Beispiel #1
0
    def test_plugins_compatibility_checks(self):
        model = SimpleMLP(input_size=6, hidden_size=10)
        benchmark = get_fast_benchmark()
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()

        evalp = EvaluationPlugin(
            loss_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
            loggers=[InteractiveLogger()],
            strict_checks=None,
        )

        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_epochs=2,
            eval_every=-1,
            evaluator=evalp,
            plugins=[
                EarlyStoppingPlugin(patience=10, val_stream_name="train")
            ],
        )
        strategy.train(benchmark.train_stream[0])
Beispiel #2
0
    def assert_balancing(self, policy):
        benchmark = get_fast_benchmark(use_task_labels=True)
        replay = ReplayPlugin(mem_size=100, storage_policy=policy)
        model = SimpleMLP(num_classes=benchmark.n_classes)

        # CREATE THE STRATEGY INSTANCE (NAIVE)
        cl_strategy = Naive(
            model,
            SGD(model.parameters(), lr=0.001),
            CrossEntropyLoss(),
            train_mb_size=100,
            train_epochs=0,
            eval_mb_size=100,
            plugins=[replay],
            evaluator=None,
        )

        for exp in benchmark.train_stream:
            cl_strategy.train(exp)

            ext_mem = policy.buffer_groups
            ext_mem_data = policy.buffer_datasets
            print(list(ext_mem.keys()), [len(el) for el in ext_mem_data])

            # buffer size should equal self.mem_size if data is large enough
            len_tot = sum([len(el) for el in ext_mem_data])
            assert len_tot == policy.max_size
    def test_naive(self):
        # SIT scenario
        model, optimizer, criterion, my_nc_benchmark = self.init_sit()
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=64,
            device=self.device,
            eval_mb_size=50,
            train_epochs=2,
        )
        self.run_strategy(my_nc_benchmark, strategy)

        # MT scenario
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=64,
            device=self.device,
            eval_mb_size=50,
            train_epochs=2,
        )
        benchmark = self.load_benchmark(use_task_labels=True)
        self.run_strategy(benchmark, strategy)
Beispiel #4
0
    def _test_replay_balanced_memory(self, storage_policy, mem_size):
        benchmark = get_fast_benchmark(use_task_labels=True)
        model = SimpleMLP(input_size=6, hidden_size=10)
        replayPlugin = ReplayPlugin(mem_size=mem_size,
                                    storage_policy=storage_policy)
        cl_strategy = Naive(
            model,
            SGD(model.parameters(), lr=0.001, momentum=0.9,
                weight_decay=0.001),
            CrossEntropyLoss(),
            train_mb_size=32,
            train_epochs=1,
            eval_mb_size=100,
            plugins=[replayPlugin],
        )

        n_seen_data = 0
        for step in benchmark.train_stream:
            n_seen_data += len(step.dataset)
            mem_fill = min(mem_size, n_seen_data)
            cl_strategy.train(step)
            lengths = []
            for d in replayPlugin.storage_policy.buffer_datasets:
                lengths.append(len(d))
            self.assertEqual(sum(lengths), mem_fill)  # Always fully filled
Beispiel #5
0
def main(args):
    # Device config
    device = torch.device(
        f"cuda:{args.cuda}"
        if torch.cuda.is_available() and args.cuda >= 0
        else "cpu"
    )

    # model
    model = SimpleMLP(num_classes=10)

    # Here we show all the MNIST variation we offer in the "classic" benchmarks
    if args.mnist_type == "permuted":
        scenario = PermutedMNIST(n_experiences=5, seed=1)
    elif args.mnist_type == "rotated":
        scenario = RotatedMNIST(
            n_experiences=5, rotations_list=[30, 60, 90, 120, 150], seed=1
        )
    else:
        scenario = SplitMNIST(n_experiences=5, seed=1)

    # Than we can extract the parallel train and test streams
    train_stream = scenario.train_stream
    test_stream = scenario.test_stream

    # Prepare for training & testing
    optimizer = SGD(model.parameters(), lr=0.001, momentum=0.9)
    criterion = CrossEntropyLoss()

    # Continual learning strategy with default logger
    cl_strategy = Naive(
        model,
        optimizer,
        criterion,
        train_mb_size=32,
        train_epochs=100,
        eval_mb_size=32,
        device=device,
        eval_every=1,
        plugins=[EarlyStoppingPlugin(args.patience, "test_stream")],
    )

    # train and test loop
    results = []
    for train_task, test_task in zip(train_stream, test_stream):
        print("Current Classes: ", train_task.classes_in_this_experience)
        cl_strategy.train(train_task, eval_streams=[test_task])
        results.append(cl_strategy.eval(test_stream))
Beispiel #6
0
    def test_incremental_classifier_weight_update(self):
        model = IncrementalClassifier(in_features=10)
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()
        benchmark = self.benchmark

