def test_anchor_to_box_3d(self):
        anchors = np.asarray([[-0.59, 1.90, 25.01, 3.2, 1.66, 1.61],
                              [-0.59, 1.90, 25.01, 1.61, 1.66, 3.2]],
                             dtype=np.float32)

        exp_3d_box = np.asarray([[-0.59, 1.90, 25.01, 3.2, 1.61, 1.66, 0],
                                 [-0.59, 1.90, 25.01, 3.2, 1.61, 1.66, -1.57]],
                                dtype=np.float32)

        anchor_boxes_3d = box_3d_encoder.anchors_to_box_3d(anchors,
                                                           fix_lw=True)

        np.testing.assert_almost_equal(anchor_boxes_3d,
                                       exp_3d_box,
                                       decimal=3,
                                       err_msg='Wrong anchor to box3D format')
Beispiel #2
0
    def get_rpn_proposals_and_scores(self, predictions):
        """Returns the proposals and scores stacked for saving to file.

        Args:
            predictions: A dictionary containing the model outputs.

        Returns:
            proposals_and_scores: A numpy array of shape (number_of_proposals,
                8), containing the rpn proposal boxes and scores.
        """

        top_anchors = predictions[RpnModel.PRED_TOP_ANCHORS]
        top_proposals = box_3d_encoder.anchors_to_box_3d(top_anchors)
        softmax_scores = predictions[RpnModel.PRED_TOP_OBJECTNESS_SOFTMAX]

        proposals_and_scores = np.column_stack((top_proposals, softmax_scores))

        return proposals_and_scores
    def test_anchor_tensor_to_box_3d(self):
        anchors = np.asarray([[-0.59, 1.90, 25.01, 3.2, 1.66, 1.61],
                              [-0.59, 1.90, 25.01, 1.61, 1.66, 3.2]],
                             dtype=np.float32)

        exp_3d_box = np.asarray([[-0.59, 1.90, 25.01, 3.2, 1.61, 1.66, 0],
                                 [-0.59, 1.90, 25.01, 3.2, 1.61, 1.66, -1.57]],
                                dtype=np.float32)

        anchor_tensors = tf.convert_to_tensor(anchors, dtype=tf.float32)

        boxes_3d = \
            box_3d_encoder.anchors_to_box_3d(anchor_tensors,
                                             fix_lw=True)

        sess = tf.Session()
        with sess.as_default():
            boxes_3d_out = boxes_3d.eval()
            np.testing.assert_almost_equal(
                boxes_3d_out, exp_3d_box, decimal=3,
                err_msg='Wrong tensor anchor to box3D format')
    def test_box_3d_to_box_8co(self):
        # Tests the numpy version of the anchors_to_box_3d
        # function. This is the non-vectorized version.

        # Sample ground-truth in box3D format
        gt_box_3d = np.asarray(
            [-0.69, 1.69, 25.01, 3.2, 1.66, 1.61, -1.59],
            dtype=np.float32)
        # Sample box in anchor format
        anchors = np.asarray([[-0.59, 1.90, 25.01, 3.2, 1.61, 1.66]],
                             dtype=np.float32)
        # Convert the anchor to box3D format
        anchor_box_3d = box_3d_encoder.anchors_to_box_3d(anchors,
                                                         fix_lw=True)

        exp_gt_box_8co = np.asarray(
            [[-1.55, 0.10, 0.17, -1.49, -1.55, 0.11, 0.17, -1.49],
             [1.69, 1.69, 1.69, 1.69, 0.08, 0.08, 0.08, 0.08],
             [26.59, 26.62, 23.43, 23.39, 26.59, 26.62, 23.42, 23.39]])

        exp_anchor_box_8co = np.asarray(
            [[1.01, 1.01, -2.19, -2.19, 1.01, 1.01, -2.19, -2.19],
             [1.89, 1.89, 1.89, 1.89, 0.24, 0.24, 0.24, 0.24],
             [25.81, 24.21, 24.21, 25.82, 25.82, 24.21, 24.21, 25.82]])

        # convert to 8 corners
        gt_box_8co = box_8c_encoder.np_box_3d_to_box_8co(gt_box_3d)
        # the numpy version takes a single box
        anchor_box_8co = \
            box_8c_encoder.np_box_3d_to_box_8co(anchor_box_3d[0])

        np.testing.assert_almost_equal(exp_gt_box_8co,
                                       gt_box_8co,
                                       decimal=2,
                                       err_msg='GT corner encoding mismatch')

        np.testing.assert_almost_equal(
            exp_anchor_box_8co, anchor_box_8co, decimal=1,
            err_msg='Anchor corner encoding mismatch')
    def test_box_3d_tensor_to_box_8co(self):
        # Tests the tensor version of the anchors_to_box_3d
        # function. This is the vectorized version.

        anchors = np.asarray([
            [-0.59, 1.90, 25.01, 3.2, 1.66, 1.61],
            [-0.80, 1.50, 22.01, 1.2, 1.70, 1.50]
        ])
        anchor_boxes_3d = box_3d_encoder.anchors_to_box_3d(anchors,
                                                           fix_lw=True)

        # convert each box to corner using the numpy version
        boxes_8c_1 = \
            box_8c_encoder.np_box_3d_to_box_8co(anchor_boxes_3d[0])
        boxes_8c_2 = \
            box_8c_encoder.np_box_3d_to_box_8co(anchor_boxes_3d[1])

        exp_anchor_box_8co = np.stack((boxes_8c_1,
                                       boxes_8c_2),
                                      axis=0)

        anchors_box3d_tensor = tf.convert_to_tensor(anchor_boxes_3d,
                                                    dtype=tf.float32)
        # convert to 8 corners
        anchor_box_corner_tensor = \
            box_8c_encoder.tf_box_3d_to_box_8co(anchors_box3d_tensor)

        sess = tf.Session()
        with sess.as_default():
            anchor_box_corner_out = anchor_box_corner_tensor.eval()

        np.testing.assert_almost_equal(
            exp_anchor_box_8co[0], anchor_box_corner_out[0], decimal=2,
            err_msg='Anchor tensor corner encoding mismatch')

        np.testing.assert_almost_equal(
            exp_anchor_box_8co[1], anchor_box_corner_out[1], decimal=2,
            err_msg='Anchor tensor corner encoding mismatch')
Beispiel #6
0
    def build(self):
        rpn_model = self._rpn_model

        # Share the same prediction dict as RPN
        prediction_dict = rpn_model.build()

        top_anchors = prediction_dict[RpnModel.PRED_TOP_ANCHORS]
        ground_plane = rpn_model.placeholders[RpnModel.PL_GROUND_PLANE]

        class_labels = rpn_model.placeholders[RpnModel.PL_LABEL_CLASSES]

        with tf.variable_scope('avod_projection'):

            if self._config.expand_proposals_xz > 0.0:

                expand_length = self._config.expand_proposals_xz

                # Expand anchors along x and z
                with tf.variable_scope('expand_xz'):
                    expanded_dim_x = top_anchors[:, 3] + expand_length
                    expanded_dim_z = top_anchors[:, 5] + expand_length

                    expanded_anchors = tf.stack([
                        top_anchors[:, 0], top_anchors[:, 1], top_anchors[:,
                                                                          2],
                        expanded_dim_x, top_anchors[:, 4], expanded_dim_z
                    ],
                                                axis=1)

                avod_projection_in = expanded_anchors

            else:
                avod_projection_in = top_anchors

            with tf.variable_scope('bev'):
                # Project top anchors into bev and image spaces
                bev_proposal_boxes, bev_proposal_boxes_norm = \
                    anchor_projector.project_to_bev(
                        avod_projection_in,
                        self.dataset.kitti_utils.bev_extents)

                # Reorder projected boxes into [y1, x1, y2, x2]
                bev_proposal_boxes_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        bev_proposal_boxes)
                bev_proposal_boxes_norm_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        bev_proposal_boxes_norm)

            with tf.variable_scope('img'):
                image_shape = tf.cast(
                    tf.shape(
                        rpn_model.placeholders[RpnModel.PL_IMG_INPUT])[0:2],
                    tf.float32)
                img_proposal_boxes, img_proposal_boxes_norm = \
                    anchor_projector.tf_project_to_image_space(
                        avod_projection_in,
                        rpn_model.placeholders[RpnModel.PL_CALIB_P2],
                        image_shape)
                # Only reorder the normalized img
                img_proposal_boxes_norm_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        img_proposal_boxes_norm)

            with tf.variable_scope('img_r'):
                image_r_shape = tf.cast(
                    tf.shape(
                        rpn_model.placeholders[RpnModel.PL_IMG_R_INPUT])[0:2],
                    tf.float32)
                img_r_proposal_boxes, img_r_proposal_boxes_norm = \
                    anchor_projector.tf_project_to_image_space(
                        avod_projection_in,
                        rpn_model.placeholders[RpnModel.PL_CALIB_P3],
                        image_r_shape)

                # Only reorder the normalized img
                img_r_proposal_boxes_norm_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        img_r_proposal_boxes_norm)

        #bev_feature_maps = rpn_model.bev_feature_maps
        img_feature_maps = rpn_model.img_feature_maps
        img_r_feature_maps = rpn_model.img_r_feature_maps
        """
        if not (self._path_drop_probabilities[0] ==
                self._path_drop_probabilities[1] == 1.0):

            with tf.variable_scope('avod_path_drop'):

                img_mask = rpn_model.img_path_drop_mask
                #bev_mask = rpn_model.bev_path_drop_mask
                img_r_mask = rpn_model.img_r_path_drop_mask


                img_feature_maps = tf.multiply(img_feature_maps,
                                               img_mask)
                
                #bev_feature_maps = tf.multiply(bev_feature_maps,
                #                               bev_mask)
                img_r_feature_maps = tf.multiply(img_r_feature_maps,
                                               img_r_mask)

        else:
            #bev_mask = tf.constant(1.0)
            img_mask = tf.constant(1.0)
            img_r_mask = tf.constant(1.0)

        """
        img_mask = tf.constant(1.0)
        img_r_mask = tf.constant(1.0)

