def main(): usage = ''' Usage: --------------------------------------------------------- python %s [-p "bandPositions"] [-d "spatialDimensions"] [-K number of clusters] [-M max scale][-m min scale] [-t initial annealing temperature] [-s spatial mixing factor] [-P generate class probabilities image] filename bandPositions and spatialDimensions are lists, e.g., -p [1,2,4] -d [0,0,400,400] If the input file is named path/filenbasename.ext then The output classification file is named path/filebasename_em.ext and the class probabilities output file is named path/filebasename_emprobs.ext --------------------------------------------------------''' %sys.argv[0] options, args = getopt.getopt(sys.argv[1:],'hp:d:K:M:m:t:s:P') pos = None dims = None K,max_scale,min_scale,T0,beta,probs = (None,None,None,None,None,None) for option, value in options: if option == '-h': print usage return elif option == '-p': pos = eval(value) elif option == '-d': dims = eval(value) elif option == '-K': K = eval(value) elif option == '-M': max_scale = eval(value) elif option == '-m': min_scale = eval(value) elif option == '-t': T0 = eval(value) elif option == '-s': beta = eval(value) elif option == '-P': probs = True if len(args) != 1: print 'Incorrect number of arguments' print usage sys.exit(1) if K is None: K = 6 if max_scale is None: max_scale = 2 else: max_scale = min((max_scale,3)) if min_scale is None: min_scale = 0 else: min_scale = min((max_scale,min_scale)) if T0 is None: T0 = 0.5 if beta is None: beta = 0.5 if probs is None: probs = False gdal.AllRegister() infile = args[0] gdal.AllRegister() try: inDataset = gdal.Open(infile,GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount except Exception as e: print 'Error: %s --Image could not be read'%e sys.exit(1) if pos is not None: bands = len(pos) else: pos = range(1,bands+1) if dims: x0,y0,cols,rows = dims else: x0 = 0 y0 = 0 class_image = np.zeros((rows,cols),dtype=np.byte) path = os.path.dirname(infile) basename = os.path.basename(infile) root, ext = os.path.splitext(basename) outfile = path+'/'+root+'_em'+ext if probs: probfile = path+'/'+root+'_emprobs'+ext print '--------------------------' print ' EM clustering' print '--------------------------' print 'infile: %s'%infile print 'clusters: %i'%K print 'T0: %f'%T0 print 'beta: %f'%beta start = time.time() # read in image and compress path = os.path.dirname(infile) basename = os.path.basename(infile) root, ext = os.path.splitext(basename) DWTbands = [] for b in pos: band = inDataset.GetRasterBand(b) DWTband = auxil.DWTArray(band.ReadAsArray(x0,y0,cols,rows).astype(float),cols,rows) for i in range(max_scale): DWTband.filter() DWTbands.append(DWTband) rows,cols = DWTbands[0].get_quadrant(0).shape G = np.transpose(np.array([DWTbands[i].get_quadrant(0,float=True).ravel() for i in range(bands)])) # initialize membership matrix n = G.shape[0] U = np.random.random((K,n)) den = np.sum(U,axis=0) for j in range(K): U[j,:] = U[j,:]/den # cluster at minimum scale try: U,Ms,Cs,Ps,pdens = em(G,U,T0,beta,rows,cols) except: print 'em failed' return # sort clusters wrt partition density idx = np.argsort(pdens) idx = idx[::-1] U = U[idx,:] # clustering at increasing scales for i in range(max_scale-min_scale): # expand U and renormalize U = np.reshape(U,(K,rows,cols)) rows = rows*2 cols = cols*2 U = ndi.zoom(U,(1,2,2)) U = np.reshape(U,(K,rows*cols)) idx = np.where(U<0.0) U[idx] = 0.0 den = np.sum(U,axis=0) for j in range(K): U[j,:] = U[j,:]/den # expand the image for i in range(bands): DWTbands[i].invert() G = np.transpose(np.array([DWTbands[i].get_quadrant(0,float=True).ravel() for i in range(bands)])) # cluster unfrozen = np.where(np.max(U,axis=0) < 0.90) try: U,Ms,Cs,Ps,pdens = em(G,U,0.0,beta,rows,cols,unfrozen=unfrozen) except: print 'em failed' return print 'Cluster mean vectors' print Ms print 'Cluster covariance matrices' for k in range(K): print 'cluster: %i'%k print Cs[k] # up-sample class memberships if necessary if