        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=100,
            train_epochs=1,
            eval_mb_size=100,
            device="cpu",
        )
        strategy.evaluator.loggers = [TextLogger(sys.stdout)]

        # train on first task
        w_old = model.classifier.weight.clone()
        b_old = model.classifier.bias.clone()

        # adaptation. Increase number of classes
        dataset = benchmark.train_stream[4].dataset
        model.adaptation(dataset)
        w_new = model.classifier.weight.clone()
        b_new = model.classifier.bias.clone()

        # old weights should be copied correctly.
        assert torch.equal(w_old, w_new[:w_old.shape[0]])
        assert torch.equal(b_old, b_new[:w_old.shape[0]])

        # shape should be correct.
        assert w_new.shape[0] == max(dataset.targets) + 1
        assert b_new.shape[0] == max(dataset.targets) + 1
Beispiel #7
0
    def test_dataload_reinit(self):
        benchmark = get_fast_benchmark()
        model = SimpleMLP(input_size=6, hidden_size=10)

        replayPlugin = ReplayPlugin(mem_size=5)
        cl_strategy = Naive(
            model,
            SGD(model.parameters(), lr=0.001, momentum=0.9,
                weight_decay=0.001),
            CrossEntropyLoss(),
            train_mb_size=16,
            train_epochs=1,
            eval_mb_size=16,
            plugins=[replayPlugin],
        )
        for step in benchmark.train_stream[:2]:
            cl_strategy.train(step)
    def test_forward_hooks(self):
        model = SimpleMLP(input_size=6, hidden_size=10)
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()

        strategy = Naive(
            model, optimizer, criterion, train_epochs=2, eval_every=0
        )
        was_hook_called = False

        def hook(a, b, c):
            nonlocal was_hook_called
            was_hook_called = True

        model.register_forward_hook(hook)
        mb_x = torch.randn(32, 6, device=strategy.device)
        strategy.mbatch = mb_x, None, None
        strategy.forward()
        assert was_hook_called
Beispiel #9
0
    def test_dataload_batch_balancing(self):
        benchmark = get_fast_benchmark()
        batch_size = 32
        replayPlugin = ReplayPlugin(mem_size=20)

        model = SimpleMLP(input_size=6, hidden_size=10)
        cl_strategy = Naive(
            model,
            SGD(model.parameters(), lr=0.001, momentum=0.9,
                weight_decay=0.001),
            CrossEntropyLoss(),
            train_mb_size=batch_size,
            train_epochs=1,
            eval_mb_size=100,
            plugins=[replayPlugin],
        )
        for step in benchmark.train_stream:
            adapted_dataset = step.dataset
            if len(replayPlugin.storage_policy.buffer) > 0:
                dataloader = ReplayDataLoader(
                    adapted_dataset,
                    replayPlugin.storage_policy.buffer,
                    oversample_small_tasks=True,
                    num_workers=0,
                    batch_size=batch_size,
                    shuffle=True,
                )
            else:
                dataloader = TaskBalancedDataLoader(adapted_dataset)

            for mini_batch in dataloader:
                mb_task_labels = mini_batch[-1]
                lengths = []
                for task_id in adapted_dataset.task_set:
                    len_task = (mb_task_labels == task_id).sum()
                    lengths.append(len_task)
                if sum(lengths) == batch_size:
                    difference = max(lengths) - min(lengths)
                    self.assertLessEqual(difference, 1)
                self.assertLessEqual(sum(lengths), batch_size)
            cl_strategy.train(step)
Beispiel #10
0
def main(args):

    # Config
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # model
    model = SimpleMLP(input_size=32 * 32 * 3, num_classes=10)

    # CL Benchmark Creation
    scenario = SplitCIFAR10(n_experiences=5, return_task_id=True)
    train_stream = scenario.train_stream
    test_stream = scenario.test_stream

    # Prepare for training & testing
    optimizer = Adam(model.parameters(), lr=0.01)
    criterion = CrossEntropyLoss()

    # Choose a CL strategy
    strategy = Naive(
        model=model,
        optimizer=optimizer,
        criterion=criterion,
        train_mb_size=128,
        train_epochs=3,
        eval_mb_size=128,
        device=device,
    )

    # train and test loop
    for train_task in train_stream:
        strategy.train(train_task, num_workers=0)
        strategy.eval(test_stream)
Beispiel #11
0
    def test_multihead_head_selection(self):
        # Check if the optimizer is updated correctly
        # when heads are created and updated.
        model = MultiHeadClassifier(in_features=6)
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()
        benchmark = get_fast_benchmark(use_task_labels=True, shuffle=False)

        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=100,
            train_epochs=1,
            eval_mb_size=100,
            device="cpu",
        )
        strategy.evaluator.loggers = [TextLogger(sys.stdout)]