        # ROI Pooling
        with tf.variable_scope('avod_roi_pooling'):

            def get_box_indices(boxes):
                proposals_shape = boxes.get_shape().as_list()
                if any(dim is None for dim in proposals_shape):
                    proposals_shape = tf.shape(boxes)
                ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
                multiplier = tf.expand_dims(
                    tf.range(start=0, limit=proposals_shape[0]), 1)
                return tf.reshape(ones_mat * multiplier, [-1])

            """
            bev_boxes_norm_batches = tf.expand_dims(
                bev_proposal_boxes_norm, axis=0)

            # These should be all 0's since there is only 1 image
            tf_box_indices = get_box_indices(bev_boxes_norm_batches)

            # Do ROI Pooling on BEV
            bev_rois = tf.image.crop_and_resize(
                bev_feature_maps,
                bev_proposal_boxes_norm_tf_order,
                tf_box_indices,
                self._proposal_roi_crop_size,
                name='bev_rois')
            """

            img_boxes_norm_batches = tf.expand_dims(img_proposal_boxes_norm,
                                                    axis=0)

            # These should be all 0's since there is only 1 image
            tf_box_indices = get_box_indices(img_boxes_norm_batches)

            # Do ROI Pooling on image
            img_rois = tf.image.crop_and_resize(
                img_feature_maps,
                img_proposal_boxes_norm_tf_order,
                tf_box_indices, (32, 32),
                name='img_rois')

            img_r_rois = tf.image.crop_and_resize(
                img_r_feature_maps,
                img_r_proposal_boxes_norm_tf_order,
                tf_box_indices, (32, 32),
                name='img_r_rois')

            img_rois = self._sub_mean(img_rois)
            img_r_rois = self._sub_mean(img_r_rois)

            cos_simi = tf.reduce_sum(img_rois * img_r_rois, \
                                     axis=[1, 2], keep_dims=True)

            cos_simi = cos_simi / (tf.norm(img_rois + 1e-5, axis=[1, 2], keep_dims=True) * \
                                   tf.norm(img_r_rois + 1e-5, axis=[1, 2], keep_dims=True))

            cos_simi = tf.nn.relu(cos_simi)

            img_rois = tf.image.resize_bilinear(
                img_rois, self._proposal_roi_crop_size) * cos_simi
            img_r_rois = tf.image.resize_bilinear(
                img_r_rois, self._proposal_roi_crop_size) * cos_simi

        # Fully connected layers (Box Predictor)
        avod_layers_config = self.model_config.layers_config.avod_config

        fc_output_layers = \
            avod_fc_layers_builder.build(
                layers_config=avod_layers_config,
                input_rois=[img_rois, img_r_rois],
                input_weights=[img_mask, img_r_mask],
                num_final_classes=self._num_final_classes,
                box_rep=self._box_rep,
                top_anchors=top_anchors,
                ground_plane=ground_plane,
                is_training=self._is_training)

        all_cls_logits = \
            fc_output_layers[avod_fc_layers_builder.KEY_CLS_LOGITS]
        all_offsets = fc_output_layers[avod_fc_layers_builder.KEY_OFFSETS]

        # This may be None
        all_angle_vectors = \
            fc_output_layers.get(avod_fc_layers_builder.KEY_ANGLE_VECTORS)

        with tf.variable_scope('softmax'):
            all_cls_softmax = tf.nn.softmax(all_cls_logits)

        ######################################################
        # Subsample mini_batch for the loss function
        ######################################################
        # Get the ground truth tensors
        anchors_gt = rpn_model.placeholders[RpnModel.PL_LABEL_ANCHORS]
        if self._box_rep in ['box_3d', 'box_4ca']:
            boxes_3d_gt = rpn_model.placeholders[RpnModel.PL_LABEL_BOXES_3D]
            orientations_gt = boxes_3d_gt[:, 6]
        elif self._box_rep in ['box_8c', 'box_8co', 'box_4c']:
            boxes_3d_gt = rpn_model.placeholders[RpnModel.PL_LABEL_BOXES_3D]
        else:
            raise NotImplementedError('Ground truth tensors not implemented')

        # Project anchor_gts to 2D bev
        with tf.variable_scope('avod_gt_projection'):
            bev_anchor_boxes_gt, _ = anchor_projector.project_to_bev(
                anchors_gt, self.dataset.kitti_utils.bev_extents)

            bev_anchor_boxes_gt_tf_order = \
                anchor_projector.reorder_projected_boxes(bev_anchor_boxes_gt)

        with tf.variable_scope('avod_box_list'):
            # Convert to box_list format
            anchor_box_list_gt = box_list.BoxList(bev_anchor_boxes_gt_tf_order)
            anchor_box_list = box_list.BoxList(bev_proposal_boxes_tf_order)

        mb_mask, mb_class_label_indices, mb_gt_indices = \
            self.sample_mini_batch(
                anchor_box_list_gt=anchor_box_list_gt,
                anchor_box_list=anchor_box_list,
                class_labels=class_labels)

        # Create classification one_hot vector
        with tf.variable_scope('avod_one_hot_classes'):
            mb_classification_gt = tf.one_hot(
                mb_class_label_indices,
                depth=self._num_final_classes,
                on_value=1.0 - self._config.label_smoothing_epsilon,
                off_value=(self._config.label_smoothing_epsilon /
                           self.dataset.num_classes))

        # TODO: Don't create a mini batch in test mode
        # Mask predictions
        with tf.variable_scope('avod_apply_mb_mask'):
            # Classification
            mb_classifications_logits = tf.boolean_mask(
                all_cls_logits, mb_mask)
            mb_classifications_softmax = tf.boolean_mask(
                all_cls_softmax, mb_mask)

            # Offsets
            mb_offsets = tf.boolean_mask(all_offsets, mb_mask)

            # Angle Vectors
            if all_angle_vectors is not None:
                mb_angle_vectors = tf.boolean_mask(all_angle_vectors, mb_mask)
            else:
                mb_angle_vectors = None

        # Encode anchor offsets
        with tf.variable_scope('avod_encode_mb_anchors'):
            mb_anchors = tf.boolean_mask(top_anchors, mb_mask)

            if self._box_rep == 'box_3d':
                # Gather corresponding ground truth anchors for each mb sample
                mb_anchors_gt = tf.gather(anchors_gt, mb_gt_indices)
                mb_offsets_gt = anchor_encoder.tf_anchor_to_offset(
                    mb_anchors, mb_anchors_gt)

                # Gather corresponding ground truth orientation for each
                # mb sample
                mb_orientations_gt = tf.gather(orientations_gt, mb_gt_indices)
            elif self._box_rep in ['box_8c', 'box_8co']:

                # Get boxes_3d ground truth mini-batch and convert to box_8c
                mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                if self._box_rep == 'box_8c':
                    mb_boxes_8c_gt = \
                        box_8c_encoder.tf_box_3d_to_box_8c(mb_boxes_3d_gt)
                elif self._box_rep == 'box_8co':
                    mb_boxes_8c_gt = \
                        box_8c_encoder.tf_box_3d_to_box_8co(mb_boxes_3d_gt)

                # Convert proposals: anchors -> box_3d -> box8c
                proposal_boxes_3d = \
                    box_3d_encoder.anchors_to_box_3d(top_anchors, fix_lw=True)
                proposal_boxes_8c = \
                    box_8c_encoder.tf_box_3d_to_box_8c(proposal_boxes_3d)

                # Get mini batch offsets
                mb_boxes_8c = tf.boolean_mask(proposal_boxes_8c, mb_mask)
                mb_offsets_gt = box_8c_encoder.tf_box_8c_to_offsets(
                    mb_boxes_8c, mb_boxes_8c_gt)

                # Flatten the offsets to a (N x 24) vector
                mb_offsets_gt = tf.reshape(mb_offsets_gt, [-1, 24])

            elif self._box_rep in ['box_4c', 'box_4ca']:

                # Get ground plane for box_4c conversion
                ground_plane = self._rpn_model.placeholders[
                    self._rpn_model.PL_GROUND_PLANE]

                # Convert gt boxes_3d -> box_4c
                mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                mb_boxes_4c_gt = box_4c_encoder.tf_box_3d_to_box_4c(
                    mb_boxes_3d_gt, ground_plane)

                # Convert proposals: anchors -> box_3d -> box_4c
                proposal_boxes_3d = \
                    box_3d_encoder.anchors_to_box_3d(top_anchors, fix_lw=True)
                proposal_boxes_4c = \
                    box_4c_encoder.tf_box_3d_to_box_4c(proposal_boxes_3d,
                                                       ground_plane)

                # Get mini batch
                mb_boxes_4c = tf.boolean_mask(proposal_boxes_4c, mb_mask)
                mb_offsets_gt = box_4c_encoder.tf_box_4c_to_offsets(
                    mb_boxes_4c, mb_boxes_4c_gt)

                if self._box_rep == 'box_4ca':
                    # Gather corresponding ground truth orientation for each
                    # mb sample
                    mb_orientations_gt = tf.gather(orientations_gt,
                                                   mb_gt_indices)

            else:
                raise NotImplementedError(
                    'Anchor encoding not implemented for', self._box_rep)

        ######################################################
        # ROI summary images
        ######################################################
        avod_mini_batch_size = \
            self.dataset.kitti_utils.mini_batch_utils.avod_mini_batch_size
        """
        with tf.variable_scope('bev_avod_rois'):
            mb_bev_anchors_norm = tf.boolean_mask(
                bev_proposal_boxes_norm_tf_order, mb_mask)
            mb_bev_box_indices = tf.zeros_like(mb_gt_indices, dtype=tf.int32)

            # Show the ROIs of the BEV input density map
            # for the mini batch anchors
            bev_input_rois = tf.image.crop_and_resize(
                self._rpn_model._bev_preprocessed,
                mb_bev_anchors_norm,
                mb_bev_box_indices,
                (32, 32))

            bev_input_roi_summary_images = tf.split(
                bev_input_rois, self._bev_depth, axis=3)
            tf.summary.image('bev_avod_rois',
                             bev_input_roi_summary_images[-1],
                             max_outputs=avod_mini_batch_size)
        """

        with tf.variable_scope('img_avod_rois'):
            # ROIs on image input
            mb_img_anchors_norm = tf.boolean_mask(
                img_proposal_boxes_norm_tf_order, mb_mask)
            mb_img_box_indices = tf.zeros_like(mb_gt_indices, dtype=tf.int32)