min_scale>0: U = np.reshape(U,(K,rows,cols)) f = 2**min_scale rows = rows*f cols = cols*f U = ndi.zoom(U,(1,f,f)) U = np.reshape(U,(K,rows*cols)) idx = np.where(U<0.0) U[idx] = 0.0 den = np.sum(U,axis=0) for j in range(K): U[j,:] = U[j,:]/den # classify labels = np.byte(np.argmax(U,axis=0)+1) class_image[0:rows,0:cols] = np.reshape(labels,(rows,cols)) rows1,cols1 = class_image.shape # write to disk driver = inDataset.GetDriver() outDataset = driver.Create(outfile,cols1,rows1,1,GDT_Byte) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: gt = list(geotransform) gt[0] = gt[0] + x0*gt[1] gt[3] = gt[3] + y0*gt[5] outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) outBand.WriteArray(class_image,0,0) outBand.FlushCache() outDataset = None # write class membership probability file if desired if probs: outDataset = driver.Create(probfile,cols,rows,K,GDT_Byte) if geotransform is not None: outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) for k in range(K): probs = np.reshape(U[k,:],(rows,cols)) probs = np.byte(probs*255) outBand = outDataset.GetRasterBand(k+1) outBand.WriteArray(probs,0,0) outBand.FlushCache() outDataset = None print 'class probabilities written to: %s'%probfile inDataset = None if (ext == '') and (K<19): # try to make an ENVI classification header file hdr = header.Header() headerfile = outfile+'.hdr' f = open(headerfile) line = f.readline() envihdr = '' while line: envihdr += line line = f.readline() f.close() hdr.read(envihdr) hdr['file type'] ='ENVI Classification' hdr['classes'] = str(K+1) classlookup = '{0' for i in range(1,3*(K+1)): classlookup += ', '+str(str(ctable[i])) classlookup +='}' hdr['class lookup'] = classlookup hdr['class names'] = ['class %i'%i for i in range(K+1)] f = open(headerfile,'w') f.write(str(hdr)) f.close() print 'classified image written to: '+outfile print 'elapsed time: '+str(time.time()-start) print '--done------------------------'
def main(): gdal.AllRegister() path = auxil.select_directory('Choose working directory') if path: os.chdir(path) infile = auxil.select_infile(title='Select an image') if infile: inDataset = gdal.Open(infile, GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount else: return pos = auxil.select_pos(bands) if not pos: return dims = auxil.select_dims([0, 0, cols, rows]) if dims: x0, y0, cols, rows = dims else: return m = auxil.select_integer(1000, 'Select training sample size') K = auxil.select_integer(6, 'Select number of clusters') outfile, outfmt = auxil.select_outfilefmt() if not outfile: return kernel = auxil.select_integer(1, 'Select kernel: 0=linear, 1=Gaussian') print '=========================' print ' kkmeans' print '=========================' print 'infile: ' + infile print 'samples: ' + str(m) if kernel == 0: print 'kernel: ' + 'linear' else: print 'kernel: ' + 'Gaussian' start = time.time() # input data matrix XX = np.zeros((cols * rows, bands)) k = 0 for b in pos: band = inDataset.GetRasterBand(b) band = band.ReadAsArray(x0, y0, cols, rows).astype(float) XX[:, k] = np.ravel(band) k += 1 # training data matrix idx = np.fix(np.random.random(m) * (cols * rows)).astype(np.integer) X = XX[idx, :] print 'kernel matrix...' # uncentered kernel matrix KK, gma = auxil.kernelMatrix(X, kernel=kernel) if gma is not None: print 'gamma: ' + str(round(gma, 6)) # initial (random) class labels labels = np.random.randint(K, size=m) # iteration change = True itr = 0 onesm = np.mat(np.ones(m, dtype=float)) while change and (itr < 100): change = False U = np.zeros((K, m)) for i in range(m): U[labels[i], i] = 1 M = np.diag(1.0 / (np.sum(U, axis=1) + 1.0)) MU = np.mat(np.dot(M, U)) Z = (onesm.T) * np.diag(MU * KK * (MU.T)) - 2 * KK * (MU.T) Z = np.array(Z) labels1 = (np.argmin(Z, axis=1) % K).ravel() if np.sum(labels1 != labels): change = True labels = labels1 itr += 1 print 'iterations: %i' % itr # classify image print 'classifying...' i = 0 A = np.diag(MU * KK * (MU.T)) A = np.tile(A, (cols, 1)) class_image = np.zeros((rows, cols), dtype=np.byte) while i < rows: XXi = XX[i * cols:(i + 1) * cols, :] KKK, _ = auxil.kernelMatrix(X, XXi, gma=gma, kernel=kernel) Z = A - 2 * (KKK.T) * (MU.T) Z = np.array(Z) labels = np.argmin(Z, axis=1).ravel() class_image[i, :] = (labels % K) + 1 i += 1 sys.stdout.write("\n") # write to disk driver = gdal.GetDriverByName(outfmt) outDataset = driver.Create(outfile, cols, rows, 1, GDT_Byte) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: gt = list(geotransform) gt[0] = gt[0] + x0 * gt[1] gt[3] = gt[3] + y0 * gt[5] outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) outBand.WriteArray(class_image, 0, 0) outBand.FlushCache() outDataset = None inDataset = None if (outfmt == 'ENVI') and (K < 19): # try to make an ENVI classification header file hdr = header.Header() headerfile = outfile + '.hdr' f = open(headerfile) line = f.readline() envihdr = '' while line: envihdr += line line = f.readline() f.close() hdr.read(envihdr) hdr['file type'] = 'ENVI Classification' hdr['classes'] = str(K) classlookup = '{0' for i in range(1, 3 * K): classlookup += ', ' + str(str(ctable[i])) classlookup += '}' hdr['class lookup'] = classlookup hdr['class names'] = [str(i + 1) for i in range(K)] f = open(headerfile, 'w') f.write(str(hdr)) f.close() print 'result written to: ' + outfile print 'elapsed time: ' + str(time.time() - start) print '--done------------------------'
def main(): gdal.AllRegister() path = auxil.select_directory('Input directory') if path: os.chdir(path) # input image infile = auxil.select_infile(title='Image file') if infile: inDataset = gdal.Open(infile, GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: gt = list(geotransform) else: print 'No geotransform available' return imsr = osr.SpatialReference() imsr.ImportFromWkt(projection) else: return pos = auxil.select_pos(bands) if not pos: return N = len(pos) rasterBands = [] for b in pos: rasterBands.append(inDataset.GetRasterBand(b)) # training algorithm trainalg = auxil.select_integer(1, msg='1:Maxlike,2:Backprop,3:Congrad,4:SVM') if not trainalg: return # training data (shapefile) trnfile = auxil.select_infile(filt='.shp', title='Train shapefile') if trnfile: trnDriver = ogr.GetDriverByName('ESRI Shapefile') trnDatasource = trnDriver.Open(trnfile, 0) trnLayer = trnDatasource.GetLayer() trnsr = trnLayer.GetSpatialRef() else: return tstfile = auxil.select_outfile(filt='.tst', title='Test results file') if not tstfile: print 'No test output' # outfile outfile, outfmt = auxil.select_outfilefmt(title='Classification file') if not outfile: return if trainalg in (2, 3, 4): # class probabilities file, hidden neurons probfile, probfmt = auxil.select_outfilefmt(title='Probabilities file') else: probfile = None if trainalg in (2, 3): L = auxil.select_integer(8, 'Number of hidden neurons') if not L: return # coordinate transformation from training to image projection ct = osr.CoordinateTransformation(trnsr, imsr) # number of classes K = 1 feature = trnLayer.GetNextFeature() while feature: classid = feature.GetField('CLASS_ID') if int(classid) > K: K = int(classid) feature = trnLayer.GetNextFeature() trnLayer.ResetReading() K += 1 print '=========================' print 'supervised classification' print '=========================' print time.asctime() print 'image: ' + infile print 'training: ' + trnfile if trainalg == 1: print 'Maximum Likelihood' elif trainalg == 2: print 'Neural Net (Backprop)' elif trainalg == 3: print 'Neural Net (Congrad)' else: print 'Support Vector Machine' # loop through the polygons Gs = [] # train observations ls = [] # class labels classnames = '{unclassified' classids = set() print 'reading training data...' for i in range(trnLayer.GetFeatureCount()): feature = trnLayer.GetFeature(i) classid = str(feature.GetField('CLASS_ID')) classname = feature.GetField('CLASS_NAME') if classid not in classids: classnames += ', ' + classname classids = classids | set(classid) l = [0 for i in range(K)] l[int(classid)] = 