Beispiel #1
0
    def test_init(self):
        # Default model with no specifications.
        model = BoTorchModel()
        self.assertEqual(model.acquisition_class, Acquisition)
        # Model that specifies `botorch_acqf_class`.
        model = BoTorchModel(botorch_acqf_class=qExpectedImprovement)
        self.assertEqual(model.acquisition_class, Acquisition)
        self.assertEqual(model.botorch_acqf_class, qExpectedImprovement)
        # Model with `Acquisition` that specifies a `default_botorch_acqf_class`.
        model = BoTorchModel(acquisition_class=KnowledgeGradient)
        self.assertEqual(model.acquisition_class, KnowledgeGradient)
        self.assertEqual(model.botorch_acqf_class, qKnowledgeGradient)

        # Check defaults for refitting settings.
        self.assertTrue(model.refit_on_update)
        self.assertFalse(model.refit_on_cv)
        self.assertTrue(model.warm_start_refit)

        # Check setting non-default refitting settings
        mdl2 = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            acquisition_options=self.acquisition_options,
            refit_on_update=False,
            refit_on_cv=True,
            warm_start_refit=False,
        )
        self.assertFalse(mdl2.refit_on_update)
        self.assertTrue(mdl2.refit_on_cv)
        self.assertFalse(mdl2.warm_start_refit)
Beispiel #2
0
 def test_evaluate_acquisition_function(self, _mock_kg,
                                        _mock_construct_options):
     model = BoTorchModel(
         surrogate=self.surrogate,
         acquisition_class=KnowledgeGradient,
         acquisition_options=self.acquisition_options,
     )
     model.surrogate.construct(
         training_data=self.training_data,
         search_space_digest=SearchSpaceDigest(
             feature_names=[],
             bounds=[],
             fidelity_features=self.search_space_digest.fidelity_features,
         ),
     )
     model.evaluate_acquisition_function(
         X=self.X,
         search_space_digest=self.search_space_digest,
         objective_weights=self.objective_weights,
         outcome_constraints=self.outcome_constraints,
         linear_constraints=self.linear_constraints,
         fixed_features=self.fixed_features,
         pending_observations=self.pending_observations,
         acq_options=self.acquisition_options,
     )
     # `_mock_kg` is a mock of class, so to check the mock `evaluate` on
     # instance of that class, we use `_mock_kg.return_value.evaluate`
     _mock_kg.return_value.evaluate.assert_called()
Beispiel #3
0
 def test_init(self):
     # Default model with no specifications.
     model = BoTorchModel()
     self.assertEqual(model.acquisition_class, Acquisition)
     # Model that specifies `botorch_acqf_class`.
     model = BoTorchModel(botorch_acqf_class=qExpectedImprovement)
     self.assertEqual(model.acquisition_class, Acquisition)
     self.assertEqual(model.botorch_acqf_class, qExpectedImprovement)
     # Model with `Acquisition` that specifies a `default_botorch_acqf_class`.
     model = BoTorchModel(acquisition_class=KnowledgeGradient)
     self.assertEqual(model.acquisition_class, KnowledgeGradient)
     self.assertEqual(model.botorch_acqf_class, qKnowledgeGradient)
Beispiel #4
0
    def setUp(self):
        self.botorch_model_class = SingleTaskGP
        self.surrogate = Surrogate(
            botorch_model_class=self.botorch_model_class)
        self.acquisition_class = KnowledgeGradient
        self.botorch_acqf_class = qKnowledgeGradient
        self.acquisition_options = {Keys.NUM_FANTASIES: 64}
        self.model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            acquisition_options=self.acquisition_options,
        )