        # initialize head
        strategy.train(benchmark.train_stream[0])
        strategy.train(benchmark.train_stream[4])

        # create models with fixed head
        model_t0 = model.classifiers["0"]
        model_t4 = model.classifiers["4"]

        # check head task0
        for x, y, t in DataLoader(benchmark.train_stream[0].dataset):
            y_mh = model(x, t)
            y_t = model_t0(x)
            assert ((y_mh - y_t)**2).sum() < 1.0e-7
            break

        # check head task4
        for x, y, t in DataLoader(benchmark.train_stream[4].dataset):
            y_mh = model(x, t)
            y_t = model_t4(x)
            assert ((y_mh - y_t)**2).sum() < 1.0e-7
            break
Beispiel #12
0
    def test_rwalk(self):
        # SIT scenario
        model, optimizer, criterion, my_nc_benchmark = self.init_sit()
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=10,
            eval_mb_size=50,
            train_epochs=2,
            plugins=[
                RWalkPlugin(
                    ewc_lambda=0.1,
                    ewc_alpha=0.9,
                    delta_t=10,
                ),
            ],
        )
        self.run_strategy(my_nc_benchmark, strategy)

        # MT scenario
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=10,
            eval_mb_size=50,
            train_epochs=2,
            plugins=[
                RWalkPlugin(
                    ewc_lambda=0.1,
                    ewc_alpha=0.9,
                    delta_t=10,
                ),
            ],
        )
        benchmark = self.load_benchmark(use_task_labels=True)
        self.run_strategy(benchmark, strategy)
Beispiel #13
0
    def test_multihead_head_creation(self):
        # Check if the optimizer is updated correctly
        # when heads are created and updated.
        model = MTSimpleMLP(input_size=6, hidden_size=10)
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()
        benchmark = get_fast_benchmark(use_task_labels=True, shuffle=False)

        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=100,
            train_epochs=1,
            eval_mb_size=100,
            device="cpu",
        )
        strategy.evaluator.loggers = [TextLogger(sys.stdout)]
        print(
            "Current Classes: ",
            benchmark.train_stream[4].classes_in_this_experience,
        )
        print(
            "Current Classes: ",
            benchmark.train_stream[0].classes_in_this_experience,
        )

        # head creation
        strategy.train(benchmark.train_stream[0])
        w_ptr = model.classifier.classifiers["0"].classifier.weight.data_ptr()
        b_ptr = model.classifier.classifiers["0"].classifier.bias.data_ptr()
        opt_params_ptrs = [
            w.data_ptr() for group in optimizer.param_groups
            for w in group["params"]
        ]
        assert w_ptr in opt_params_ptrs
        assert b_ptr in opt_params_ptrs

        # head update
        strategy.train(benchmark.train_stream[4])
        w_ptr_t0 = model.classifier.classifiers[
            "0"].classifier.weight.data_ptr()
        b_ptr_t0 = model.classifier.classifiers["0"].classifier.bias.data_ptr()
        w_ptr_new = model.classifier.classifiers[
            "4"].classifier.weight.data_ptr()
        b_ptr_new = model.classifier.classifiers["4"].classifier.bias.data_ptr(
        )
        opt_params_ptrs = [
            w.data_ptr() for group in optimizer.param_groups
            for w in group["params"]
        ]

        assert w_ptr not in opt_params_ptrs  # head0 has been updated
        assert b_ptr not in opt_params_ptrs  # head0 has been updated
        assert w_ptr_t0 in opt_params_ptrs
        assert b_ptr_t0 in opt_params_ptrs
        assert w_ptr_new in opt_params_ptrs
        assert b_ptr_new in opt_params_ptrs
Beispiel #14
0
    def test_optimizer_update(self):
        model = SimpleMLP()
        optimizer = SGD(model.parameters(), lr=1e-3)
        strategy = Naive(model, optimizer, None)

        # check add_param_group
        p = torch.nn.Parameter(torch.zeros(10, 10))
        add_new_params_to_optimizer(optimizer, p)
        assert self._is_param_in_optimizer(p, strategy.optimizer)

        # check new_param is in optimizer
        # check old_param is NOT in optimizer
        p_new = torch.nn.Parameter(torch.zeros(10, 10))
        update_optimizer(optimizer, [p], [p_new])
        assert self._is_param_in_optimizer(p_new, strategy.optimizer)
        assert not self._is_param_in_optimizer(p, strategy.optimizer)
 def test_raise_warning(self):
     eval_plugin = EvaluationPlugin(
         accuracy_metrics(stream=True),
         loggers=None,
         benchmark=self.benchmark,
         strict_checks=False,
     )
     strategy = Naive(
         self.model,
         self.optimizer,
         self.criterion,
         train_epochs=2,
         eval_every=-1,
         evaluator=eval_plugin,
     )
     for exp in self.benchmark.train_stream:
         strategy.train(exp)
         strategy.eval(self.benchmark.test_stream)
     with self.assertWarns(UserWarning):
         strategy.eval(self.benchmark.test_stream[:2])
def main(cuda: int):
    # --- CONFIG
    device = torch.device(
        f"cuda:{cuda}" if torch.cuda.is_available() else "cpu")
    # --- SCENARIO CREATION
    scenario = SplitCIFAR10(n_experiences=2, seed=42)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes, input_size=196608 // 64)