            # Do test ROI pooling on mini batch
            img_input_rois = tf.image.crop_and_resize(
                self._rpn_model._img_preprocessed, mb_img_anchors_norm,
                mb_img_box_indices, (32, 32))

            tf.summary.image('img_avod_rois',
                             img_input_rois,
                             max_outputs=avod_mini_batch_size)

        with tf.variable_scope('img_r_avod_rois'):
            # ROIs on image input
            mb_img_r_anchors_norm = tf.boolean_mask(
                img_r_proposal_boxes_norm_tf_order, mb_mask)
            mb_img_r_box_indices = tf.zeros_like(mb_gt_indices, dtype=tf.int32)

            # Do test ROI pooling on mini batch
            img_r_input_rois = tf.image.crop_and_resize(
                self._rpn_model._img_r_preprocessed, mb_img_r_anchors_norm,
                mb_img_r_box_indices, (32, 32))

            tf.summary.image('img_r_avod_rois',
                             img_r_input_rois,
                             max_outputs=avod_mini_batch_size)

        ######################################################
        # Final Predictions
        ######################################################
        # Get orientations from angle vectors
        if all_angle_vectors is not None:
            with tf.variable_scope('avod_orientation'):
                all_orientations = \
                    orientation_encoder.tf_angle_vector_to_orientation(
                        all_angle_vectors)

        # Apply offsets to regress proposals
        with tf.variable_scope('avod_regression'):
            if self._box_rep == 'box_3d':
                prediction_anchors = \
                    anchor_encoder.offset_to_anchor(top_anchors,
                                                    all_offsets)

            elif self._box_rep in ['box_8c', 'box_8co']:
                # Reshape the 24-dim regressed offsets to (N x 3 x 8)
                reshaped_offsets = tf.reshape(all_offsets, [-1, 3, 8])
                # Given the offsets, get the boxes_8c
                prediction_boxes_8c = \
                    box_8c_encoder.tf_offsets_to_box_8c(proposal_boxes_8c,
                                                        reshaped_offsets)
                # Convert corners back to box3D
                prediction_boxes_3d = \
                    box_8c_encoder.box_8c_to_box_3d(prediction_boxes_8c)

                # Convert the box_3d to anchor format for nms
                prediction_anchors = \
                    box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)

            elif self._box_rep in ['box_4c', 'box_4ca']:
                # Convert predictions box_4c -> box_3d
                prediction_boxes_4c = \
                    box_4c_encoder.tf_offsets_to_box_4c(proposal_boxes_4c,
                                                        all_offsets)

                prediction_boxes_3d = \
                    box_4c_encoder.tf_box_4c_to_box_3d(prediction_boxes_4c,
                                                       ground_plane)

                # Convert to anchor format for nms
                prediction_anchors = \
                    box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)

            else:
                raise NotImplementedError('Regression not implemented for',
                                          self._box_rep)

        # Apply Non-oriented NMS in BEV
        with tf.variable_scope('avod_nms'):
            bev_extents = self.dataset.kitti_utils.bev_extents

            with tf.variable_scope('bev_projection'):
                # Project predictions into BEV
                avod_bev_boxes, _ = anchor_projector.project_to_bev(
                    prediction_anchors, bev_extents)
                avod_bev_boxes_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        avod_bev_boxes)

            # Get top score from second column onward
            all_top_scores = tf.reduce_max(all_cls_logits[:, 1:], axis=1)

            # Apply NMS in BEV
            nms_indices = tf.image.non_max_suppression(
                avod_bev_boxes_tf_order,
                all_top_scores,
                max_output_size=self._nms_size,
                iou_threshold=self._nms_iou_threshold)

            # Gather predictions from NMS indices
            top_classification_logits = tf.gather(all_cls_logits, nms_indices)
            top_classification_softmax = tf.gather(all_cls_softmax,
                                                   nms_indices)
            top_prediction_anchors = tf.gather(prediction_anchors, nms_indices)

            if self._box_rep == 'box_3d':
                top_orientations = tf.gather(all_orientations, nms_indices)

            elif self._box_rep in ['box_8c', 'box_8co']:
                top_prediction_boxes_3d = tf.gather(prediction_boxes_3d,
                                                    nms_indices)
                top_prediction_boxes_8c = tf.gather(prediction_boxes_8c,
                                                    nms_indices)

            elif self._box_rep == 'box_4c':
                top_prediction_boxes_3d = tf.gather(prediction_boxes_3d,
                                                    nms_indices)
                top_prediction_boxes_4c = tf.gather(prediction_boxes_4c,
                                                    nms_indices)

            elif self._box_rep == 'box_4ca':
                top_prediction_boxes_3d = tf.gather(prediction_boxes_3d,
                                                    nms_indices)
                top_prediction_boxes_4c = tf.gather(prediction_boxes_4c,
                                                    nms_indices)
                top_orientations = tf.gather(all_orientations, nms_indices)

            else:
                raise NotImplementedError('NMS gather not implemented for',
                                          self._box_rep)

        if self._train_val_test in ['train', 'val']:
            # Additional entries are added to the shared prediction_dict
            # Mini batch predictions
            prediction_dict[self.PRED_MB_CLASSIFICATION_LOGITS] = \
                mb_classifications_logits
            prediction_dict[self.PRED_MB_CLASSIFICATION_SOFTMAX] = \
                mb_classifications_softmax
            prediction_dict[self.PRED_MB_OFFSETS] = mb_offsets

            # Mini batch ground truth
            prediction_dict[self.PRED_MB_CLASSIFICATIONS_GT] = \
                mb_classification_gt
            prediction_dict[self.PRED_MB_OFFSETS_GT] = mb_offsets_gt

            # Top NMS predictions
            prediction_dict[self.PRED_TOP_CLASSIFICATION_LOGITS] = \
                top_classification_logits
            prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                top_classification_softmax

            prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                top_prediction_anchors

            # Mini batch predictions (for debugging)
            prediction_dict[self.PRED_MB_MASK] = mb_mask
            # prediction_dict[self.PRED_MB_POS_MASK] = mb_pos_mask
            prediction_dict[self.PRED_MB_CLASS_INDICES_GT] = \
                mb_class_label_indices

            # All predictions (for debugging)
            prediction_dict[self.PRED_ALL_CLASSIFICATIONS] = \
                all_cls_logits
            prediction_dict[self.PRED_ALL_OFFSETS] = all_offsets

            # Path drop masks (for debugging)
            #prediction_dict['bev_mask'] = bev_mask
            prediction_dict['img_mask'] = img_mask
            prediction_dict['img_r_mask'] = img_r_mask

        else:
            # self._train_val_test == 'test'
            prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                top_classification_softmax
            prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                top_prediction_anchors

        if self._box_rep == 'box_3d':
            prediction_dict[self.PRED_MB_ANCHORS_GT] = mb_anchors_gt
            prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = mb_orientations_gt
            prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors

            prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations

            # For debugging
            prediction_dict[self.PRED_ALL_ANGLE_VECTORS] = all_angle_vectors

        elif self._box_rep in ['box_8c', 'box_8co']:
            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d

            # Store the corners before converting for visualization purposes
            prediction_dict[self.PRED_TOP_BOXES_8C] = top_prediction_boxes_8c

        elif self._box_rep == 'box_4c':
            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d
            prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c

        elif self._box_rep == 'box_4ca':
            if self._train_val_test in ['train', 'val']:
                prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = \
                    mb_orientations_gt
                prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors

            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d
            prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c
            prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations

        else:
            raise NotImplementedError('Prediction dict not implemented for',
                                      self._box_rep)

        # prediction_dict[self.PRED_MAX_IOUS] = max_ious
        # prediction_dict[self.PRED_ALL_IOUS] = all_ious

        return prediction_dict
Beispiel #7
0
    def get_avod_predicted_boxes_3d_and_scores(self, predictions, box_rep):
        """Returns the predictions and scores stacked for saving to file.

        Args:
            predictions: A dictionary containing the model outputs.
            box_rep: A string indicating the format of the 3D bounding
                boxes i.e. 'box_3d', 'box_8c' etc.

        Returns:
            predictions_and_scores: A numpy array of shape
                (number_of_predicted_boxes, 9), containing the final prediction
                boxes, orientations, scores, and types.
        """

        if box_rep == 'box_3d':
            # Convert anchors + orientation to box_3d
            final_pred_anchors = predictions[
                AvodModel.PRED_TOP_PREDICTION_ANCHORS]
            final_pred_orientations = predictions[
                AvodModel.PRED_TOP_ORIENTATIONS]

            final_pred_boxes_3d = box_3d_encoder.anchors_to_box_3d(
                final_pred_anchors, fix_lw=True)
            final_pred_boxes_3d[:, 6] = final_pred_orientations

        elif box_rep in ['box_8c', 'box_8co', 'box_4c']:
            # Predictions are in box_3d format already
            final_pred_boxes_3d = predictions[
                AvodModel.PRED_TOP_PREDICTION_BOXES_3D]

        elif box_rep == 'box_4ca':
            # boxes_3d from boxes_4c
            final_pred_boxes_3d = predictions[
                AvodModel.PRED_TOP_PREDICTION_BOXES_3D]

            # Predicted orientation from layers
            final_pred_orientations = predictions[
                AvodModel.PRED_TOP_ORIENTATIONS]

            # Calculate difference between box_3d and predicted angle
            ang_diff = final_pred_boxes_3d[:, 6] - final_pred_orientations

            # Wrap differences between -pi and pi
            two_pi = 2 * np.pi
            ang_diff[ang_diff < -np.pi] += two_pi
            ang_diff[ang_diff > np.pi] -= two_pi

            def swap_boxes_3d_lw(boxes_3d):
                boxes_3d_lengths = np.copy(boxes_3d[:, 3])
                boxes_3d[:, 3] = boxes_3d[:, 4]
                boxes_3d[:, 4] = boxes_3d_lengths
                return boxes_3d

            pi_0_25 = 0.25 * np.pi
            pi_0_50 = 0.50 * np.pi
            pi_0_75 = 0.75 * np.pi