        self.dtype = torch.float
        Xs1, Ys1, Yvars1, self.bounds, _, _, _ = get_torch_test_data(
            dtype=self.dtype)
        Xs2, Ys2, Yvars2, _, _, _, _ = get_torch_test_data(dtype=self.dtype,
                                                           offset=1.0)
        self.Xs = Xs1 + Xs2
        self.Ys = Ys1 + Ys2
        self.Yvars = Yvars1 + Yvars2
        self.X = Xs1[0]
        self.Y = Ys1[0]
        self.Yvar = Yvars1[0]
        self.X2 = Xs2[0]
        self.training_data = TrainingData(X=self.X, Y=self.Y, Yvar=self.Yvar)
        self.search_space_digest = SearchSpaceDigest(
            feature_names=["x1", "x2", "x3"],
            bounds=[(0.0, 10.0), (0.0, 10.0), (0.0, 10.0)],
            task_features=[],
            fidelity_features=[2],
            target_fidelities={1: 1.0},
        )
        self.metric_names = ["y"]
        self.metric_names_for_list_surrogate = ["y1", "y2"]
        self.candidate_metadata = []
        self.optimizer_options = {
            Keys.NUM_RESTARTS: 40,
            Keys.RAW_SAMPLES: 1024
        }
        self.model_gen_options = {
            Keys.OPTIMIZER_KWARGS: self.optimizer_options
        }
        self.objective_weights = torch.tensor([1.0])
        self.objective_thresholds = None
        self.outcome_constraints = None
        self.linear_constraints = None
        self.fixed_features = None
        self.pending_observations = None
        self.rounding_func = "func"
Beispiel #5
0
 def test_surrogate_options_propagation(self, _, mock_init):
     model = BoTorchModel(surrogate_options={"some_option": "some_value"})
     model.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         search_space_digest=self.search_space_digest,
         metric_names=self.metric_names_for_list_surrogate,
         candidate_metadata=self.candidate_metadata,
     )
     mock_init.assert_called_with(
         botorch_submodel_class_per_outcome={
             outcome: FixedNoiseMultiFidelityGP
             for outcome in self.metric_names_for_list_surrogate
         },
         some_option="some_value",
     )
Beispiel #6
0
 def test_list_surrogate_choice(self, _):  # , mock_extract_training_data):
     model = BoTorchModel()
     model.fit(
         Xs=self.non_block_design_training_data.Xs,
         Ys=self.non_block_design_training_data.Ys,
         Yvars=self.non_block_design_training_data.Yvars,
         search_space_digest=self.mf_search_space_digest,
         metric_names=self.metric_names_for_list_surrogate,
         candidate_metadata=self.candidate_metadata,
     )
     # A list surrogate should be chosen, since Xs are not all the same.
     self.assertIsInstance(model.surrogate, ListSurrogate)
     self.assertIsInstance(model.surrogate.model, ModelListGP)
     for submodel in model.surrogate.model.models:
         # There are fidelity features and nonempty Yvars, so
         # fixed noise MFGP should be chosen.
         self.assertIsInstance(submodel, FixedNoiseMultiFidelityGP)
Beispiel #7
0
 def test_surrogate_options_propagation(self, _, mock_init):
     model = BoTorchModel(surrogate_options={"some_option": "some_value"})
     model.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         bounds=self.bounds,
         task_features=self.task_features,
         feature_names=self.feature_names,
         metric_names=self.metric_names_for_list_surrogate,
         fidelity_features=self.fidelity_features,
         target_fidelities=self.target_fidelities,
         candidate_metadata=self.candidate_metadata,
     )
     mock_init.assert_called_with(
         botorch_submodel_class_per_outcome={
             outcome: FixedNoiseMultiFidelityGP
             for outcome in self.metric_names_for_list_surrogate
         },
         some_option="some_value",
     )
Beispiel #8
0
 def test_list_surrogate_choice(self, _, mock_extract_training_data):
     model = BoTorchModel()
     model.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         search_space_digest=self.search_space_digest,
         metric_names=self.metric_names_for_list_surrogate,
         candidate_metadata=self.candidate_metadata,
     )
     # A list surrogate should be chosen, since Xs are not all the same.
     self.assertIsInstance(model.surrogate.model, ModelListGP)
     for submodel in model.surrogate.model.models:
         # There are fidelity features and nonempty Yvars, so
         # fixed noise MFGP should be chosen.
         self.assertIsInstance(submodel, FixedNoiseMultiFidelityGP)
     model.gen(
         n=1,
         bounds=self.bounds,
         objective_weights=self.objective_weights,
         outcome_constraints=self.outcome_constraints,
         linear_constraints=self.linear_constraints,
         fixed_features=self.fixed_features,
         pending_observations=self.pending_observations,
         model_gen_options=self.model_gen_options,
         rounding_func=self.rounding_func,
         target_fidelities=self.search_space_digest.target_fidelities,
     )
     mock_extract_training_data.assert_called_once()
     self.assertIsInstance(
         mock_extract_training_data.call_args[1]["surrogate"],
         ListSurrogate)
Beispiel #9
0
 def test_list_surrogate_choice(self, _, mock_extract_training_data):
     model = BoTorchModel()
     model.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         bounds=self.bounds,
         task_features=self.task_features,
         feature_names=self.feature_names,
         metric_names=self.metric_names_for_list_surrogate,
         fidelity_features=self.fidelity_features,
         target_fidelities=self.target_fidelities,
         candidate_metadata=self.candidate_metadata,
     )
     model.gen(
         n=1,
         bounds=self.bounds,
         objective_weights=self.objective_weights,
         outcome_constraints=self.outcome_constraints,
         linear_constraints=self.linear_constraints,
         fixed_features=self.fixed_features,
         pending_observations=self.pending_observations,
         model_gen_options=self.model_gen_options,
         rounding_func=self.rounding_func,
         target_fidelities=self.target_fidelities,
     )
     mock_extract_training_data.assert_called_once()
     self.assertIsInstance(
         mock_extract_training_data.call_args[1]["surrogate"], ListSurrogate
     )
Beispiel #10
0
class BoTorchModelTest(TestCase):
    def setUp(self):
        self.botorch_model_class = SingleTaskGP
        self.surrogate = Surrogate(
            botorch_model_class=self.botorch_model_class)
        self.acquisition_class = KnowledgeGradient
        self.botorch_acqf_class = qKnowledgeGradient
        self.acquisition_options = {Keys.NUM_FANTASIES: 64}
        self.model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            acquisition_options=self.acquisition_options,
        )