    # choose some metrics and evaluation method
    eval_plugin = EvaluationPlugin(
        accuracy_metrics(stream=True, experience=True),
        images_samples_metrics(
            on_train=True,
            on_eval=True,
            n_cols=10,
            n_rows=10,
        ),
        labels_repartition_metrics(
            # image_creator=repartition_bar_chart_image_creator,
            on_train=True,
            on_eval=True,
        ),
        loggers=[
            TensorboardLogger(f"tb_data/{datetime.now()}"),
            InteractiveLogger(),
        ],
    )

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(
        model,
        Adam(model.parameters()),
        train_mb_size=128,
        train_epochs=1,
        eval_mb_size=128,
        device=device,
        plugins=[ReplayPlugin(mem_size=1_000)],
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    for i, experience in enumerate(scenario.train_stream, 1):
        cl_strategy.train(experience)
        cl_strategy.eval(scenario.test_stream[:i])
 def test_no_errors(self):
     eval_plugin = EvaluationPlugin(
         accuracy_metrics(stream=True),
         loggers=None,
         benchmark=self.benchmark,
         strict_checks=True,
     )
     strategy = Naive(
         self.model,
         self.optimizer,
         self.criterion,
         train_epochs=2,
         eval_every=0,
         evaluator=eval_plugin,
     )
     for exp in self.benchmark.train_stream:
         strategy.train(exp, eval_streams=[self.benchmark.test_stream])
         strategy.eval(self.benchmark.test_stream)
    def _test_integration(self, module, clf_name, plugins=[]):
        module = as_multitask(module, clf_name)
        module = module.to(self.device)
        optimizer = SGD(module.parameters(),
                        lr=0.05,
                        momentum=0.9,
                        weight_decay=0.0002)

        strategy = Naive(
            module,
            optimizer,
            train_mb_size=32,
            eval_mb_size=32,
            device=self.device,
            plugins=plugins,
        )

        for t, experience in enumerate(self.benchmark.train_stream):
            strategy.train(experience)
            strategy.eval(self.benchmark.test_stream[:t + 1])
Beispiel #19
0
def main(args):
    # Config
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")

    # Model
    model = SimpleCNN(num_classes=5)

    # CL Benchmark Creation
    scenario = EndlessCLSim(
        scenario=args.scenario,  # "Classes", "Illumination", "Weather"
        sequence_order=None,
        task_order=None,
        semseg=args.semseg,
        dataset_root=args.dataset_root,
    )

    train_stream = scenario.train_stream
    test_stream = scenario.test_stream

    # Prepare for training & testing
    optimizer = Adam(model.parameters(), lr=0.001)
    criterion = CrossEntropyLoss()

    # Choose a CL strategy
    strategy = Naive(
        model=model,
        optimizer=optimizer,
        criterion=criterion,
        train_mb_size=64,
        train_epochs=3,
        eval_mb_size=128,
        device=device,
    )

    # Train and test loop
    for train_task in train_stream:
        strategy.train(train_task, num_worker=0)
        strategy.eval(test_stream)

    return
Beispiel #20
0
    def test_callback_reachability(self):
        # Check that all the callbacks are called during
        # training and test loops.
        model = _PlainMLP(input_size=6, hidden_size=10)
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()
        benchmark = PluginTests.create_benchmark()

        plug = MockPlugin()
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=100,
            train_epochs=1,
            eval_mb_size=100,
            device="cpu",
            plugins=[plug],
        )
        strategy.evaluator.loggers = [TextLogger(sys.stdout)]
        strategy.train(benchmark.train_stream[0], num_workers=0)
        strategy.eval([benchmark.test_stream[0]], num_workers=0)
        assert all(plug.activated)
    def test_periodic_eval(self):
        model = SimpleMLP(input_size=6, hidden_size=10)
        model.classifier = IncrementalClassifier(model.classifier.in_features)
        benchmark = get_fast_benchmark()
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()
        curve_key = "Top1_Acc_Stream/eval_phase/train_stream/Task000"

        ###################
        # Case #1: No eval
        ###################
        # we use stream acc. because it emits a single value
        # for each eval loop.
        acc = StreamAccuracy()
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_epochs=2,
            eval_every=-1,
            evaluator=EvaluationPlugin(acc),
        )
        strategy.train(benchmark.train_stream[0])
        # eval is not called in this case
        assert len(strategy.evaluator.get_all_metrics()) == 0