            # Rotate 90 degrees if difference between pi/4 and 3/4 pi
            rot_pos_90_indices = np.logical_and(pi_0_25 < ang_diff,
                                                ang_diff < pi_0_75)
            final_pred_boxes_3d[rot_pos_90_indices] = \
                swap_boxes_3d_lw(final_pred_boxes_3d[rot_pos_90_indices])
            final_pred_boxes_3d[rot_pos_90_indices, 6] += pi_0_50

            # Rotate -90 degrees if difference between -pi/4 and -3/4 pi
            rot_neg_90_indices = np.logical_and(-pi_0_25 > ang_diff,
                                                ang_diff > -pi_0_75)
            final_pred_boxes_3d[rot_neg_90_indices] = \
                swap_boxes_3d_lw(final_pred_boxes_3d[rot_neg_90_indices])
            final_pred_boxes_3d[rot_neg_90_indices, 6] -= pi_0_50

            # Flip angles if abs difference if greater than or equal to 135
            # degrees
            swap_indices = np.abs(ang_diff) >= pi_0_75
            final_pred_boxes_3d[swap_indices, 6] += np.pi

            # Wrap to -pi, pi
            above_pi_indices = final_pred_boxes_3d[:, 6] > np.pi
            final_pred_boxes_3d[above_pi_indices, 6] -= two_pi

        else:
            raise NotImplementedError('Parse predictions not implemented for',
                                      box_rep)

        # Append score and class index (object type)
        final_pred_softmax = predictions[
            AvodModel.PRED_TOP_CLASSIFICATION_SOFTMAX]

        # Find max class score index
        not_bkg_scores = final_pred_softmax[:, 1:]
        final_pred_types = np.argmax(not_bkg_scores, axis=1)

        # Take max class score (ignoring background)
        final_pred_scores = np.array([])
        for pred_idx in range(len(final_pred_boxes_3d)):
            all_class_scores = not_bkg_scores[pred_idx]
            max_class_score = all_class_scores[final_pred_types[pred_idx]]
            final_pred_scores = np.append(final_pred_scores, max_class_score)

        # Stack into prediction format
        predictions_and_scores = np.column_stack(
            [final_pred_boxes_3d, final_pred_scores, final_pred_types])

        return predictions_and_scores
Beispiel #8
0
    def build(self):
        rpn_model = self._rpn_model

        # Share the same prediction dict as RPN
        prediction_dict = rpn_model.build()

        top_anchors = prediction_dict[RpnModel.PRED_TOP_ANCHORS]
        ground_plane = rpn_model.placeholders[RpnModel.PL_GROUND_PLANE]

        class_labels = rpn_model.placeholders[RpnModel.PL_LABEL_CLASSES]

        with tf.variable_scope('avod_projection'):

            if self._config.expand_proposals_xz > 0.0:

                expand_length = self._config.expand_proposals_xz

                # Expand anchors along x and z
                with tf.variable_scope('expand_xz'):
                    expanded_dim_x = top_anchors[:, 3] + expand_length
                    expanded_dim_z = top_anchors[:, 5] + expand_length

                    expanded_anchors = tf.stack([
                        top_anchors[:, 0], top_anchors[:, 1], top_anchors[:,
                                                                          2],
                        expanded_dim_x, top_anchors[:, 4], expanded_dim_z
                    ],
                                                axis=1)

                avod_projection_in = expanded_anchors

            else:
                avod_projection_in = top_anchors

            with tf.variable_scope('bev'):
                # Project top anchors into bev and image spaces
                # bev_proposal_boxes are boxes' x and z coordinate relative to bev_extents
                # bev_proposal_boxes_norm are normalized boxes in bev_extents' range
                bev_proposal_boxes, bev_proposal_boxes_norm = \
                    anchor_projector.project_to_bev(
                        avod_projection_in,
                        self.dataset.kitti_utils.bev_extents)

                # Reorder projected boxes into [y1, x1, y2, x2]
                bev_proposal_boxes_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        bev_proposal_boxes)
                bev_proposal_boxes_norm_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        bev_proposal_boxes_norm)

            with tf.variable_scope('img'):
                image_shape = tf.cast(
                    tf.shape(
                        rpn_model.placeholders[RpnModel.PL_IMG_INPUT])[0:2],
                    tf.float32)
                img_proposal_boxes, img_proposal_boxes_norm = \
                    anchor_projector.tf_project_to_image_space(
                        avod_projection_in,
                        rpn_model.placeholders[RpnModel.PL_CALIB_P2],
                        image_shape)
                # Only reorder the normalized img
                img_proposal_boxes_norm_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        img_proposal_boxes_norm)

        bev_feature_maps = rpn_model.bev_feature_maps
        img_feature_maps = rpn_model.img_feature_maps

        if not (self._path_drop_probabilities[0] ==
                self._path_drop_probabilities[1] == 1.0):

            with tf.variable_scope('avod_path_drop'):

                img_mask = rpn_model.img_path_drop_mask
                bev_mask = rpn_model.bev_path_drop_mask

                img_feature_maps = tf.multiply(img_feature_maps, img_mask)

                bev_feature_maps = tf.multiply(bev_feature_maps, bev_mask)
        else:
            bev_mask = tf.constant(1.0)
            img_mask = tf.constant(1.0)

        # ROI Pooling
        with tf.variable_scope('avod_roi_pooling'):

            def get_box_indices(boxes):
                proposals_shape = boxes.get_shape().as_list()
                if any(dim is None for dim in proposals_shape):
                    proposals_shape = tf.shape(boxes)
                ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
                multiplier = tf.expand_dims(
                    tf.range(start=0, limit=proposals_shape[0]), 1)
                return tf.reshape(ones_mat * multiplier, [-1])

            bev_boxes_norm_batches = tf.expand_dims(bev_proposal_boxes_norm,
                                                    axis=0)

            # These should be all 0's since there is only 1 image
            tf_box_indices = get_box_indices(bev_boxes_norm_batches)

            # Do ROI Pooling on BEV
            # tf_box_indices contains 1D tensor with size [num_boxes], each element specifies
            # batch index to whom this box belongs. Because the batch size here is 1, so it
            # doesn't matter
            # bev_rois is a 4-D tensor of shape [num_boxes, crop_height, crop_width, depth]
            ####################################################################################
            # TODO PROJECT: set bev_feature_maps or img_feature_maps to zeros for testing
            # bev_feature_maps = tf.zeros_like(bev_feature_maps)
            # self.bev_feature_maps = tf.zeros_like(bev_feature_maps)
            # bev_feature_maps = self.bev_feature_maps
            ####################################################################################

            bev_rois = tf.image.crop_and_resize(
                bev_feature_maps,
                bev_proposal_boxes_norm_tf_order,
                tf_box_indices,
                self._proposal_roi_crop_size,
                name='bev_rois')
            # Do ROI Pooling on image
            img_rois = tf.image.crop_and_resize(
                img_feature_maps,
                img_proposal_boxes_norm_tf_order,
                tf_box_indices,
                self._proposal_roi_crop_size,
                name='img_rois')

            ####################################################################################
            # TODO PROJECT: create member variables for accessing
            # bev_rois4moe = tf.image.crop_and_resize(
            #     bev_feature_maps,
            #     bev_proposal_boxes_norm_tf_order,
            #     tf_box_indices,
            #     [28,28],
            #     name='bev_rois4moe')
            # # Do ROI Pooling on image
            # img_rois4moe = tf.image.crop_and_resize(
            #     img_feature_maps,
            #     img_proposal_boxes_norm_tf_order,
            #     tf_box_indices,
            #     [28,28],
            #     name='img_rois4moe')
            ####################################################################################

            ####################################################################################
            # TODO PROJECT: create member variables for accessing
            # self.bev_rois = bev_rois
            # self.img_rois = img_rois
            self.bev_boxes = bev_proposal_boxes_tf_order
            self.bev_boxes_norm = bev_proposal_boxes_norm
            self.img_boxes = img_proposal_boxes
            self.img_boxes_norm = img_proposal_boxes_norm
            # self.bev_mask = rpn_model.bev_path_drop_mask
            # self.img_mask = rpn_model.img_path_drop_mask
            ####################################################################################

            ####################################################################################
            # TODO PROJECT: scale the features to features with larger maximum values
            # self.max_img_feature_val = tf.reduce_max(img_rois, axis=None)
            # self.max_bev_feature_val = tf.reduce_max(bev_rois, axis=None)
#
# bev_rois_moe = tf.cond(tf.greater(self.max_img_feature_val, self.max_bev_feature_val),
#    lambda: self.scale_bev(bev_rois, img_rois),
#    lambda: bev_rois)
# img_rois_moe = tf.cond(tf.greater(self.max_bev_feature_val, self.max_img_feature_val),
#    lambda: self.scale_img(bev_rois, img_rois),
#    lambda: img_rois)

####################################################################################

####################################################################################
# TODO PROJECT: insert code here to add mixture of experts

# self._moe_model = MoeModel(img_rois, bev_rois, img_proposal_boxes, bev_proposal_boxes)
# self._moe_model = MoeModel(img_feature_maps, bev_feature_maps, img_proposal_boxes, bev_proposal_boxes)
# self._moe_model._set_up_input_pls()
# self.moe_prediction = self._moe_model.build()

####################################################################################
####################################################################################
# TODO PROJECT: weight the feature before average img and bev
# img_weights = tf.reshape(self.moe_prediction['img_weight'],[-1,1,1,1])
# bev_weights = tf.reshape(self.moe_prediction['bev_weight'],[-1,1,1,1])
# img_weights = 0.5 * tf.ones([1024,1,1,1], tf.float32)
# bev_weights = 0.5 * tf.ones([1024,1,1,1], tf.float32)
# weighted_img_rois = tf.multiply(img_weights,img_rois)
# weighted_bev_rois = tf.multiply(bev_weights,bev_rois)