        self.dtype = torch.float
        Xs1, Ys1, Yvars1, self.bounds, _, _, _ = get_torch_test_data(
            dtype=self.dtype)
        Xs2, Ys2, Yvars2, _, _, _, _ = get_torch_test_data(dtype=self.dtype,
                                                           offset=1.0)
        self.Xs = Xs1 + Xs2
        self.Ys = Ys1 + Ys2
        self.Yvars = Yvars1 + Yvars2
        self.X = Xs1[0]
        self.Y = Ys1[0]
        self.Yvar = Yvars1[0]
        self.X2 = Xs2[0]
        self.training_data = TrainingData(X=self.X, Y=self.Y, Yvar=self.Yvar)
        self.bounds = [(0.0, 10.0), (0.0, 10.0), (0.0, 10.0)]
        self.task_features = []
        self.feature_names = ["x1", "x2", "x3"]
        self.metric_names = ["y"]
        self.metric_names_for_list_surrogate = ["y1", "y2"]
        self.fidelity_features = [2]
        self.target_fidelities = {1: 1.0}
        self.candidate_metadata = []

        self.optimizer_options = {
            Keys.NUM_RESTARTS: 40,
            Keys.RAW_SAMPLES: 1024
        }
        self.model_gen_options = {
            Keys.OPTIMIZER_KWARGS: self.optimizer_options
        }
        self.objective_weights = torch.tensor([1.0])
        self.outcome_constraints = None
        self.linear_constraints = None
        self.fixed_features = None
        self.pending_observations = None
        self.rounding_func = "func"

    def test_init(self):
        # Default model with no specifications.
        model = BoTorchModel()
        self.assertEqual(model.acquisition_class, Acquisition)
        # Model that specifies `botorch_acqf_class`.
        model = BoTorchModel(botorch_acqf_class=qExpectedImprovement)
        self.assertEqual(model.acquisition_class, Acquisition)
        self.assertEqual(model.botorch_acqf_class, qExpectedImprovement)
        # Model with `Acquisition` that specifies a `default_botorch_acqf_class`.
        model = BoTorchModel(acquisition_class=KnowledgeGradient)
        self.assertEqual(model.acquisition_class, KnowledgeGradient)
        self.assertEqual(model.botorch_acqf_class, qKnowledgeGradient)

        # Check defaults for refitting settings.
        self.assertTrue(model.refit_on_update)
        self.assertFalse(model.refit_on_cv)
        self.assertTrue(model.warm_start_refit)

        # Check setting non-default refitting settings
        mdl2 = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            acquisition_options=self.acquisition_options,
            refit_on_update=False,
            refit_on_cv=True,
            warm_start_refit=False,
        )
        self.assertFalse(mdl2.refit_on_update)
        self.assertTrue(mdl2.refit_on_cv)
        self.assertFalse(mdl2.warm_start_refit)

    def test_surrogate_property(self):
        self.assertEqual(self.surrogate, self.model.surrogate)
        self.model._surrogate = None
        with self.assertRaisesRegex(ValueError,
                                    "Surrogate has not yet been set."):
            self.model.surrogate

    def test_botorch_acqf_class_property(self):
        self.assertEqual(self.botorch_acqf_class,
                         self.model.botorch_acqf_class)
        self.model._botorch_acqf_class = None
        with self.assertRaisesRegex(
                ValueError, "`AcquisitionFunction` has not yet been set."):
            self.model.botorch_acqf_class

