def find_median_astrometry(astromaps,pointingra,pointingdec): foundpointing = False for astromap in astromaps: ra,dec=getposim('%s/astromap.fits'%astromap) if sepn(ra*deg2rad,dec*deg2rad,pointingra,pointingdec)*rad2deg < 0.6: foundpointing = True f = fits.open('%s/astromap.fits'%astromap) _,_,ys,xs=f[0].data.shape # Use central 20% of the image subim=f[0].data[0][0][ys/2-ys/5:ys/2+ys/5,xs/2-xs/5:xs/2+xs/5].flatten() if foundpointing: subim = np.nan_to_num(subim) return np.median(subim) else: print 'Cant find astrometry near %s, %s'%(pointingra*rad2deg,pointingdec*rad2deg) sys.exit(0)
def find_median_astrometry(astromaps,pointingra,pointingdec): foundpointing = False for astromap in astromaps: amname='%s/astromap.fits'%astromap if not os.path.isfile(amname): continue ra,dec=getposim(amname) if sepn(ra*deg2rad,dec*deg2rad,pointingra,pointingdec)*rad2deg < 0.6: foundpointing = True f = fits.open('%s/astromap.fits'%astromap) _,_,ys,xs=f[0].data.shape # Use central 20% of the image subim=f[0].data[0][0][old_div(ys,2)-old_div(ys,5):old_div(ys,2)+old_div(ys,5),old_div(xs,2)-old_div(xs,5):old_div(xs,2)+old_div(xs,5)].flatten() if foundpointing: subim = np.nan_to_num(subim) return np.median(subim) else: print('Cant find astrometry near %s, %s'%(pointingra*rad2deg,pointingdec*rad2deg)) return None
job_status = 'running' d_colour = 'green' else: job_status = 'other (' + jobs[shortname] + ')' for ft in s_files: if os.path.isfile('image_' + ft + '.app.restored.fits'): secondary_status = ft circles.append((name, ra, dec, s_colours[status], d_colour)) print "%-45s %-15s %8.3f %8.3f %-12s %-10s %s" % ( d, name, ra, dec, status, job_status, secondary_status) continue # else check for image only ims = glob.glob('image_full_ampphase1m_shift.int.facetRestored.fits') if len(ims) > 0: ra, dec = getposim(ims[0]) if name is None: name = d.split('/')[-1] name = name.split('_')[0] print "%-45s %-15s %8.3f %8.3f %-12s" % (d, name, ra, dec, 'final') circles.append((name, ra, dec, 'blue')) ras = np.array([c[1] for c in circles]) decs = np.array([c[2] for c in circles]) rarange = max(ras) - min(ras) decrange = max(decs) - min(decs) yfigsize = 1 xfigsize = (rarange / decrange) * np.cos(np.mean(decs) * np.pi / 180.0) maxs = max((xfigsize, yfigsize)) xfigsize *= 18 / maxs yfigsize *= 18 / maxs
elif jobs[shortname] == 'R': job_status = 'running' d_colour = 'green' else: job_status = 'other ('+jobs[shortname]+')' for ft in s_files: if os.path.isfile('image_'+ft+'.app.restored.fits'): secondary_status = ft circles.append((name,ra,dec,s_colours[status],d_colour)) print "%-45s %-15s %8.3f %8.3f %-12s %-10s %s" % (d,name,ra,dec,status,job_status,secondary_status) continue # else check for image only ims=glob.glob('image_full_ampphase1m_shift.int.facetRestored.fits') if len(ims)>0: ra,dec=getposim(ims[0]) if name is None: name=d.split('/')[-1] name=name.split('_')[0] print "%-45s %-15s %8.3f %8.3f %-12s" % (d,name,ra,dec,'final') circles.append((name,ra,dec,'blue')) ras=np.array([c[1] for c in circles]) decs=np.array([c[2] for c in circles]) rarange=max(ras)-min(ras) decrange=max(decs)-min(decs) yfigsize=1 xfigsize=(rarange/decrange)*np.cos(np.mean(decs)*np.pi/180.0) maxs=max((xfigsize,yfigsize)) xfigsize*=18/maxs yfigsize*=18/maxs