1.0 polygon = feature.GetGeometryRef() # transform to same projection as image polygon.Transform(ct) # convert to a Shapely object poly = shapely.wkt.loads(polygon.ExportToWkt()) # transform the boundary to pixel coords in numpy bdry = np.array(poly.boundary) bdry[:, 0] = bdry[:, 0] - gt[0] bdry[:, 1] = bdry[:, 1] - gt[3] GT = np.mat([[gt[1], gt[2]], [gt[4], gt[5]]]) bdry = bdry * np.linalg.inv(GT) # polygon in pixel coords polygon1 = asPolygon(bdry) # raster over the bounding rectangle minx, miny, maxx, maxy = map(int, list(polygon1.bounds)) pts = [] for i in range(minx, maxx + 1): for j in range(miny, maxy + 1): pts.append((i, j)) multipt = MultiPoint(pts) # intersection as list intersection = np.array(multipt.intersection(polygon1), dtype=np.int).tolist() # cut out the bounded image cube cube = np.zeros((maxy - miny + 1, maxx - minx + 1, len(rasterBands))) k = 0 for band in rasterBands: cube[:, :, k] = band.ReadAsArray(minx, miny, maxx - minx + 1, maxy - miny + 1) k += 1 # get the training vectors for (x, y) in intersection: Gs.append(cube[y - miny, x - minx, :]) ls.append(l) polygon = None polygon1 = None feature.Destroy() trnDatasource.Destroy() classnames += '}' m = len(ls) print str(m) + ' training pixel vectors were read in' Gs = np.array(Gs) ls = np.array(ls) # stretch the pixel vectors to [-1,1] for ffn maxx = np.max(Gs, 0) minx = np.min(Gs, 0) for j in range(N): Gs[:, j] = 2 * (Gs[:, j] - minx[j]) / (maxx[j] - minx[j]) - 1.0 # random permutation of training data idx = np.random.permutation(m) Gs = Gs[idx, :] ls = ls[idx, :] # setup output datasets driver = gdal.GetDriverByName(outfmt) outDataset = driver.Create(outfile, cols, rows, 1, GDT_Byte) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) if probfile: driver = gdal.GetDriverByName(probfmt) probDataset = driver.Create(probfile, cols, rows, K, GDT_Byte) if geotransform is not None: probDataset.SetGeoTransform(tuple(gt)) if projection is not None: probDataset.SetProjection(projection) probBands = [] for k in range(K): probBands.append(probDataset.GetRasterBand(k + 1)) if tstfile: # train on 2/3 training examples Gstrn = Gs[0:2 * m // 3, :] lstrn = ls[0:2 * m // 3, :] Gstst = Gs[2 * m // 3:, :] lstst = ls[2 * m // 3:, :] else: Gstrn = Gs lstrn = ls if trainalg == 1: classifier = sc.Maxlike(Gstrn, lstrn) elif trainalg == 2: classifier = sc.Ffnbp(Gstrn, lstrn, L) elif trainalg == 3: classifier = sc.Ffncg(Gstrn, lstrn, L) elif trainalg == 4: classifier = sc.Svm(Gstrn, lstrn) print 'training on %i pixel vectors...' % np.shape(Gstrn)[0] start = time.time() result = classifier.train() print 'elapsed time %s' % str(time.time() - start) if result: if trainalg in [2, 3]: cost = np.log10(result) ymax = np.max(cost) ymin = np.min(cost) xmax = len(cost) plt.plot(range(xmax), cost, 'k') plt.axis([0, xmax, ymin - 1, ymax]) plt.title('Log(Cross entropy)') plt.xlabel('Epoch') # classify the image print 'classifying...' start = time.time() tile = np.zeros((cols, N)) for row in range(rows): for j in range(N): tile[:, j] = rasterBands[j].ReadAsArray(0, row, cols, 1) tile[:, j] = 2 * (tile[:, j] - minx[j]) / (maxx[j] - minx[j]) - 1.0 cls, Ms = classifier.classify(tile) outBand.WriteArray(np.reshape(cls, (1, cols)), 0, row) if probfile: Ms = np.byte(Ms * 255) for k in range(K): probBands[k].WriteArray(np.reshape(Ms[k, :], (1, cols)), 0, row) outBand.FlushCache() print 'elapsed time %s' % str(time.time() - start) outDataset = None inDataset = None if probfile: for probBand in probBands: probBand.FlushCache() probDataset = None print 'class probabilities written to: %s' % probfile K = lstrn.shape[1] + 1 if (outfmt == 'ENVI') and (K < 19): # try to make an ENVI classification header file hdr = header.Header() headerfile = outfile + '.hdr' f = open(headerfile) line = f.readline() envihdr = '' while line: envihdr += line line = f.readline() f.close() hdr.read(envihdr) hdr['file type'] = 'ENVI Classification' hdr['classes'] = str(K) classlookup = '{0' for