    @patch(f"{SURROGATE_PATH}.Surrogate.fit")
    @patch(f"{MODEL_PATH}.choose_model_class", return_value=SingleTaskGP)
    def test_fit(self, mock_choose_model_class, mock_fit):
        # If surrogate is not yet set, initialize it with dispatcher functions.
        self.model._surrogate = None
        self.model.fit(
            Xs=[self.X],
            Ys=[self.Y],
            Yvars=[self.Yvar],
            bounds=self.bounds,
            task_features=self.task_features,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            fidelity_features=self.fidelity_features,
            target_fidelities=self.target_fidelities,
            candidate_metadata=self.candidate_metadata,
        )
        # `choose_model_class` is called.
        mock_choose_model_class.assert_called_with(
            Yvars=[self.Yvar],
            task_features=self.task_features,
            fidelity_features=self.fidelity_features,
        )
        # Since we want to refit on updates but not warm start refit, we clear the
        # state dict.
        mock_fit.assert_called_with(
            training_data=self.training_data,
            bounds=self.bounds,
            task_features=self.task_features,
            feature_names=self.feature_names,
            fidelity_features=self.fidelity_features,
            target_fidelities=self.target_fidelities,
            metric_names=self.metric_names,
            candidate_metadata=self.candidate_metadata,
            state_dict=None,
            refit=True,
        )

    @patch(f"{SURROGATE_PATH}.Surrogate.update")
    def test_update(self, mock_update):
        fit_update_shared_kwargs = {
            "bounds": self.bounds,
            "task_features": self.task_features,
            "feature_names": self.feature_names,
            "metric_names": self.metric_names,
            "fidelity_features": self.fidelity_features,
            "target_fidelities": self.target_fidelities,
            "candidate_metadata": self.candidate_metadata,
        }
        self.model.fit(Xs=[self.X],
                       Ys=[self.Y],
                       Yvars=[self.Yvar],
                       **fit_update_shared_kwargs)

        for refit_on_update, warm_start_refit in [
            (True, True),
            (True, False),
            (False, True),
        ]:
            self.model.refit_on_update = refit_on_update
            self.model.warm_start_refit = warm_start_refit
            self.model.update(Xs=[self.X],
                              Ys=[self.Y],
                              Yvars=[self.Yvar],
                              **fit_update_shared_kwargs)
            expected_state_dict = (None if refit_on_update
                                   and not warm_start_refit else
                                   self.model.surrogate.model.state_dict())
            # Check correct training data and `fit_update_shared_kwargs` values (can't
            # directly use `assert_called_with` due to tensor comparison ambiguity in
            # state dict).
            self.assertEqual(
                mock_update.call_args_list[-1][1].get("training_data"),
                self.training_data,
            )
            for key in fit_update_shared_kwargs:
                self.assertEqual(
                    mock_update.call_args_list[-1][1].get(key),
                    fit_update_shared_kwargs.get(key),
                )

            # Check correct `refit` and `state_dict` values.
            self.assertEqual(mock_update.call_args_list[-1][1].get("refit"),
                             refit_on_update)
            if expected_state_dict is None:
                self.assertIsNone(
                    mock_update.call_args_list[-1][1].get("state_dict"),
                    expected_state_dict,
                )
            else:
                self.assertEqual(
                    mock_update.call_args_list[-1][1].get("state_dict").keys(),
                    expected_state_dict.keys(),
                )

    @patch(f"{SURROGATE_PATH}.Surrogate.predict")
    def test_predict(self, mock_predict):
        self.model.predict(X=self.X)
        mock_predict.assert_called_with(X=self.X)

    @patch(f"{MODEL_PATH}.BoTorchModel.fit")
    def test_cross_validate(self, mock_fit):
        fit_cv_shared_kwargs = {
            "bounds": self.bounds,
            "task_features": self.task_features,
            "feature_names": self.feature_names,
            "metric_names": self.metric_names,
            "fidelity_features": self.fidelity_features,
        }
        self.model.fit(
            Xs=[self.X],
            Ys=[self.Y],
            Yvars=[self.Yvar],
            candidate_metadata=self.candidate_metadata,
            **fit_cv_shared_kwargs,
        )

        old_surrogate = self.model.surrogate
        old_surrogate._model = MagicMock()
        old_surrogate._model.state_dict.return_value = {"key": "val"}

        for refit_on_cv, warm_start_refit in [
            (True, True),
            (True, False),
            (False, True),
        ]:
            self.model.refit_on_cv = refit_on_cv
            self.model.warm_start_refit = warm_start_refit
            with patch(
                    f"{SURROGATE_PATH}.Surrogate.clone_reset",
                    return_value=MagicMock(spec=Surrogate),
            ) as mock_clone_reset:
                self.model.cross_validate(
                    Xs_train=[self.X],
                    Ys_train=[self.Y],
                    Yvars_train=[self.Yvar],
                    X_test=self.X2,
                    **fit_cv_shared_kwargs,
                )
                # Check that `predict` is called on the cloned surrogate, not
                # on the original one.
                mock_predict = mock_clone_reset.return_value.predict
                mock_predict.assert_called_once()

                # Check correct X_test.
                self.assertTrue(
                    torch.equal(
                        mock_predict.call_args_list[-1][1].get("X"),
                        self.X2,
                    ), )