        ###################
        # Case #2: Eval at the end only and before training
        ###################
        acc = StreamAccuracy()
        evalp = EvaluationPlugin(acc)
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_epochs=2,
            eval_every=0,
            evaluator=evalp,
        )
        strategy.train(benchmark.train_stream[0])
        # eval is called once at the end of the training loop
        curve = strategy.evaluator.get_all_metrics()[curve_key][1]
        assert len(curve) == 2

        ###################
        # Case #3: Eval after every epoch and before training
        ###################
        acc = StreamAccuracy()
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_epochs=2,
            eval_every=1,
            evaluator=EvaluationPlugin(acc),
        )
        strategy.train(benchmark.train_stream[0])
        curve = strategy.evaluator.get_all_metrics()[curve_key][1]
        assert len(curve) == 3

        ###################
        # Case #4: Eval in iteration mode
        ###################
        acc = StreamAccuracy()
        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_epochs=2,
            eval_every=100,
            evaluator=EvaluationPlugin(acc),
            peval_mode="iteration",
        )
        strategy.train(benchmark.train_stream[0])
        curve = strategy.evaluator.get_all_metrics()[curve_key][1]
        assert len(curve) == 5
Beispiel #22
0
    def test_incremental_classifier(self):
        model = SimpleMLP(input_size=6, hidden_size=10)
        model.classifier = IncrementalClassifier(in_features=10)
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()
        benchmark = self.benchmark

        strategy = Naive(
            model,
            optimizer,
            criterion,
            train_mb_size=100,
            train_epochs=1,
            eval_mb_size=100,
            device="cpu",
        )
        strategy.evaluator.loggers = [TextLogger(sys.stdout)]
        print(
            "Current Classes: ",
            benchmark.train_stream[0].classes_in_this_experience,
        )
        print(
            "Current Classes: ",
            benchmark.train_stream[4].classes_in_this_experience,
        )

        # train on first task
        strategy.train(benchmark.train_stream[0])
        w_ptr = model.classifier.classifier.weight.data_ptr()
        b_ptr = model.classifier.classifier.bias.data_ptr()
        opt_params_ptrs = [
            w.data_ptr() for group in optimizer.param_groups
            for w in group["params"]
        ]
        # classifier params should be optimized
        assert w_ptr in opt_params_ptrs
        assert b_ptr in opt_params_ptrs

        # train again on the same task.
        strategy.train(benchmark.train_stream[0])
        # parameters should not change.
        assert w_ptr == model.classifier.classifier.weight.data_ptr()
        assert b_ptr == model.classifier.classifier.bias.data_ptr()
        # the same classifier params should still be optimized
        assert w_ptr in opt_params_ptrs
        assert b_ptr in opt_params_ptrs

        # update classifier with new classes.
        old_w_ptr, old_b_ptr = w_ptr, b_ptr
        strategy.train(benchmark.train_stream[4])
        opt_params_ptrs = [
            w.data_ptr() for group in optimizer.param_groups
            for w in group["params"]
        ]
        new_w_ptr = model.classifier.classifier.weight.data_ptr()
        new_b_ptr = model.classifier.classifier.bias.data_ptr()
        # weights should change.
        assert old_w_ptr != new_w_ptr
        assert old_b_ptr != new_b_ptr
        # Old params should not be optimized. New params should be optimized.
        assert old_w_ptr not in opt_params_ptrs
        assert old_b_ptr not in opt_params_ptrs
        assert new_w_ptr in opt_params_ptrs
        assert new_b_ptr in opt_params_ptrs
Beispiel #23
0
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        RandomCrop(28, padding=4),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, )),
    ])
    test_transform = transforms.Compose(
        [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
    # ---------

    # --- SCENARIO CREATION
    mnist_train = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=True,
        download=True,
        transform=train_transform,
    )
    mnist_test = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=False,
        download=True,
        transform=test_transform,
    )
    scenario = nc_benchmark(mnist_train,
                            mnist_test,
                            5,
                            task_labels=False,
                            seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    interactive_logger = InteractiveLogger()
    wandb_logger = WandBLogger(project_name=args.project,
                               run_name=args.run,
                               config=vars(args))

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        loss_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        forgetting_metrics(experience=True, stream=True),
        confusion_matrix_metrics(stream=True,
                                 wandb=True,
                                 class_names=[str(i) for i in range(10)]),
        cpu_usage_metrics(minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        timing_metrics(minibatch=True,
                       epoch=True,
                       experience=True,
                       stream=True),
        ram_usage_metrics(every=0.5,
                          minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        gpu_usage_metrics(
            args.cuda,
            every=0.5,
            minibatch=True,
            epoch=True,
            experience=True,
            stream=True,
        ),
        disk_usage_metrics(minibatch=True,
                           epoch=True,
                           experience=True,
                           stream=True),
        MAC_metrics(minibatch=True, epoch=True, experience=True),
        loggers=[interactive_logger, wandb_logger],
    )