####################################################################################
####################################################################################
# TODO PROJECT: create fused bev
        _, bev_mar_boxes_norm = cf.add_margin_to_regions(
            bev_proposal_boxes, self.dataset.kitti_utils.bev_extents)

        bev_pixels_loc = cf.bev_pixel_eq_1_loc(
            self._rpn_model._bev_preprocessed)

        max_height = self.dataset.config.kitti_utils_config.bev_generator.slices.height_hi
        min_height = self.dataset.config.kitti_utils_config.bev_generator.slices.height_lo
        num_slices = self.dataset.config.kitti_utils_config.bev_generator.slices.num_slices

        height_list = [
            min_height + (2 * x + 1) * (max_height - min_height) /
            (2.0 * num_slices) for x in range(num_slices)
        ]
        print("bev_preprocess shape: ",
              (self._rpn_model._bev_preprocessed).shape)

        velo_pc = cf.bev_pixel_loc_to_3d_velo(
            bev_pixels_loc,
            tf.shape(self._rpn_model._bev_preprocessed)[1:3], height_list,
            self.dataset.kitti_utils.bev_extents)
        print("PL_CALIB_P2 shape: ",
              self._rpn_model.placeholders[RpnModel.PL_CALIB_P2].shape)

        p_2d = anchor_projector.project_to_image_tensor(
            tf.transpose(tf.cast(velo_pc, tf.float32)),
            self._rpn_model.placeholders[RpnModel.PL_CALIB_P2])

        print("image feature maps [0] shape: ", img_feature_maps[0].shape)
        features_at_p_2d = tf.gather_nd(
            img_feature_maps[0], tf.cast(tf.round(tf.transpose(p_2d)),
                                         tf.int32))

        print("features_at_p_2d shape: ", features_at_p_2d.shape)
        new_bev = cf.create_fused_bev(
            tf.shape(self._rpn_model._bev_preprocessed), bev_pixels_loc,
            features_at_p_2d)
        # raise Exception("finish fused_bev generation!")

        self._new_bev_feature_extractor = feature_extractor_builder.get_extractor(
            self.model_config.layers_config.bev_feature_extractor)
        self.new_bev_feature_maps, self.new_bev_end_points = \
            self._new_bev_feature_extractor.build(
                new_bev,
                self._bev_pixel_size,
                self._is_training,
                scope='new_bev_vgg'
            )

        new_bev_rois = tf.image.crop_and_resize(
            self.new_bev_feature_maps,
            bev_proposal_boxes_norm_tf_order,
            tf_box_indices,
            self._proposal_roi_crop_size,
            name='new_bev_rois')

        ####################################################################################

        # Fully connected layers (Box Predictor)
        avod_layers_config = self.model_config.layers_config.avod_config

        # fc_output_layers = \
        # avod_fc_layers_builder.build(
        # layers_config=avod_layers_config,
        # input_rois=[bev_rois, img_rois],
        # input_weights=[bev_mask, img_mask],
        # num_final_classes=self._num_final_classes,
        # box_rep=self._box_rep,
        # top_anchors=top_anchors,
        # ground_plane=ground_plane,
        # is_training=self._is_training)
        ####################################################################################
        # TODO PROJECT: average img and bev features first and then concat with new bev
        rois_sum = tf.reduce_sum([bev_rois, img_rois], axis=0)
        rois_mean = tf.divide(rois_sum, tf.reduce_sum([bev_mask, img_mask]))
        fc_output_layers = \
            avod_fc_layers_builder.build(
                layers_config=avod_layers_config,
                input_rois=[rois_mean, new_bev_rois],
                input_weights=[1, img_mask],
                num_final_classes=self._num_final_classes,
                box_rep=self._box_rep,
                top_anchors=top_anchors,
                ground_plane=ground_plane,
                is_training=self._is_training)

        ####################################################################################

        ####################################################################################
        # TODO PROJECT: input weighted bev_rois and img_rois to output layer
        # fc_output_layers = \
        #     avod_fc_layers_builder.build(
        #         layers_config=avod_layers_config,
        #         input_rois=[weighted_bev_rois, weighted_img_rois],
        #         input_weights=[bev_mask * bev_weights, img_mask * img_weights],
        #         num_final_classes=self._num_final_classes,
        #         box_rep=self._box_rep,
        #         top_anchors=top_anchors,
        #         ground_plane=ground_plane,
        #         is_training=self._is_training)
        ####################################################################################


        all_cls_logits = \
            fc_output_layers[avod_fc_layers_builder.KEY_CLS_LOGITS]
        all_offsets = fc_output_layers[avod_fc_layers_builder.KEY_OFFSETS]

        # This may be None
        all_angle_vectors = \
            fc_output_layers.get(avod_fc_layers_builder.KEY_ANGLE_VECTORS)

        with tf.variable_scope('softmax'):
            all_cls_softmax = tf.nn.softmax(all_cls_logits)

        ######################################################
        # Subsample mini_batch for the loss function
        ######################################################
        # Get the ground truth tensors
        anchors_gt = rpn_model.placeholders[RpnModel.PL_LABEL_ANCHORS]
        if self._box_rep in ['box_3d', 'box_4ca']:
            boxes_3d_gt = rpn_model.placeholders[RpnModel.PL_LABEL_BOXES_3D]
            orientations_gt = boxes_3d_gt[:, 6]
        elif self._box_rep in ['box_8c', 'box_8co', 'box_4c']:
            boxes_3d_gt = rpn_model.placeholders[RpnModel.PL_LABEL_BOXES_3D]
        else:
            raise NotImplementedError('Ground truth tensors not implemented')

        # Project anchor_gts to 2D bev
        with tf.variable_scope('avod_gt_projection'):
            bev_anchor_boxes_gt, _ = anchor_projector.project_to_bev(
                anchors_gt, self.dataset.kitti_utils.bev_extents)

            bev_anchor_boxes_gt_tf_order = \
                anchor_projector.reorder_projected_boxes(bev_anchor_boxes_gt)

        with tf.variable_scope('avod_box_list'):
            # Convert to box_list format
            anchor_box_list_gt = box_list.BoxList(bev_anchor_boxes_gt_tf_order)
            anchor_box_list = box_list.BoxList(bev_proposal_boxes_tf_order)

        mb_mask, mb_class_label_indices, mb_gt_indices = \
            self.sample_mini_batch(
                anchor_box_list_gt=anchor_box_list_gt,
                anchor_box_list=anchor_box_list,
                class_labels=class_labels)

        # Create classification one_hot vector
        with tf.variable_scope('avod_one_hot_classes'):
            mb_classification_gt = tf.one_hot(
                mb_class_label_indices,
                depth=self._num_final_classes,
                on_value=1.0 - self._config.label_smoothing_epsilon,
                off_value=(self._config.label_smoothing_epsilon /
                           self.dataset.num_classes))

        # TODO: Don't create a mini batch in test mode
        # Mask predictions
        with tf.variable_scope('avod_apply_mb_mask'):
            # Classification
            mb_classifications_logits = tf.boolean_mask(
                all_cls_logits, mb_mask)
            mb_classifications_softmax = tf.boolean_mask(
                all_cls_softmax, mb_mask)

            # Offsets
            mb_offsets = tf.boolean_mask(all_offsets, mb_mask)

            # Angle Vectors
            if all_angle_vectors is not None:
                mb_angle_vectors = tf.boolean_mask(all_angle_vectors, mb_mask)
            else:
                mb_angle_vectors = None

        # Encode anchor offsets
        with tf.variable_scope('avod_encode_mb_anchors'):
            mb_anchors = tf.boolean_mask(top_anchors, mb_mask)

            if self._box_rep == 'box_3d':
                # Gather corresponding ground truth anchors for each mb sample
                mb_anchors_gt = tf.gather(anchors_gt, mb_gt_indices)
                mb_offsets_gt = anchor_encoder.tf_anchor_to_offset(
                    mb_anchors, mb_anchors_gt)

                # Gather corresponding ground truth orientation for each
                # mb sample
                mb_orientations_gt = tf.gather(orientations_gt, mb_gt_indices)
            elif self._box_rep in ['box_8c', 'box_8co']:

                # Get boxes_3d ground truth mini-batch and convert to box_8c
                mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                if self._box_rep == 'box_8c':
                    mb_boxes_8c_gt = \
                        box_8c_encoder.tf_box_3d_to_box_8c(mb_boxes_3d_gt)
                elif self._box_rep == 'box_8co':
                    mb_boxes_8c_gt = \
                        box_8c_encoder.tf_box_3d_to_box_8co(mb_boxes_3d_gt)

                # Convert proposals: anchors -> box_3d -> box8c
                proposal_boxes_3d = \
                    box_3d_encoder.anchors_to_box_3d(top_anchors, fix_lw=True)
                proposal_boxes_8c = \
                    box_8c_encoder.tf_box_3d_to_box_8c(proposal_boxes_3d)

                # Get mini batch offsets
                mb_boxes_8c = tf.boolean_mask(proposal_boxes_8c, mb_mask)
                mb_offsets_gt = box_8c_encoder.tf_box_8c_to_offsets(
                    mb_boxes_8c, mb_boxes_8c_gt)

                # Flatten the offsets to a (N x 24) vector
                mb_offsets_gt = tf.reshape(mb_offsets_gt, [-1, 24])

            elif self._box_rep in ['box_4c', 'box_4ca']:

                # Get ground plane for box_4c conversion
                ground_plane = self._rpn_model.placeholders[
                    self._rpn_model.PL_GROUND_PLANE]

                # Convert gt boxes_3d -> box_4c
                mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                mb_boxes_4c_gt = box_4c_encoder.tf_box_3d_to_box_4c(
                    mb_boxes_3d_gt, ground_plane)

                # Convert proposals: anchors -> box_3d -> box_4c
                proposal_boxes_3d = \
                    box_3d_encoder.anchors_to_box_3d(top_anchors, fix_lw=True)
                proposal_boxes_4c = \
                    box_4c_encoder.tf_box_3d_to_box_4c(proposal_boxes_3d,
                                                       ground_plane)

                # Get mini batch
                mb_boxes_4c = tf.boolean_mask(proposal_boxes_4c, mb_mask)
                mb_offsets_gt = box_4c_encoder.tf_box_4c_to_offsets(
                    mb_boxes_4c, mb_boxes_4c_gt)

                if self._box_rep == 'box_4ca':
                    # Gather corresponding ground truth orientation for each
                    # mb sample
                    mb_orientations_gt = tf.gather(orientations_gt,
                                                   mb_gt_indices)

            else:
                raise NotImplementedError(
                    'Anchor encoding not implemented for', self._box_rep)