            # Check that surrogate is reset back to `old_surrogate` at the
            # end of cross-validation.
            self.model.surrogate is old_surrogate

            expected_state_dict = (None
                                   if refit_on_cv and not warm_start_refit else
                                   self.model.surrogate.model.state_dict())

            # Check correct `refit` and `state_dict` values.
            self.assertEqual(mock_fit.call_args_list[-1][1].get("refit"),
                             refit_on_cv)
            if expected_state_dict is None:
                self.assertIsNone(
                    mock_fit.call_args_list[-1][1].get("state_dict"),
                    expected_state_dict,
                )
            else:
                self.assertEqual(
                    mock_fit.call_args_list[-1][1].get("state_dict").keys(),
                    expected_state_dict.keys(),
                )

    @patch(
        f"{MODEL_PATH}.construct_acquisition_and_optimizer_options",
        return_value=({
            "num_fantasies": 64
        }, {
            "num_restarts": 40,
            "raw_samples": 1024
        }),
    )
    @patch(f"{CURRENT_PATH}.KnowledgeGradient")
    @patch(f"{MODEL_PATH}.get_rounding_func", return_value="func")
    @patch(f"{MODEL_PATH}._to_inequality_constraints", return_value=[])
    @patch(f"{MODEL_PATH}.choose_botorch_acqf_class",
           return_value=qKnowledgeGradient)
    def test_gen(
        self,
        mock_choose_botorch_acqf_class,
        mock_inequality_constraints,
        mock_rounding,
        mock_kg,
        mock_construct_options,
    ):
        mock_kg.return_value.optimize.return_value = (
            torch.tensor([1.0]),
            torch.tensor([2.0]),
        )
        model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=KnowledgeGradient,
            acquisition_options=self.acquisition_options,
        )
        model.surrogate.construct(training_data=self.training_data,
                                  fidelity_features=self.fidelity_features)
        model._botorch_acqf_class = None
        model.gen(
            n=1,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.target_fidelities,
        )
        # Assert `construct_acquisition_and_optimizer_options` called with kwargs
        mock_construct_options.assert_called_with(
            acqf_options=self.acquisition_options,
            model_gen_options=self.model_gen_options,
        )
        # Assert `choose_botorch_acqf_class` is called
        mock_choose_botorch_acqf_class.assert_called_once()
        self.assertEqual(model._botorch_acqf_class, qKnowledgeGradient)
        # Assert `acquisition_class` called with kwargs
        mock_kg.assert_called_with(
            surrogate=self.surrogate,
            botorch_acqf_class=model.botorch_acqf_class,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            target_fidelities=self.target_fidelities,
            options=self.acquisition_options,
        )
        # Assert `optimize` called with kwargs
        mock_kg.return_value.optimize.assert_called_with(
            bounds=ANY,
            n=1,
            inequality_constraints=[],
            fixed_features=self.fixed_features,
            rounding_func="func",
            optimizer_options=self.optimizer_options,
        )

    def test_best_point(self):
        with self.assertRaises(NotImplementedError):
            self.model.best_point(bounds=self.bounds,
                                  objective_weights=self.objective_weights)

    @patch(
        f"{MODEL_PATH}.construct_acquisition_and_optimizer_options",
        return_value=({
            "num_fantasies": 64
        }, {
            "num_restarts": 40,
            "raw_samples": 1024
        }),
    )
    @patch(f"{CURRENT_PATH}.KnowledgeGradient", autospec=True)
    def test_evaluate_acquisition_function(self, _mock_kg,
                                           _mock_construct_options):
        model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=KnowledgeGradient,
            acquisition_options=self.acquisition_options,
        )
        model.surrogate.construct(training_data=self.training_data,
                                  fidelity_features=self.fidelity_features)
        model.evaluate_acquisition_function(
            X=self.X,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            acq_options=self.acquisition_options,
            target_fidelities=self.target_fidelities,
        )
        # `_mock_kg` is a mock of class, so to check the mock `evaluate` on
        # instance of that class, we use `_mock_kg.return_value.evaluate`
        _mock_kg.return_value.evaluate.assert_called()

    @patch(f"{LIST_SURROGATE_PATH}.ListSurrogate.__init__", return_value=None)
    @patch(f"{LIST_SURROGATE_PATH}.ListSurrogate.fit", return_value=None)
    def test_surrogate_options_propagation(self, _, mock_init):
        model = BoTorchModel(surrogate_options={"some_option": "some_value"})
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=self.task_features,
            feature_names=self.feature_names,
            metric_names=self.metric_names_for_list_surrogate,
            fidelity_features=self.fidelity_features,
            target_fidelities=self.target_fidelities,
            candidate_metadata=self.candidate_metadata,
        )
        mock_init.assert_called_with(
            botorch_submodel_class_per_outcome={
                outcome: FixedNoiseMultiFidelityGP
                for outcome in self.metric_names_for_list_surrogate
            },
            some_option="some_value",
        )

