        help='path where logs for all runs are stored')
    parser.add_argument('--log-name',
                        type=str,
                        default=None,
                        help='subdirectory for this run')
    parser.add_argument('--log-dir',
                        type=str,
                        default=None,
                        help='override save path. constructed if None')
    parser.add_argument('--data',
                        type=str,
                        default='digits',
                        help='options are digits and fashion')
    parser.add_argument('--synth-mnist',
                        action='store_true',
                        default=True,
                        help='if true, make 60k synthetic mnist')

    # OPTIMIZATION
    parser.add_argument('--batch-size', '-bs', type=int, default=500)
    parser.add_argument('--test-batch-size', '-tbs', type=int, default=1000)
    parser.add_argument('--epochs', '-ep', type=int, default=5)
    parser.add_argument('--lr',
                        '-lr',
                        type=float,
                        default=0.01,
                        help='learning rate')
    parser.add_argument('--lr-decay',
                        type=float,
                        default=0.9,
                        help='per epoch learning rate decay factor')

    # MODEL DEFINITION
    parser.add_argument('--batch-norm',
                        action='store_true',
                        default=True,
                        help='use batch norm in model')
    parser.add_argument('--gen-labels',
                        action='store_true',
                        default=True,
                        help='generate labels as well as samples')
    parser.add_argument('--uniform-labels',
                        action='store_true',
                        default=True,
                        help='assume uniform label distribution')
    parser.add_argument('--d-code',
                        '-dcode',
                        type=int,
                        default=5,
                        help='random code dimensionality')
    parser.add_argument('--gen-spec',
                        type=str,
                        default='200,100',
                        help='specifies hidden layers of generator')
    parser.add_argument('--big-gen',
                        action='store_true',
                        default=False,
                        help='False: gen as 2 hidden layers. True: 4')
    parser.add_argument('--real-mmd',
                        action='store_true',
                        default=False,
                        help='for debug: dont approximate mmd')

    # DP SPEC
    parser.add_argument('--d-rff',
                        type=int,
                        default=1000,
                        help='number of random filters for apprixmate mmd')
    parser.add_argument('--rff-sigma',
                        '-rffsig',
                        type=float,
                        default=127.0,
                        help='standard dev. for filter sampling')
    parser.add_argument('--noise-factor',
                        '-noise',
                        type=float,
                        default=0.595,
                        help='privacy noise parameter')
    ar = parser.parse_args()

    if ar.log_dir is None:
        ar.log_dir = get_log_dir(ar)
    if not os.path.exists(ar.log_dir):
        os.makedirs(ar.log_dir)
    preprocess_args(ar)
    log_args(ar.log_dir, ar)
    return ar
def get_args():
    parser = argparse.ArgumentParser()

    # BASICS
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='turns off gpu')
    parser.add_argument('--seed',
                        type=int,
                        default=None,
                        help='sets random seed')
    parser.add_argument('--n-labels',
                        type=int,
                        default=10,
                        help='number of labels/classes in data')
    parser.add_argument('--log-interval',
                        type=int,
                        default=100,
                        help='print updates after n steps')
    parser.add_argument('--base-log-dir',
                        type=str,
                        default='logs/gen/',
                        help='path where logs for all runs are stored')
    parser.add_argument('--log-name',
                        type=str,
                        default=None,
                        help='subdirectory for this run')
    parser.add_argument('--log-dir',
                        type=str,
                        default=None,
                        help='override save path. constructed if None')
    parser.add_argument('--data',
                        type=str,
                        default='digits',
                        help='options are digits and fashion')
    parser.add_argument('--synth-mnist',
                        action='store_true',
                        default=True,
                        help='if true, make 60k synthetic mnist')

    # OPTIMIZATION
    parser.add_argument('--batch-size', '-bs', type=int, default=500)
    parser.add_argument('--test-batch-size', '-tbs', type=int, default=1000)
    parser.add_argument('--epochs', '-ep', type=int, default=7)
    parser.add_argument('--lr',
                        '-lr',
                        type=float,
                        default=1e-3,
                        help='learning rate')
    parser.add_argument('--lr-decay',
                        type=float,
                        default=0.9,
                        help='per epoch learning rate decay factor')

    # MODEL DEFINITION
    parser.add_argument('--batch-norm',
                        action='store_true',
                        default=True,
                        help='use batch norm in model')
    parser.add_argument('--gen-labels',
                        action='store_true',
                        default=True,
                        help='generate labels as well as samples')
    parser.add_argument('--uniform-labels',
                        action='store_true',
                        default=True,
                        help='assume uniform label distribution')
    parser.add_argument('--d-enc',
                        '-denc',
                        type=int,
                        default=10,
                        help='embedding space dimensionality')
    parser.add_argument('--d-code',
                        '-dcode',
                        type=int,
                        default=10,
                        help='random code dimensionality')
    parser.add_argument('--gen-spec',
                        type=str,
                        default='100,100',
                        help='specifies hidden layers of generator')

    # DP SPEC
    parser.add_argument('--d-rff',
                        type=int,
                        default=10000,
                        help='number of random filters for apprixmate mmd')
    parser.add_argument('--rff-sigma',
                        '-rffsig',
                        type=float,
                        default=80.0,
                        help='standard dev. for filter sampling')
    parser.add_argument('--noise-factor',
                        '-noise',
                        type=float,
                        default=0.7,
                        help='privacy noise parameter')