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(
        model,
        SGD(model.parameters(), lr=0.001, momentum=0.9),
        CrossEntropyLoss(),
        train_mb_size=100,
        train_epochs=4,
        eval_mb_size=100,
        device=device,
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))
def main(args):

    # Model getter: specify dataset and depth of the network.
    model = pytorchcv_wrapper.resnet("cifar10", depth=20, pretrained=False)

    # Or get a more specific model. E.g. wide resnet, with depth 40 and growth
    # factor 8 for Cifar 10.
    # model = pytorchcv_wrapper.get_model("wrn40_8_cifar10", pretrained=False)

    # --- CONFIG
    device = torch.device(
        f"cuda:{args.cuda}"
        if torch.cuda.is_available() and args.cuda >= 0
        else "cpu"
    )

    device = "cpu"

    # --- TRANSFORMATIONS
    transform = transforms.Compose(
        [
            ToTensor(),
            transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261)),
        ]
    )

    # --- SCENARIO CREATION
    cifar_train = CIFAR10(
        root=expanduser("~") + "/.avalanche/data/cifar10/",
        train=True,
        download=True,
        transform=transform,
    )
    cifar_test = CIFAR10(
        root=expanduser("~") + "/.avalanche/data/cifar10/",
        train=False,
        download=True,
        transform=transform,
    )
    scenario = nc_benchmark(
        cifar_train,
        cifar_test,
        5,
        task_labels=False,
        seed=1234,
        fixed_class_order=[i for i in range(10)],
    )

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True, epoch=True, experience=True, stream=True
        ),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=[interactive_logger],
    )

    # CREATE THE STRATEGY INSTANCE (Naive, with Replay)
    cl_strategy = Naive(
        model,
        torch.optim.SGD(model.parameters(), lr=0.01),
        CrossEntropyLoss(),
        train_mb_size=100,
        train_epochs=1,
        eval_mb_size=100,
        device=device,
        plugins=[ReplayPlugin(mem_size=1000)],
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience ", experience.current_experience)
        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))
Beispiel #25
0
def main(args):
    model = SimpleMLP(hidden_size=args.hs)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    # check if selected GPU is available or use CPU
    assert args.cuda == -1 or args.cuda >= 0, "cuda must be -1 or >= 0."
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    print(f"Using device: {device}")

    # create scenario
    if args.scenario == "pmnist":
        scenario = PermutedMNIST(n_experiences=args.permutations)
    elif args.scenario == "smnist":
        mnist_train = MNIST(
            root=expanduser("~") + "/.avalanche/data/mnist/",
            train=True,
            download=True,
            transform=ToTensor(),
        )
        mnist_test = MNIST(
            root=expanduser("~") + "/.avalanche/data/mnist/",
            train=False,
            download=True,
            transform=ToTensor(),
        )
        scenario = nc_benchmark(mnist_train,
                                mnist_test,
                                5,
                                task_labels=False,
                                seed=1234)
    else:
        raise ValueError("Wrong scenario name. Allowed pmnist, smnist.")

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()
    tensorboard_logger = TensorboardLogger()
    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True, stream=True),
        bwt_metrics(experience=True, stream=True),
        loggers=[interactive_logger, tensorboard_logger],
    )

    # create strategy
    strategy = Naive(
        model,
        optimizer,
        criterion,
        train_epochs=args.epochs,
        device=device,
        train_mb_size=args.minibatch_size,
        evaluator=eval_plugin,
        plugins=[
            RWalkPlugin(
                ewc_lambda=args.ewc_lambda,
                ewc_alpha=args.ewc_alpha,
                delta_t=args.delta_t,
            )
        ],
    )

    # train on the selected scenario with the chosen strategy
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start training on experience ", experience.current_experience)

        strategy.train(experience)
        print("End training on experience", experience.current_experience)
        print("Computing accuracy on the test set")
        results.append(strategy.eval(scenario.test_stream[:]))
Beispiel #26
0
def main(args):
    """
    Last Avalanche version reference performance (online = 1 epoch):

    Class-incremental (online):
        Top1_Acc_Stream/eval_phase/test_stream = 0.9421
    Data-incremental (online:
        Top1_Acc_Stream/eval_phase/test_stream = 0.9309

    These are reference results for a single run.
    """
    # --- DEFAULT PARAMS ONLINE DATA INCREMENTAL LEARNING
    nb_tasks = 5  # Can still design the data stream based on tasks
    batch_size = 10  # Learning agent only has small amount of data available
    epochs = 1  # How many times to process each mini-batch
    return_task_id = False  # Data incremental (task-agnostic/task-free)

    # --- CONFIG
    device = torch.device(
        f"cuda:{args.cuda}"
        if torch.cuda.is_available() and args.cuda >= 0
        else "cpu"
    )
    # ---------