i in range(1, 3 * K): classlookup += ', ' + str(str(ctable[i])) classlookup += '}' hdr['class lookup'] = classlookup hdr['class names'] = classnames f = open(headerfile, 'w') f.write(str(hdr)) f.close() print 'thematic map written to: %s' % outfile if trainalg in [2, 3]: print 'please close the cross entropy plot to continue' plt.show() if tstfile: with open(tstfile, 'w') as f: print >> f, 'FFN test results for %s' % infile print >> f, time.asctime() print >> f, 'Classification image: %s' % outfile print >> f, 'Class probabilities image: %s' % probfile print >> f, lstst.shape[0], lstst.shape[1] classes, _ = classifier.classify(Gstst) labels = np.argmax(lstst, axis=1) + 1 for i in range(len(classes)): print >> f, classes[i], labels[i] f.close() print 'test results written to: %s' % tstfile print 'done' else: print 'an error occured' return
def main(): gdal.AllRegister() path = auxil.select_directory('Choose working directory') # path = 'd:\\imagery\\CRC\\Chapters6-7' if path: os.chdir(path) infile = auxil.select_infile(title='Select a class probability image') if infile: inDataset = gdal.Open(infile, GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize K = inDataset.RasterCount else: return outfile, fmt = auxil.select_outfilefmt() if not outfile: return print '=========================' print ' PLR_reclass' print '=========================' print 'infile: %s' % infile start = time.time() prob_image = np.zeros((K, rows, cols)) for k in range(K): band = inDataset.GetRasterBand(k + 1) prob_image[k, :, :] = band.ReadAsArray(0, 0, cols, rows).astype(float) class_image = np.zeros((rows, cols), dtype=np.byte) print 'reclassifying...' for i in range(rows): if i % 50 == 0: print '%i rows processed' % i for j in range(cols): cls = np.where(prob_image[:, i, j] == np.amax(prob_image[:, i, j]))[0][0] if isinstance(cls, int): class_image[i, j] = cls + 1 # write to disk driver = gdal.GetDriverByName(fmt) outDataset = driver.Create(outfile, cols, rows, 1, GDT_Byte) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: outDataset.SetGeoTransform(geotransform) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) outBand.WriteArray(class_image, 0, 0) outBand.FlushCache() outDataset = None inDataset = None if (fmt == 'ENVI') and (K < 19): # try to make an ENVI classification header file classnames = '{unclassified ' for i in range(K): classnames += ', ' + str(i + 1) classnames += '}' hdr = header.Header() headerfile = outfile + '.hdr' f = open(headerfile) line = f.readline() envihdr = '' while line: envihdr += line line = f.readline() f.close() hdr.read(envihdr) hdr['file type'] = 'ENVI Classification' hdr['classes'] = str(K + 1) classlookup = '{0' for i in range(1, 3 * (K + 1)): classlookup += ', ' + str(str(auxil.ctable[i])) classlookup += '}' hdr['class lookup'] = classlookup hdr['class names'] = classnames f = open(headerfile, 'w') f.write(str(hdr)) f.close() print 'result written to: ' + outfile print 'elapsed time: ' + str(time.time() - start) print '--done------------------------'
def main(): gdal.AllRegister() path = auxil.select_directory('Choose working directory') if path: os.chdir(path) infile = auxil.select_infile(title='Select an image') if infile: inDataset = gdal.Open(infile, GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount else: return pos = auxil.select_pos(bands) if not pos: return bands = len(pos) dims = auxil.select_dims([0, 0, cols, rows]) if dims: x0, y0, cols, rows = dims else: return class_image = np.zeros((rows, cols), dtype=np.byte) K = auxil.select_integer(6, 'Number of clusters') max_scale = auxil.select_integer(2, 'Maximum scaling factor') max_scale = min((max_scale, 3)) min_scale = auxil.select_integer(0, 'Minimum scaling factor') min_scale = min((max_scale, min_scale)) T0 = auxil.select_float(0.5, 'Initial annealing temperature') beta = auxil.select_float(0.5, 'Spatial mixing parameter') outfile, outfmt = auxil.select_outfilefmt( 'Select output classification file') if