    # Autoencoder info
    parser.add_argument('--ae-no-bias',
                        action='store_true',
                        default=True,
                        help='if true, AE has no bias units')
    parser.add_argument('--ae-bn',
                        action='store_true',
                        default=True,
                        help='if true, AE uses batch norm')
    parser.add_argument('--ae-enc-spec',
                        type=str,
                        default='300,100',
                        help='AE encoder hidden layers')
    parser.add_argument('--ae-dec-spec',
                        type=str,
                        default='100',
                        help='AE decoder hidden layers')
    parser.add_argument('--ae-norm-data',
                        action='store_true',
                        default=False,
                        help='if true, data was pre-processed')
    parser.add_argument('--ae-load-dir',
                        type=str,
                        default=None,
                        help='path to where AE is stored')

    # outdated variants and args only relevant for automated loading - don't worry about those
    parser.add_argument('--ae-conv', action='store_true', default=False)
    parser.add_argument('--ae-label', action='store_true', default=False)
    parser.add_argument('--ae-ce-loss', action='store_true', default=False)
    parser.add_argument('--ae-clip', type=float, default=None)
    parser.add_argument('--ae-noise', type=float, default=None)
    parser.add_argument('--ae-siam-weight', '-wsiam', type=float, default=None)
    parser.add_argument('--ae-siam-margin', '-msiam', type=float, default=None)
    ar = parser.parse_args()

    if ar.log_dir is None:
        ar.log_dir = get_log_dir(ar)
    if not os.path.exists(ar.log_dir):
        os.makedirs(ar.log_dir)
    preprocess_args(ar)
    log_args(ar.log_dir, ar)
    return ar
Beispiel #5
0
def get_args():
    parser = argparse.ArgumentParser()

    # BASICS
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='turns off gpu')
    parser.add_argument('--seed',
                        type=int,
                        default=None,
                        help='sets random seed')
    parser.add_argument('--n-labels',
                        type=int,
                        default=10,
                        help='number of labels/classes in data')
    parser.add_argument('--log-interval',
                        type=int,
                        default=100,
                        help='print updates after n steps')
    parser.add_argument('--base-log-dir',
                        type=str,
                        default='logs/ae/',
                        help='path where logs for all runs are stored')
    parser.add_argument('--log-name',
                        type=str,
                        default=None,
                        help='subdirectory for this run')
    parser.add_argument('--log-dir',
                        type=str,
                        default=None,
                        help='override save path. constructed if None')
    parser.add_argument('--verbose',
                        action='store_true',
                        default=False,
                        help='turns on more debug/status printing')
    parser.add_argument('--data',
                        type=str,
                        default='digits',
                        help='options are digits and fashion')
    parser.add_argument('--norm-data',
                        action='store_true',
                        default=False,
                        help='if true, preprocess data')

    # OPTIMIZATION
    parser.add_argument('--batch-size', '-bs', type=int, default=500)
    parser.add_argument('--test-batch-size', '-tbs', type=int, default=1000)
    parser.add_argument('--epochs', '-ep', type=int, default=10)
    parser.add_argument('--lr',
                        '-lr',
                        type=float,
                        default=1e-3,
                        help='learning rate')
    parser.add_argument('--lr-decay',
                        type=float,
                        default=0.8,
                        help='per epoch learning rate decay factor')
    parser.add_argument('--optimizer', '-opt', type=str, default='adam')
    parser.add_argument('--siam-loss-weight',
                        '-wsiam',
                        type=float,
                        default=100.,
                        help='weight of siamese loss')
    parser.add_argument('--siam-loss-margin',
                        '-msiam',
                        type=float,
                        default=5.,
                        help='margin used in siamese loss')

    # MODEL DEFINITION
    parser.add_argument('--d-enc',
                        '-denc',
                        type=int,
                        default=10,
                        help='embedding space dimensionality')
    parser.add_argument('--no-bias',
                        action='store_true',
                        default=True,
                        help='remove bias units')
    parser.add_argument('--batch-norm',
                        action='store_true',
                        default=True,
                        help='use batch norm in encoder')
    parser.add_argument('--enc-spec',
                        '-s-enc',
                        type=str,
                        default='300,100',
                        help='encoder hidden layers')
    parser.add_argument('--dec-spec',
                        '-s-dec',
                        type=str,
                        default='100',
                        help='decoder hidden layers')
    parser.add_argument('--conv-ae',
                        action='store_true',
                        default=False,
                        help='if true, use convolutional AE (not used)')
    parser.add_argument('--flat-dec',
                        action='store_true',
                        default=False,
                        help='if conv-ae, use smaller model (not used)')
    parser.add_argument('--ce-loss',
                        action='store_true',
                        default=False,
                        help='pixelwise cross-entropy loss (not used)')
    parser.add_argument('--label-ae',
                        action='store_true',
                        default=False,
                        help='autoencode labels as well (not used)')

    # DP SPEC
    parser.add_argument('--clip-norm',
                        '-clip',
                        type=float,
                        default=0.01,
                        help='samplewise gradient L2 clip norm')
    parser.add_argument('--noise-factor',
                        '-noise',
                        type=float,
                        default=0.7,
                        help='DP-SGD noise parameter')
    parser.add_argument('--clip-per-layer',
                        action='store_true',
                        default=False,
                        help='if true, clip per layer (not used)')
    parser.add_argument('--layer-clip-norms',
                        '-layer-clip',
                        type=str,
                        default=None,
                        help='perlayer clip norms(not used)')

    parser.add_argument('--noise-up-enc',
                        action='store_true',
                        default=False,
                        help='debug: apply DP-SGD to encoder too')
    ar = parser.parse_args()

    if ar.log_dir is None:
        ar.log_dir = get_log_dir(ar)
    if not os.path.exists(ar.log_dir):
        os.makedirs(ar.log_dir)
    preprocess_args(ar)
    log_args(ar.log_dir, ar)
    return ar