    # --- SCENARIO CREATION
    n_classes = 10
    task_scenario = SplitMNIST(
        nb_tasks,
        return_task_id=return_task_id,
        fixed_class_order=[i for i in range(n_classes)],
    )

    # Make data incremental (one batch = one experience)
    scenario = data_incremental_benchmark(
        task_scenario, experience_size=batch_size
    )
    print(f"{scenario.n_experiences} batches in online data incremental setup.")
    # 6002 batches for SplitMNIST with batch size 10
    # ---------

    # MODEL CREATION
    model = SimpleMLP(
        num_classes=args.featsize, hidden_size=400, hidden_layers=2, drop_rate=0
    )

    # choose some metrics and evaluation method
    logger = TextLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(experience=True, stream=True),
        loss_metrics(experience=False, stream=True),
        StreamForgetting(),
        loggers=[logger],
        benchmark=scenario,
    )

    # CoPE PLUGIN
    cope = CoPEPlugin(
        mem_size=2000, alpha=0.99, p_size=args.featsize, n_classes=n_classes
    )

    # CREATE THE STRATEGY INSTANCE (NAIVE) WITH CoPE PLUGIN
    cl_strategy = Naive(
        model,
        torch.optim.SGD(model.parameters(), lr=0.01),
        cope.ppp_loss,  # CoPE PPP-Loss
        train_mb_size=batch_size,
        train_epochs=epochs,
        eval_mb_size=100,
        device=device,
        plugins=[cope],
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    cl_strategy.train(scenario.train_stream)

    print("Computing accuracy on the whole test set")
    results.append(cl_strategy.eval(scenario.test_stream))
Beispiel #27
0
            weight_decay=HYPER_PARAMETER[mode]["weight_decay"],
            momentum=HYPER_PARAMETER[mode]["momentum"],
        )
        scheduler = make_scheduler(
            optimizer,
            HYPER_PARAMETER[mode]["step_schedular_decay"],
            HYPER_PARAMETER[mode]["schedular_step"],
        )

        plugin_list = [LRSchedulerPlugin(scheduler)]
        cl_strategy = Naive(
            model,
            optimizer,
            CrossEntropyLoss(),
            train_mb_size=HYPER_PARAMETER[mode]["batch_size"],
            train_epochs=num_epoch,
            eval_mb_size=HYPER_PARAMETER[mode]["batch_size"],
            evaluator=eval_plugin,
            device=device,
            plugins=plugin_list,
        )

        # TRAINING LOOP
        print("Starting experiment...")
        results = []
        print("Current input mode : ", mode)
        print("Current eval mode : ", eval_mode)
        for experience in scenario.train_stream:
            print("Start of experience: ", experience.current_experience)
            print("Current Classes: ", experience.classes_in_this_experience)
            res = cl_strategy.train(experience)
Beispiel #28
0
def main(args):
    # Device config
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")

    # Intialize the model, stream and training strategy
    model = SimpleCNN(num_classes=10)
    if args.stream != "s_long":
        model_init = deepcopy(model)

    scenario = CTrL(stream_name=args.stream,
                    save_to_disk=args.save,
                    path=args.path,
                    seed=10)

    train_stream = scenario.train_stream
    test_stream = scenario.test_stream
    val_stream = scenario.val_stream

    optimizer = SGD(model.parameters(), lr=0.001, momentum=0.9)
    criterion = CrossEntropyLoss()

    logger = EvaluationPlugin(
        accuracy_metrics(minibatch=False,
                         epoch=False,
                         experience=True,
                         stream=True),
        loggers=[InteractiveLogger()],
    )

    cl_strategy = Naive(
        model,
        optimizer,
        criterion,
        train_mb_size=32,
        device=device,
        train_epochs=args.max_epochs,
        eval_mb_size=128,
        evaluator=logger,
        plugins=[EarlyStoppingPlugin(50, "val_stream")],
        eval_every=5,
    )

    # train and test loop
    for train_task, val_task in zip(train_stream, val_stream):
        cl_strategy.train(train_task, eval_streams=[val_task])
        cl_strategy.eval(test_stream)

    transfer_mat = []
    for tid in range(len(train_stream)):
        transfer_mat.append(
            logger.all_metric_results["Top1_Acc_Exp/eval_phase/test_stream/"
                                      f"Task00{tid}/Exp00{tid}"][1])

    if args.stream == "s_long":
        res = logger.last_metric_results["Top1_Acc_Stream/eval_phase/"
                                         "test_stream"]
        print(f"Average accuracy on S_long : {res}")
    else:
        optimizer = SGD(model_init.parameters(), lr=0.001, momentum=0.9)
        cl_strategy = Naive(
            model_init,
            optimizer,
            criterion,
            train_mb_size=32,
            device=device,
            train_epochs=args.max_epochs,
            eval_mb_size=128,
            plugins=[EarlyStoppingPlugin(50, "val_stream")],
            eval_every=5,
        )