    @patch(
        f"{ACQUISITION_PATH}.Acquisition._extract_training_data",
        # Mock to register calls, but still execute the function.
        side_effect=Acquisition._extract_training_data,
    )
    @patch(
        f"{ACQUISITION_PATH}.Acquisition.optimize",
        # Dummy candidates and acquisition function value.
        return_value=(torch.tensor([[2.0]]), torch.tensor([1.0])),
    )
    def test_list_surrogate_choice(self, _, mock_extract_training_data):
        model = BoTorchModel()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=self.task_features,
            feature_names=self.feature_names,
            metric_names=self.metric_names_for_list_surrogate,
            fidelity_features=self.fidelity_features,
            target_fidelities=self.target_fidelities,
            candidate_metadata=self.candidate_metadata,
        )
        # A list surrogate should be chosen, since Xs are not all the same.
        self.assertIsInstance(model.surrogate.model, ModelListGP)
        for submodel in model.surrogate.model.models:
            # There are fidelity features and nonempty Yvars, so
            # fixed noise MFGP should be chosen.
            self.assertIsInstance(submodel, FixedNoiseMultiFidelityGP)
        model.gen(
            n=1,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.target_fidelities,
        )
        mock_extract_training_data.assert_called_once()
        self.assertIsInstance(
            mock_extract_training_data.call_args[1]["surrogate"],
            ListSurrogate)
Beispiel #11
0
 def test_gen(
     self,
     mock_choose_botorch_acqf_class,
     mock_inequality_constraints,
     mock_rounding,
     mock_kg,
     mock_construct_options,
 ):
     mock_kg.return_value.optimize.return_value = (
         torch.tensor([1.0]),
         torch.tensor([2.0]),
     )
     model = BoTorchModel(
         surrogate=self.surrogate,
         acquisition_class=KnowledgeGradient,
         acquisition_options=self.acquisition_options,
     )
     model.surrogate.construct(training_data=self.training_data,
                               fidelity_features=self.fidelity_features)
     model._botorch_acqf_class = None
     model.gen(
         n=1,
         bounds=self.bounds,
         objective_weights=self.objective_weights,
         outcome_constraints=self.outcome_constraints,
         linear_constraints=self.linear_constraints,
         fixed_features=self.fixed_features,
         pending_observations=self.pending_observations,
         model_gen_options=self.model_gen_options,
         rounding_func=self.rounding_func,
         target_fidelities=self.target_fidelities,
     )
     # Assert `construct_acquisition_and_optimizer_options` called with kwargs
     mock_construct_options.assert_called_with(
         acqf_options=self.acquisition_options,
         model_gen_options=self.model_gen_options,
     )
     # Assert `choose_botorch_acqf_class` is called
     mock_choose_botorch_acqf_class.assert_called_once()
     self.assertEqual(model._botorch_acqf_class, qKnowledgeGradient)
     # Assert `acquisition_class` called with kwargs
     mock_kg.assert_called_with(
         surrogate=self.surrogate,
         botorch_acqf_class=model.botorch_acqf_class,
         bounds=self.bounds,
         objective_weights=self.objective_weights,
         outcome_constraints=self.outcome_constraints,
         linear_constraints=self.linear_constraints,
         fixed_features=self.fixed_features,
         pending_observations=self.pending_observations,
         target_fidelities=self.target_fidelities,
         options=self.acquisition_options,
     )
     # Assert `optimize` called with kwargs
     mock_kg.return_value.optimize.assert_called_with(
         bounds=ANY,
         n=1,
         inequality_constraints=[],
         fixed_features=self.fixed_features,
         rounding_func="func",
         optimizer_options=self.optimizer_options,
     )
Beispiel #12
0
    def setUp(self):
        self.botorch_model_class = SingleTaskGP
        self.surrogate = Surrogate(
            botorch_model_class=self.botorch_model_class)
        self.acquisition_class = Acquisition
        self.botorch_acqf_class = qExpectedImprovement
        self.acquisition_options = ACQ_OPTIONS
        self.model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            botorch_acqf_class=self.botorch_acqf_class,
            acquisition_options=self.acquisition_options,
        )