        ######################################################
        # ROI summary images
        ######################################################
        avod_mini_batch_size = \
            self.dataset.kitti_utils.mini_batch_utils.avod_mini_batch_size
        with tf.variable_scope('bev_avod_rois'):
            mb_bev_anchors_norm = tf.boolean_mask(
                bev_proposal_boxes_norm_tf_order, mb_mask)
            mb_bev_box_indices = tf.zeros_like(mb_gt_indices, dtype=tf.int32)

            # Show the ROIs of the BEV input density map
            # for the mini batch anchors
            bev_input_rois = tf.image.crop_and_resize(
                self._rpn_model._bev_preprocessed, mb_bev_anchors_norm,
                mb_bev_box_indices, (32, 32))

            bev_input_roi_summary_images = tf.split(bev_input_rois,
                                                    self._bev_depth,
                                                    axis=3)
            tf.summary.image('bev_avod_rois',
                             bev_input_roi_summary_images[-1],
                             max_outputs=avod_mini_batch_size)

        with tf.variable_scope('img_avod_rois'):
            # ROIs on image input
            mb_img_anchors_norm = tf.boolean_mask(
                img_proposal_boxes_norm_tf_order, mb_mask)
            mb_img_box_indices = tf.zeros_like(mb_gt_indices, dtype=tf.int32)

            # Do test ROI pooling on mini batch
            img_input_rois = tf.image.crop_and_resize(
                self._rpn_model._img_preprocessed, mb_img_anchors_norm,
                mb_img_box_indices, (32, 32))

            tf.summary.image('img_avod_rois',
                             img_input_rois,
                             max_outputs=avod_mini_batch_size)

        ######################################################
        # Final Predictions
        ######################################################
        # Get orientations from angle vectors
        if all_angle_vectors is not None:
            with tf.variable_scope('avod_orientation'):
                all_orientations = \
                    orientation_encoder.tf_angle_vector_to_orientation(
                        all_angle_vectors)

        # Apply offsets to regress proposals
        with tf.variable_scope('avod_regression'):
            if self._box_rep == 'box_3d':
                prediction_anchors = \
                    anchor_encoder.offset_to_anchor(top_anchors,
                                                    all_offsets)

            elif self._box_rep in ['box_8c', 'box_8co']:
                # Reshape the 24-dim regressed offsets to (N x 3 x 8)
                reshaped_offsets = tf.reshape(all_offsets, [-1, 3, 8])
                # Given the offsets, get the boxes_8c
                prediction_boxes_8c = \
                    box_8c_encoder.tf_offsets_to_box_8c(proposal_boxes_8c,
                                                        reshaped_offsets)
                # Convert corners back to box3D
                prediction_boxes_3d = \
                    box_8c_encoder.box_8c_to_box_3d(prediction_boxes_8c)

                # Convert the box_3d to anchor format for nms
                prediction_anchors = \
                    box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)

            elif self._box_rep in ['box_4c', 'box_4ca']:
                # Convert predictions box_4c -> box_3d
                prediction_boxes_4c = \
                    box_4c_encoder.tf_offsets_to_box_4c(proposal_boxes_4c,
                                                        all_offsets)

                prediction_boxes_3d = \
                    box_4c_encoder.tf_box_4c_to_box_3d(prediction_boxes_4c,
                                                       ground_plane)

                # Convert to anchor format for nms
                prediction_anchors = \
                    box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)

            else:
                raise NotImplementedError('Regression not implemented for',
                                          self._box_rep)

        # Apply Non-oriented NMS in BEV
        with tf.variable_scope('avod_nms'):
            bev_extents = self.dataset.kitti_utils.bev_extents

            with tf.variable_scope('bev_projection'):
                # Project predictions into BEV
                avod_bev_boxes, _ = anchor_projector.project_to_bev(
                    prediction_anchors, bev_extents)
                avod_bev_boxes_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        avod_bev_boxes)

            # Get top score from second column onward
            all_top_scores = tf.reduce_max(all_cls_logits[:, 1:], axis=1)

            # Apply NMS in BEV
            nms_indices = tf.image.non_max_suppression(
                avod_bev_boxes_tf_order,
                all_top_scores,
                max_output_size=self._nms_size,
                iou_threshold=self._nms_iou_threshold)

            # Gather predictions from NMS indices
            top_classification_logits = tf.gather(all_cls_logits, nms_indices)
            top_classification_softmax = tf.gather(all_cls_softmax,
                                                   nms_indices)
            top_prediction_anchors = tf.gather(prediction_anchors, nms_indices)

            if self._box_rep == 'box_3d':
                top_orientations = tf.gather(all_orientations, nms_indices)

            elif self._box_rep in ['box_8c', 'box_8co']:
                top_prediction_boxes_3d = tf.gather(prediction_boxes_3d,
                                                    nms_indices)
                top_prediction_boxes_8c = tf.gather(prediction_boxes_8c,
                                                    nms_indices)

            elif self._box_rep == 'box_4c':
                top_prediction_boxes_3d = tf.gather(prediction_boxes_3d,
                                                    nms_indices)
                top_prediction_boxes_4c = tf.gather(prediction_boxes_4c,
                                                    nms_indices)

            elif self._box_rep == 'box_4ca':
                top_prediction_boxes_3d = tf.gather(prediction_boxes_3d,
                                                    nms_indices)
                top_prediction_boxes_4c = tf.gather(prediction_boxes_4c,
                                                    nms_indices)
                top_orientations = tf.gather(all_orientations, nms_indices)

            else:
                raise NotImplementedError('NMS gather not implemented for',
                                          self._box_rep)

        if self._train_val_test in ['train', 'val']:
            # Additional entries are added to the shared prediction_dict
            # Mini batch predictions
            prediction_dict[self.PRED_MB_CLASSIFICATION_LOGITS] = \
                mb_classifications_logits
            prediction_dict[self.PRED_MB_CLASSIFICATION_SOFTMAX] = \
                mb_classifications_softmax
            prediction_dict[self.PRED_MB_OFFSETS] = mb_offsets

            # Mini batch ground truth
            prediction_dict[self.PRED_MB_CLASSIFICATIONS_GT] = \
                mb_classification_gt
            prediction_dict[self.PRED_MB_OFFSETS_GT] = mb_offsets_gt

            # Top NMS predictions
            prediction_dict[self.PRED_TOP_CLASSIFICATION_LOGITS] = \
                top_classification_logits
            prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                top_classification_softmax

            prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                top_prediction_anchors

            # Mini batch predictions (for debugging)
            prediction_dict[self.PRED_MB_MASK] = mb_mask
            # prediction_dict[self.PRED_MB_POS_MASK] = mb_pos_mask
            prediction_dict[self.PRED_MB_CLASS_INDICES_GT] = \
                mb_class_label_indices

            # All predictions (for debugging)
            prediction_dict[self.PRED_ALL_CLASSIFICATIONS] = \
                all_cls_logits
            prediction_dict[self.PRED_ALL_OFFSETS] = all_offsets

            # Path drop masks (for debugging)
            prediction_dict['bev_mask'] = bev_mask
            prediction_dict['img_mask'] = img_mask

        else:
            # self._train_val_test == 'test'
            prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                top_classification_softmax
            prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                top_prediction_anchors

        if self._box_rep == 'box_3d':
            prediction_dict[self.PRED_MB_ANCHORS_GT] = mb_anchors_gt
            prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = mb_orientations_gt
            prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors

            prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations

            # For debugging
            prediction_dict[self.PRED_ALL_ANGLE_VECTORS] = all_angle_vectors

        # 8c means 8 corners
        elif self._box_rep in ['box_8c', 'box_8co']:
            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d

            # Store the corners before converting for visualization purposes
            prediction_dict[self.PRED_TOP_BOXES_8C] = top_prediction_boxes_8c

        # 4c means 4 corners
        elif self._box_rep == 'box_4c':
            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d
            prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c

        elif self._box_rep == 'box_4ca':
            if self._train_val_test in ['train', 'val']:
                prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = \
                    mb_orientations_gt
                prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors

            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d
            prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c
            prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations

        else:
            raise NotImplementedError('Prediction dict not implemented for',
                                      self._box_rep)

        # prediction_dict[self.PRED_MAX_IOUS] = max_ious
        # prediction_dict[self.PRED_ALL_IOUS] = all_ious

        return prediction_dict
Beispiel #9
0
    def build(self):

        # Setup input placeholders
        self._set_up_input_pls()

        # Setup feature extractors
        self._set_up_feature_extractors()

        bev_proposal_input = self.bev_feature_maps
        img_proposal_input = self.img_feature_maps

        fusion_mean_div_factor = 2.0

        # If both img and bev probabilites are set to 1.0, don't do
        # path drop.
        if not (self._path_drop_probabilities[0] ==
                self._path_drop_probabilities[1] == 1.0):
            with tf.variable_scope('rpn_path_drop'):

                random_values = tf.random_uniform(shape=[3],
                                                  minval=0.0,
                                                  maxval=1.0)

                img_mask, bev_mask = self.create_path_drop_masks(
                    self._path_drop_probabilities[0],
                    self._path_drop_probabilities[1],
                    random_values)

                img_proposal_input = tf.multiply(img_proposal_input,
                                                 img_mask)

                bev_proposal_input = tf.multiply(bev_proposal_input,
                                                 bev_mask)

                self.img_path_drop_mask = img_mask
                self.bev_path_drop_mask = bev_mask

                # Overwrite the division factor
                fusion_mean_div_factor = img_mask + bev_mask

        with tf.variable_scope('proposal_roi_pooling'):

            with tf.variable_scope('box_indices'):
                def get_box_indices(boxes):
                    proposals_shape = boxes.get_shape().as_list()
                    if any(dim is None for dim in proposals_shape):
                        proposals_shape = tf.shape(boxes)
                    ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
                    multiplier = tf.expand_dims(
                        tf.range(start=0, limit=proposals_shape[0]), 1)
                    return tf.reshape(ones_mat * multiplier, [-1])

                bev_boxes_norm_batches = tf.expand_dims(
                    self._bev_anchors_norm_pl, axis=0)

                # These should be all 0's since there is only 1 image
                tf_box_indices = get_box_indices(bev_boxes_norm_batches)