not outfile: return probfile, probfmt = auxil.select_outfilefmt( 'Select output probability file (optional)') print '=========================' print ' EM clustering' print '=========================' print 'infile: %s' % infile print 'clusters: %i' % K print 'T0: %f' % T0 print 'beta: %f' % beta start = time.time() # read in image and compress DWTbands = [] for b in pos: band = inDataset.GetRasterBand(b) DWTband = auxil.DWTArray( band.ReadAsArray(x0, y0, cols, rows).astype(float), cols, rows) for i in range(max_scale): DWTband.filter() DWTbands.append(DWTband) rows, cols = DWTbands[0].get_quadrant(0).shape G = np.transpose( np.array([ DWTbands[i].get_quadrant(0, float=True).ravel() for i in range(bands) ])) # initialize membership matrix n = G.shape[0] U = np.random.random((K, n)) den = np.sum(U, axis=0) for j in range(K): U[j, :] = U[j, :] / den # cluster at minimum scale try: U, Ms, Cs, Ps, pdens = em(G, U, T0, beta, rows, cols) except: print 'em failed' return # sort clusters wrt partition density idx = np.argsort(pdens) idx = idx[::-1] U = U[idx, :] # clustering at increasing scales for i in range(max_scale - min_scale): # expand U and renormalize U = np.reshape(U, (K, rows, cols)) rows = rows * 2 cols = cols * 2 U = ndi.zoom(U, (1, 2, 2)) U = np.reshape(U, (K, rows * cols)) idx = np.where(U < 0.0) U[idx] = 0.0 den = np.sum(U, axis=0) for j in range(K): U[j, :] = U[j, :] / den # expand the image for i in range(bands): DWTbands[i].invert() G = np.transpose( np.array([ DWTbands[i].get_quadrant(0, float=True).ravel() for i in range(bands) ])) # cluster unfrozen = np.where(np.max(U, axis=0) < 0.90) try: U, Ms, Cs, Ps, pdens = em(G, U, 0.0, beta, rows, cols, unfrozen=unfrozen) except: print 'em failed' return print 'Cluster mean vectors' print Ms print 'Cluster covariance matrices' for k in range(K): print 'cluster: %i' % k print Cs[k] # up-sample class memberships if necessary if min_scale > 0: U = np.reshape(U, (K, rows, cols)) f = 2**min_scale rows = rows * f cols = cols * f U = ndi.zoom(U, (1, f, f)) U = np.reshape(U, (K, rows * cols)) idx = np.where(U < 0.0) U[idx] = 0.0 den = np.sum(U, axis=0) for j in range(K): U[j, :] = U[j, :] / den # classify labels = np.byte(np.argmax(U, axis=0) + 1) class_image[0:rows, 0:cols] = np.reshape(labels, (rows, cols)) rows1, cols1 = class_image.shape # write to disk driver = gdal.GetDriverByName(outfmt) outDataset = driver.Create(outfile, cols1, rows1, 1, GDT_Byte) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: gt = list(geotransform) gt[0] = gt[0] + x0 * gt[1] gt[3] = gt[3] + y0 * gt[5] outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) outBand.WriteArray(class_image, 0, 0) outBand.FlushCache() outDataset = None # write class membership probability file if desired if probfile: driver = gdal.GetDriverByName(probfmt) outDataset = driver.Create(probfile, cols, rows, K, GDT_Byte) if geotransform is not None: outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) for k in range(K): probs = np.reshape(U[k, :], (rows, cols)) probs = np.byte(probs * 255) outBand = outDataset.GetRasterBand(k + 1) outBand.WriteArray(probs, 0, 0) outBand.FlushCache() outDataset = None print 'class probabilities written to: %s' % probfile inDataset = None if (outfmt == 'ENVI') and (K < 19): # try to make an ENVI classification header file hdr = header.Header() headerfile = outfile + '.hdr' f = open(headerfile) line = f.readline() envihdr = '' while line: envihdr += line line = f.readline() f.close() hdr.read(envihdr) hdr['file type'] = 'ENVI Classification' hdr['classes'] = str(K + 1) classlookup = '{0' for i in range(1, 3 * (K + 1)): classlookup += ', ' + str(str(ctable[i])) classlookup += '}' hdr['class lookup'] = classlookup hdr['class names'] = ['class %i' % i for i in range(K + 1)] f = open(headerfile, 'w') f.write(str(hdr)) f.close() print 'classification written to: ' + outfile print 'elapsed time: ' + str(time.time() - start) print '--done------------------------'