        self.dtype = torch.float
        self.device = torch.device("cpu")
        tkwargs = {"dtype": self.dtype, "device": self.device}
        Xs1, Ys1, Yvars1, self.bounds, _, _, _ = get_torch_test_data(
            dtype=self.dtype)
        Xs2, Ys2, Yvars2, _, _, _, _ = get_torch_test_data(dtype=self.dtype,
                                                           offset=1.0)
        self.Xs = Xs1
        self.Ys = Ys1
        self.Yvars = Yvars1
        self.X_test = Xs2[0]
        self.block_design_training_data = TrainingData(Xs=self.Xs,
                                                       Ys=self.Ys,
                                                       Yvars=self.Yvars)
        self.non_block_design_training_data = TrainingData(
            Xs=Xs1 + Xs2,
            Ys=Ys1 + Ys2,
            Yvars=Yvars1 + Yvars2,
        )
        self.search_space_digest = SearchSpaceDigest(
            feature_names=["x1", "x2", "x3"],
            bounds=[(0.0, 10.0), (0.0, 10.0), (0.0, 10.0)],
        )
        self.mf_search_space_digest = SearchSpaceDigest(
            feature_names=["x1", "x2", "x3"],
            bounds=[(0.0, 10.0), (0.0, 10.0), (0.0, 10.0)],
            task_features=[],
            fidelity_features=[2],
            target_fidelities={1: 1.0},
        )
        self.metric_names = ["y"]
        self.metric_names_for_list_surrogate = ["y1", "y2"]
        self.candidate_metadata = []
        self.optimizer_options = {
            Keys.NUM_RESTARTS: 40,
            Keys.RAW_SAMPLES: 1024
        }
        self.model_gen_options = {
            Keys.OPTIMIZER_KWARGS: self.optimizer_options
        }
        self.objective_weights = torch.tensor([1.0], **tkwargs)
        self.moo_objective_weights = torch.tensor([1.0, 1.5, 0.0], **tkwargs)
        self.moo_objective_thresholds = torch.tensor(
            [0.5, 1.5, float("nan")], **tkwargs)
        self.outcome_constraints = None
        self.linear_constraints = None
        self.fixed_features = None
        self.pending_observations = None
        self.rounding_func = "func"
        self.moo_training_data = TrainingData(
            Xs=self.Xs * 3,
            Ys=self.non_block_design_training_data.Ys + self.Ys,
            Yvars=self.Yvars * 3,
        )
        self.moo_metric_names = ["y1", "y2", "y3"]
Beispiel #13
0
    def test_gen(
        self,
        mock_choose_botorch_acqf_class,
        mock_inequality_constraints,
        mock_rounding,
        mock_kg,
        mock_construct_options,
    ):
        mock_kg.return_value.optimize.return_value = (
            torch.tensor([1.0]),
            torch.tensor([2.0]),
        )
        model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=KnowledgeGradient,
            acquisition_options=self.acquisition_options,
        )
        model.surrogate.construct(
            training_data=self.training_data,
            fidelity_features=self.search_space_digest.fidelity_features,
        )
        model._botorch_acqf_class = None
        # Assert that error is raised if we haven't fit the model
        with self.assertRaises(RuntimeError):
            model.gen(
                n=1,
                bounds=self.search_space_digest.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=self.outcome_constraints,
                linear_constraints=self.linear_constraints,
                fixed_features=self.fixed_features,
                pending_observations=self.pending_observations,
                model_gen_options=self.model_gen_options,
                rounding_func=self.rounding_func,
                target_fidelities=self.search_space_digest.target_fidelities,
            )
        # Add search space digest reference to make the model think it's been fit
        model._search_space_digest = self.search_space_digest
        model.gen(
            n=1,
            bounds=self.search_space_digest.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.search_space_digest.target_fidelities,
        )

        # Assert `construct_acquisition_and_optimizer_options` called with kwargs
        mock_construct_options.assert_called_with(
            acqf_options=self.acquisition_options,
            model_gen_options=self.model_gen_options,
        )
        # Assert `choose_botorch_acqf_class` is called
        mock_choose_botorch_acqf_class.assert_called_once()
        self.assertEqual(model._botorch_acqf_class, qKnowledgeGradient)
        # Assert `acquisition_class` called with kwargs
        mock_kg.assert_called_with(
            surrogate=self.surrogate,
            botorch_acqf_class=model.botorch_acqf_class,
            search_space_digest=self.search_space_digest,
            objective_weights=self.objective_weights,
            objective_thresholds=self.objective_thresholds,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            options=self.acquisition_options,
        )
        # Assert `optimize` called with kwargs
        mock_kg.return_value.optimize.assert_called_with(
            n=1,
            search_space_digest=self.search_space_digest,
            inequality_constraints=[],
            fixed_features=self.fixed_features,
            rounding_func="func",
            optimizer_options=self.optimizer_options,
        )
Beispiel #14
0
class BoTorchModelTest(TestCase):
    def setUp(self):
        self.botorch_model_class = SingleTaskGP
        self.surrogate = Surrogate(botorch_model_class=self.botorch_model_class)
        self.acquisition_class = KnowledgeGradient
        self.botorch_acqf_class = qKnowledgeGradient
        self.acquisition_options = {Keys.NUM_FANTASIES: 64}
        self.surrogate_fit_options = {
            Keys.REFIT_ON_UPDATE: True,
            Keys.STATE_DICT: {"non-empty": "non-empty"},
            Keys.WARM_START_REFITTING: False,
        }
        self.model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            acquisition_options=self.acquisition_options,
            surrogate_fit_options=self.surrogate_fit_options,
        )