            # Do ROI Pooling on BEV
            bev_proposal_rois = tf.image.crop_and_resize(
                bev_proposal_input,
                self._bev_anchors_norm_pl,
                tf_box_indices,
                self._proposal_roi_crop_size)
            # Do ROI Pooling on image
            img_proposal_rois = tf.image.crop_and_resize(
                img_proposal_input,
                self._img_anchors_norm_pl,
                tf_box_indices,
                self._proposal_roi_crop_size)

        # Fully connected layers (Box Predictor)
        avod_layers_config = self.model_config.layers_config.avod_config

        with tf.variable_scope('proposal_roi_fusion'):
            feat_fusion_out = None
            fc_layers_type = avod_layers_config.WhichOneof('fc_layers')
            if fc_layers_type == 'basic_fc_layers':
                fusion_method = \
                    avod_layers_config.basic_fc_layers.fusion_method
            elif fc_layers_type == 'fusion_fc_layers':
                fusion_method = \
                    avod_layers_config.fusion_fc_layers.fusion_method

            if fusion_method == 'mean':
                tf_features_sum = tf.add(bev_proposal_rois, img_proposal_rois)
                feat_fusion_out = tf.divide(tf_features_sum,
                                            fusion_mean_div_factor)
            elif fusion_method == 'concat':
                feat_fusion_out = tf.concat(
                    [bev_proposal_rois, img_proposal_rois], axis=3)
            else:
                raise ValueError('Invalid fusion method', self._fusion_method)

        all_anchors = self.placeholders[self.PL_ANCHORS]
        ground_plane = self.placeholders[self.PL_GROUND_PLANE]

        fc_output_layers = \
            avod_fc_layers_builder.build(
                layers_config=avod_layers_config,
                input_rois=[feat_fusion_out],
                input_weights=[1.0],
                num_final_classes=self._num_final_classes,
                box_rep=self._box_rep,
                top_anchors=all_anchors,
                ground_plane=ground_plane,
                is_training=self._is_training)

        all_cls_logits = \
            fc_output_layers[avod_fc_layers_builder.KEY_CLS_LOGITS]
        all_offsets = fc_output_layers[avod_fc_layers_builder.KEY_OFFSETS]

        # This may be None
        all_angle_vectors = \
            fc_output_layers.get(avod_fc_layers_builder.KEY_ANGLE_VECTORS)

        with tf.variable_scope('softmax'):
            all_cls_softmax = tf.nn.softmax(
                all_cls_logits)

        ######################################################
        # Subsample mini_batch for the loss function
        ######################################################
        # Get the ground truth tensors
        anchors_gt = self.placeholders[self.PL_LABEL_ANCHORS]
        if self._box_rep in ['box_3d', 'box_4ca']:
            boxes_3d_gt = self.placeholders[self.PL_LABEL_BOXES_3D]
            orientations_gt = boxes_3d_gt[:, 6]
        elif self._box_rep in ['box_8c', 'box_8co', 'box_4c']:
            boxes_3d_gt = self.placeholders[self.PL_LABEL_BOXES_3D]
        else:
            raise NotImplementedError('Ground truth tensors not implemented')

        if self._train_val_test in ['train', 'val']:
            with tf.variable_scope('bev'):
                # Project all anchors into bev and image spaces
                bev_proposal_boxes, bev_proposal_boxes_norm = \
                    anchor_projector.project_to_bev(
                        all_anchors,
                        self.dataset.kitti_utils.bev_extents)

                # Reorder projected boxes into [y1, x1, y2, x2]
                bev_proposal_boxes_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        bev_proposal_boxes)

            with tf.variable_scope('img'):
                image_shape = tf.cast(tf.shape(
                    self.placeholders[self.PL_IMG_INPUT])[0:2],
                    tf.float32)
                img_proposal_boxes, img_proposal_boxes_norm = \
                    anchor_projector.tf_project_to_image_space(
                        all_anchors,
                        self.placeholders[self.PL_CALIB_P2],
                        image_shape)

            # Project anchor_gts to 2D bev
            with tf.variable_scope('avod_gt_projection'):
                bev_anchor_boxes_gt, _ = anchor_projector.project_to_bev(
                    anchors_gt, self.dataset.kitti_utils.bev_extents)

                bev_anchor_boxes_gt_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        bev_anchor_boxes_gt)

            with tf.variable_scope('avod_box_list'):
                # Convert to box_list format
                anchor_box_list_gt = \
                    box_list.BoxList(bev_anchor_boxes_gt_tf_order)
                anchor_box_list = \
                    box_list.BoxList(bev_proposal_boxes_tf_order)

            class_labels = self.placeholders[self.PL_LABEL_CLASSES]
            mb_mask, mb_class_label_indices, mb_gt_indices = \
                self.sample_mini_batch(
                    anchor_box_list_gt=anchor_box_list_gt,
                    anchor_box_list=anchor_box_list,
                    class_labels=class_labels)

            # Create classification one_hot vector
            with tf.variable_scope('avod_one_hot_classes'):
                mb_classification_gt = tf.one_hot(
                    mb_class_label_indices,
                    depth=self._num_final_classes,
                    on_value=1.0 - self._config.label_smoothing_epsilon,
                    off_value=(self._config.label_smoothing_epsilon /
                               self.dataset.num_classes))

            # Mask predictions
            with tf.variable_scope('avod_apply_mb_mask'):
                # Classification
                mb_classifications_logits = tf.boolean_mask(
                    all_cls_logits, mb_mask)
                mb_classifications_softmax = tf.boolean_mask(
                    all_cls_softmax, mb_mask)

                # Offsets
                mb_offsets = tf.boolean_mask(all_offsets, mb_mask)

                # Angle Vectors
                if all_angle_vectors is not None:
                    mb_angle_vectors = tf.boolean_mask(
                        all_angle_vectors, mb_mask)
                else:
                    mb_angle_vectors = None

            # Encode anchor offsets
            with tf.variable_scope('avod_encode_mb_anchors'):
                mb_anchors = tf.boolean_mask(all_anchors, mb_mask)

                if self._box_rep == 'box_3d':
                    # Gather corresponding ground truth anchors for each mb
                    # sample
                    mb_anchors_gt = tf.gather(anchors_gt, mb_gt_indices)
                    mb_offsets_gt = anchor_encoder.tf_anchor_to_offset(
                        mb_anchors, mb_anchors_gt)

                    # Gather corresponding ground truth orientation for each
                    # mb sample
                    mb_orientations_gt = tf.gather(orientations_gt,
                                                   mb_gt_indices)
                elif self._box_rep in ['box_8c', 'box_8co']:

                    # Get boxes_3d ground truth mini-batch and convert to box_8c
                    mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                    if self._box_rep == 'box_8c':
                        mb_boxes_8c_gt = \
                            box_8c_encoder.tf_box_3d_to_box_8c(mb_boxes_3d_gt)
                    elif self._box_rep == 'box_8co':
                        mb_boxes_8c_gt = \
                            box_8c_encoder.tf_box_3d_to_box_8co(mb_boxes_3d_gt)

                    # Convert proposals: anchors -> box_3d -> box8c
                    proposal_boxes_3d = \
                        box_3d_encoder.anchors_to_box_3d(all_anchors,
                                                         fix_lw=True)
                    proposal_boxes_8c = \
                        box_8c_encoder.tf_box_3d_to_box_8c(proposal_boxes_3d)

                    # Get mini batch offsets
                    mb_boxes_8c = tf.boolean_mask(proposal_boxes_8c, mb_mask)
                    mb_offsets_gt = box_8c_encoder.tf_box_8c_to_offsets(
                        mb_boxes_8c, mb_boxes_8c_gt)

                    # Flatten the offsets to a (N x 24) vector
                    mb_offsets_gt = tf.reshape(mb_offsets_gt, [-1, 24])

                elif self._box_rep in ['box_4c', 'box_4ca']:

                    # Get ground plane for box_4c conversion
                    ground_plane = self.placeholders[
                        self.PL_GROUND_PLANE]

                    # Convert gt boxes_3d -> box_4c
                    mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                    mb_boxes_4c_gt = box_4c_encoder.tf_box_3d_to_box_4c(
                        mb_boxes_3d_gt, ground_plane)

                    # Convert proposals: anchors -> box_3d -> box_4c
                    proposal_boxes_3d = \
                        box_3d_encoder.anchors_to_box_3d(all_anchors,
                                                         fix_lw=True)
                    proposal_boxes_4c = \
                        box_4c_encoder.tf_box_3d_to_box_4c(proposal_boxes_3d,
                                                           ground_plane)

                    # Get mini batch
                    mb_boxes_4c = tf.boolean_mask(proposal_boxes_4c, mb_mask)
                    mb_offsets_gt = box_4c_encoder.tf_box_4c_to_offsets(
                        mb_boxes_4c, mb_boxes_4c_gt)

                    if self._box_rep == 'box_4ca':
                        # Gather corresponding ground truth orientation for each
                        # mb sample
                        mb_orientations_gt = tf.gather(orientations_gt,
                                                       mb_gt_indices)

                else:
                    raise NotImplementedError(
                        'Anchor encoding not implemented for', self._box_rep)

        elif self._train_val_test in ['test']:
            # In test-mode, skip mini-batch processing and just calculate
            # box conversions.
            if self._box_rep in ['box_4c', 'box_4ca']:
                # Convert proposals: anchors -> box_3d -> box_4c
                proposal_boxes_3d = \
                    box_3d_encoder.anchors_to_box_3d(all_anchors, fix_lw=True)
                proposal_boxes_4c = \
                    box_4c_encoder.tf_box_3d_to_box_4c(proposal_boxes_3d,
                                                       ground_plane)

            elif self._box_rep in ['box_8c', 'box_8co']:
                # Convert proposals: anchors -> box_3d -> box8c
                proposal_boxes_3d = \
                    box_3d_encoder.anchors_to_box_3d(all_anchors, fix_lw=True)
                proposal_boxes_8c = \
                    box_8c_encoder.tf_box_3d_to_box_8c(proposal_boxes_3d)

        ######################################################
        # Final Predictions
        ######################################################
        # Get orientations from angle vectors
        if all_angle_vectors is not None:
            with tf.variable_scope('avod_orientation'):
                all_orientations = \
                    orientation_encoder.tf_angle_vector_to_orientation(
                        all_angle_vectors)