        cl_strategy.train(train_stream[-1])
        res = cl_strategy.eval([test_stream[-1]])

        acc_last_stream = transfer_mat[-1][-1]
        acc_last_only = res["Top1_Acc_Exp/eval_phase/test_stream/"
                            "Task005/Exp-01"]
        transfer_value = acc_last_stream - acc_last_only

        print(f"Accuracy on probe task after training on the whole "
              f"stream: {acc_last_stream}")
        print(f"Accuracy on probe task after trained "
              f"independently: {acc_last_only}")
        print(f"T({args.stream})={transfer_value}")
Beispiel #29
0
def main(args):
    # --- CONFIG
    device = torch.device(
        f"cuda:{args.cuda}"
        if torch.cuda.is_available() and args.cuda >= 0
        else "cpu"
    )
    # ---------

    tr_ds = [
        AvalancheTensorDataset(
            torch.randn(10, 3),
            torch.randint(0, 3, (10,)).tolist(),
            task_labels=torch.randint(0, 5, (10,)).tolist(),
        )
        for _ in range(3)
    ]
    ts_ds = [
        AvalancheTensorDataset(
            torch.randn(10, 3),
            torch.randint(0, 3, (10,)).tolist(),
            task_labels=torch.randint(0, 5, (10,)).tolist(),
        )
        for _ in range(3)
    ]
    scenario = create_multi_dataset_generic_benchmark(
        train_datasets=tr_ds, test_datasets=ts_ds
    )
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=3, input_size=3)

    # DEFINE THE EVALUATION PLUGIN AND LOGGER
    # The evaluation plugin manages the metrics computation.
    # It takes as argument a list of metrics and a list of loggers.
    # The evaluation plugin calls the loggers to serialize the metrics
    # and save them in persistent memory or print them in the standard output.

    # log to text file
    text_logger = TextLogger(open("log.txt", "a"))

    # print to stdout
    interactive_logger = InteractiveLogger()

    csv_logger = CSVLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        loss_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        forgetting_metrics(experience=True, stream=True),
        bwt_metrics(experience=True, stream=True),
        cpu_usage_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        timing_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        ram_usage_metrics(
            every=0.5, minibatch=True, epoch=True, experience=True, stream=True
        ),
        gpu_usage_metrics(
            args.cuda,
            every=0.5,
            minibatch=True,
            epoch=True,
            experience=True,
            stream=True,
        ),
        disk_usage_metrics(
            minibatch=True, epoch=True, experience=True, stream=True
        ),
        MAC_metrics(minibatch=True, epoch=True, experience=True),
        loggers=[interactive_logger, text_logger, csv_logger],
        collect_all=True,
    )  # collect all metrics (set to True by default)

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(
        model,
        SGD(model.parameters(), lr=0.001, momentum=0.9),
        CrossEntropyLoss(),
        train_mb_size=500,
        train_epochs=1,
        eval_mb_size=100,
        device=device,
        evaluator=eval_plugin,
        eval_every=1,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for i, experience in enumerate(scenario.train_stream):
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        # train returns a dictionary containing last recorded value
        # for each metric.
        res = cl_strategy.train(experience, eval_streams=[scenario.test_stream])
        print("Training completed")

        print("Computing accuracy on the whole test set")
        # test returns a dictionary with the last metric collected during
        # evaluation on that stream
        results.append(cl_strategy.eval(scenario.test_stream))

    print(f"Test metrics:\n{results}")

    # Dict with all the metric curves,
    # only available when `collect_all` is True.
    # Each entry is a (x, metric value) tuple.
    # You can use this dictionary to manipulate the
    # metrics without avalanche.
    all_metrics = cl_strategy.evaluator.get_all_metrics()
    print(f"Stored metrics: {list(all_metrics.keys())}")
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        RandomCrop(28, padding=4),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, )),
    ])
    test_transform = transforms.Compose(
        [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
    # ---------

    # --- SCENARIO CREATION
    mnist_train = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=True,
        download=True,
        transform=train_transform,
    )
    mnist_test = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=False,
        download=True,
        transform=test_transform,
    )
    scenario = nc_benchmark(mnist_train,
                            mnist_test,
                            5,
                            task_labels=False,
                            seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(epoch=True, experience=True, stream=True),
        loss_metrics(epoch=True, experience=True, stream=True),
        # save image should be False to appropriately view
        # results in Interactive Logger.
        # a tensor will be printed
        confusion_matrix_metrics(save_image=False,
                                 normalize="all",
                                 stream=True),
        loggers=InteractiveLogger(),
    )

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(
        model,
        SGD(model.parameters(), lr=0.001, momentum=0.9),
        CrossEntropyLoss(),
        train_mb_size=100,
        train_epochs=4,
        eval_mb_size=100,
        device=device,
        evaluator=eval_plugin,
        plugins=[ReplayPlugin(5000)],
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))