        # Apply offsets to regress proposals
        with tf.variable_scope('avod_regression'):
            if self._box_rep == 'box_3d':
                prediction_anchors = \
                    anchor_encoder.offset_to_anchor(all_anchors,
                                                    all_offsets)

            elif self._box_rep in ['box_8c', 'box_8co']:
                # Reshape the 24-dim regressed offsets to (N x 3 x 8)
                reshaped_offsets = tf.reshape(all_offsets,
                                              [-1, 3, 8])
                # Given the offsets, get the boxes_8c
                prediction_boxes_8c = \
                    box_8c_encoder.tf_offsets_to_box_8c(proposal_boxes_8c,
                                                        reshaped_offsets)
                # Convert corners back to box3D
                prediction_boxes_3d = \
                    box_8c_encoder.box_8c_to_box_3d(prediction_boxes_8c)

                # Convert the box_3d to anchor format for nms
                prediction_anchors = \
                    box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)

            elif self._box_rep in ['box_4c', 'box_4ca']:
                # Convert predictions box_4c -> box_3d
                prediction_boxes_4c = \
                    box_4c_encoder.tf_offsets_to_box_4c(proposal_boxes_4c,
                                                        all_offsets)

                prediction_boxes_3d = \
                    box_4c_encoder.tf_box_4c_to_box_3d(prediction_boxes_4c,
                                                       ground_plane)

                # Convert to anchor format for nms
                prediction_anchors = \
                    box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)

            else:
                raise NotImplementedError('Regression not implemented for',
                                          self._box_rep)

        # Apply Non-oriented NMS in BEV
        with tf.variable_scope('avod_nms'):
            bev_extents = self.dataset.kitti_utils.bev_extents

            with tf.variable_scope('bev_projection'):
                # Project predictions into BEV
                avod_bev_boxes, _ = anchor_projector.project_to_bev(
                    prediction_anchors, bev_extents)
                avod_bev_boxes_tf_order = \
                    anchor_projector.reorder_projected_boxes(
                        avod_bev_boxes)

            # Get top score from second column onward
            all_top_scores = tf.reduce_max(all_cls_logits[:, 1:], axis=1)

            # Apply NMS in BEV
            nms_indices = tf.image.non_max_suppression(
                avod_bev_boxes_tf_order,
                all_top_scores,
                max_output_size=self._nms_size,
                iou_threshold=self._nms_iou_threshold)

            # Gather predictions from NMS indices
            top_classification_logits = tf.gather(all_cls_logits,
                                                  nms_indices)
            top_classification_softmax = tf.gather(all_cls_softmax,
                                                   nms_indices)
            top_prediction_anchors = tf.gather(prediction_anchors,
                                               nms_indices)

            if self._box_rep == 'box_3d':
                top_orientations = tf.gather(
                    all_orientations, nms_indices)

            elif self._box_rep in ['box_8c', 'box_8co']:
                top_prediction_boxes_3d = tf.gather(
                    prediction_boxes_3d, nms_indices)
                top_prediction_boxes_8c = tf.gather(
                    prediction_boxes_8c, nms_indices)

            elif self._box_rep == 'box_4c':
                top_prediction_boxes_3d = tf.gather(
                    prediction_boxes_3d, nms_indices)
                top_prediction_boxes_4c = tf.gather(
                    prediction_boxes_4c, nms_indices)

            elif self._box_rep == 'box_4ca':
                top_prediction_boxes_3d = tf.gather(
                    prediction_boxes_3d, nms_indices)
                top_prediction_boxes_4c = tf.gather(
                    prediction_boxes_4c, nms_indices)
                top_orientations = tf.gather(
                    all_orientations, nms_indices)

            else:
                raise NotImplementedError('NMS gather not implemented for',
                                          self._box_rep)

        prediction_dict = dict()

        if self._train_val_test in ['train', 'val']:
            # Additional entries are added to the shared prediction_dict
            # Mini batch predictions
            prediction_dict[self.PRED_MB_CLASSIFICATION_LOGITS] = \
                mb_classifications_logits
            prediction_dict[self.PRED_MB_CLASSIFICATION_SOFTMAX] = \
                mb_classifications_softmax
            prediction_dict[self.PRED_MB_OFFSETS] = mb_offsets

            # Mini batch ground truth
            prediction_dict[self.PRED_MB_CLASSIFICATIONS_GT] = \
                mb_classification_gt
            prediction_dict[self.PRED_MB_OFFSETS_GT] = mb_offsets_gt

            # Top NMS predictions
            prediction_dict[self.PRED_TOP_CLASSIFICATION_LOGITS] = \
                top_classification_logits
            prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                top_classification_softmax

            prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                top_prediction_anchors

        else:
            # self._train_val_test == 'test'
            prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                top_classification_softmax
            prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                top_prediction_anchors

        if self._box_rep == 'box_3d':
            if self._train_val_test in ['train', 'val']:
                prediction_dict[self.PRED_MB_ANCHORS_GT] = mb_anchors_gt
                prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = \
                    mb_orientations_gt
                prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors

            prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations

            # For debugging
            prediction_dict[self.PRED_ALL_ANGLE_VECTORS] = all_angle_vectors

        elif self._box_rep in ['box_8c', 'box_8co']:
            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d

            # Store the corners before converting for visualization purposes
            prediction_dict[self.PRED_TOP_BOXES_8C] = top_prediction_boxes_8c

        elif self._box_rep == 'box_4c':
            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d
            prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c

        elif self._box_rep == 'box_4ca':
            if self._train_val_test in ['train', 'val']:
                prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = \
                    mb_orientations_gt
                prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors

            prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                top_prediction_boxes_3d
            prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c
            prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations

        else:
            raise NotImplementedError('Prediction dict not implemented for',
                                      self._box_rep)

        return prediction_dict
Beispiel #10
0
def inference(rpn_model_path, detect_model_path, avod_config_path):
    model_config, _, eval_config, dataset_config = \
    config_builder.get_configs_from_pipeline_file(
        avod_config_path, is_training=False)

    # Setup the model
    model_name = model_config.model_name
    # Overwrite repeated field
    model_config = config_builder.proto_to_obj(model_config)
    # Switch path drop off during evaluation
    model_config.path_drop_probabilities = [1.0, 1.0]

    dataset = get_dataset(dataset_config, 'val')

    # run avod proposal network
    rpn_endpoints, sess1, rpn_model = get_proposal_network(model_config, dataset, rpn_model_path)
    end_points, sess2 = get_detection_network(detect_model_path)

    all_prediction = []
    all_id_list = None
    all_2d_boxes = []
    for idx in range(3769):
        feed_dict1 = rpn_model.create_feed_dict()
        kitti_samples = dataset.load_samples([idx])
        sample = kitti_samples[0]
        '''
        if sample[constants.KEY_SAMPLE_NAME] < '001100':
            continue
        if sample[constants.KEY_SAMPLE_NAME] > '001200':
            break
        '''
        start_time = time.time()
        rpn_predictions = sess1.run(rpn_endpoints, feed_dict=feed_dict1)
        top_anchors = rpn_predictions[RpnModel.PRED_TOP_ANCHORS]
        top_proposals = box_3d_encoder.anchors_to_box_3d(top_anchors)
        softmax_scores = rpn_predictions[RpnModel.PRED_TOP_OBJECTNESS_SOFTMAX]

        proposals_and_scores = np.column_stack((top_proposals,
                                                softmax_scores))
        top_img_roi = rpn_predictions[RpnModel.PRED_TOP_IMG_ROI]
        top_bev_roi = rpn_predictions[RpnModel.PRED_TOP_BEV_ROI]
        roi_num = len(top_img_roi)
        top_img_roi = np.reshape(top_img_roi, (roi_num, -1))
        top_bev_roi = np.reshape(top_bev_roi, (roi_num, -1))
        roi_features = np.column_stack((top_img_roi, top_bev_roi))
        '''
        # save proposal
        if os.path.exists(os.path.join('/data/ssd/public/jlliu/Kitti/object/training/proposal', '%s.txt'%(sample[constants.KEY_SAMPLE_NAME]))):
            continue
        np.savetxt(os.path.join('./proposals_and_scores/', '%s.txt'%sample[constants.KEY_SAMPLE_NAME]), proposals_and_scores, fmt='%.3f')
        np.savetxt(os.path.join('./roi_features/', '%s_roi.txt'%sample[constants.KEY_SAMPLE_NAME]), roi_features, fmt='%.5f')
        print('save ' + sample[constants.KEY_SAMPLE_NAME])
        '''
        # run frustum_pointnets_v2
        point_clouds, feature_vec, rot_angle_list, prop_cls_labels = get_pointnet_input(sample, proposals_and_scores, roi_features)
        try:
            prediction = detect_batch(sess2, end_points, point_clouds, feature_vec, rot_angle_list, prop_cls_labels)
        except:
            traceback.print_exc()
            continue

        elapsed_time = time.time() - start_time
        print(sample[constants.KEY_SAMPLE_NAME], elapsed_time)
        # concat all predictions for kitti eval
        id_list = np.ones((len(prediction),)) * int(sample[constants.KEY_SAMPLE_NAME])
        if all_id_list is None:
            all_id_list = id_list
        else:
            all_id_list = np.concatenate((all_id_list, id_list), axis=0)
        for pred in prediction:
            obj = box_3d_encoder.box_3d_to_object_label(np.array(pred[0:7]), obj_type=type_whitelist[pred[8]])
            corners = compute_box_3d(obj)
            projected = calib_utils.project_to_image(corners.T, sample[constants.KEY_STEREO_CALIB_P2])
            x1 = np.amin(projected[0])
            y1 = np.amin(projected[1])
            x2 = np.amax(projected[0])
            y2 = np.amax(projected[1])
            all_2d_boxes.append([x1, y1, x2, y2])
        all_prediction += prediction
        # save result
        pickle.dump({'proposals_and_scores': proposals_and_scores, 'roi_features': roi_features}, open("rpn_out/%s"%sample[constants.KEY_SAMPLE_NAME], "wb"))
        pickle.dump(prediction, open('final_out/%s' % sample[constants.KEY_SAMPLE_NAME], 'wb'))
        visualize(dataset, sample, prediction)
    # for kitti eval
    write_detection_results('./detection_results', all_prediction, all_id_list, all_2d_boxes)