        self.dtype = torch.float
        Xs1, Ys1, Yvars1, self.bounds, _, _, _ = get_torch_test_data(dtype=self.dtype)
        Xs2, Ys2, Yvars2, _, _, _, _ = get_torch_test_data(dtype=self.dtype, offset=1.0)
        self.Xs = Xs1 + Xs2
        self.Ys = Ys1 + Ys2
        self.Yvars = Yvars1 + Yvars2
        self.X = Xs1[0]
        self.Y = Ys1[0]
        self.Yvar = Yvars1[0]
        self.training_data = TrainingData(X=self.X, Y=self.Y, Yvar=self.Yvar)
        self.bounds = [(0.0, 10.0), (0.0, 10.0), (0.0, 10.0)]
        self.task_features = []
        self.feature_names = ["x1", "x2", "x3"]
        self.metric_names = ["y"]
        self.metric_names_for_list_surrogate = ["y1", "y2"]
        self.fidelity_features = [2]
        self.target_fidelities = {1: 1.0}
        self.candidate_metadata = []

        self.optimizer_options = {Keys.NUM_RESTARTS: 40, Keys.RAW_SAMPLES: 1024}
        self.model_gen_options = {Keys.OPTIMIZER_KWARGS: self.optimizer_options}
        self.objective_weights = torch.tensor([1.0])
        self.outcome_constraints = None
        self.linear_constraints = None
        self.fixed_features = None
        self.pending_observations = None
        self.rounding_func = "func"

    def test_init(self):
        # Default model with no specifications.
        model = BoTorchModel()
        self.assertEqual(model.acquisition_class, Acquisition)
        # Model that specifies `botorch_acqf_class`.
        model = BoTorchModel(botorch_acqf_class=qExpectedImprovement)
        self.assertEqual(model.acquisition_class, Acquisition)
        self.assertEqual(model.botorch_acqf_class, qExpectedImprovement)
        # Model with `Acquisition` that specifies a `default_botorch_acqf_class`.
        model = BoTorchModel(acquisition_class=KnowledgeGradient)
        self.assertEqual(model.acquisition_class, KnowledgeGradient)
        self.assertEqual(model.botorch_acqf_class, qKnowledgeGradient)

    def test_surrogate_property(self):
        self.assertEqual(self.surrogate, self.model.surrogate)
        self.model._surrogate = None
        with self.assertRaisesRegex(ValueError, "Surrogate has not yet been set."):
            self.model.surrogate

    def test_botorch_acqf_class_property(self):
        self.assertEqual(self.botorch_acqf_class, self.model.botorch_acqf_class)
        self.model._botorch_acqf_class = None
        with self.assertRaisesRegex(
            ValueError, "`AcquisitionFunction` has not yet been set."
        ):
            self.model.botorch_acqf_class

    @patch(f"{SURROGATE_PATH}.Surrogate.fit")
    @patch(f"{MODEL_PATH}.choose_model_class", return_value=SingleTaskGP)
    def test_fit(self, mock_choose_model_class, mock_fit):
        # If surrogate is not yet set, initialize it with dispatcher functions.
        self.model._surrogate = None
        self.model.fit(
            Xs=[self.X],
            Ys=[self.Y],
            Yvars=[self.Yvar],
            bounds=self.bounds,
            task_features=self.task_features,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            fidelity_features=self.fidelity_features,
            target_fidelities=self.target_fidelities,
            candidate_metadata=self.candidate_metadata,
        )
        # `choose_model_class` is called.
        mock_choose_model_class.assert_called_with(
            Yvars=[self.Yvar],
            task_features=self.task_features,
            fidelity_features=self.fidelity_features,
        )
        # Since we want to refit on updates but not warm start refit, we clear the
        # state dict.
        mock_fit.assert_called_with(
            training_data=self.training_data,
            bounds=self.bounds,
            task_features=self.task_features,
            feature_names=self.feature_names,
            fidelity_features=self.fidelity_features,
            target_fidelities=self.target_fidelities,
            metric_names=self.metric_names,
            candidate_metadata=self.candidate_metadata,
            state_dict=None,
            refit=True,
        )

    @patch(f"{SURROGATE_PATH}.Surrogate.predict")
    def test_predict(self, mock_predict):
        self.model.predict(X=self.X)
        mock_predict.assert_called_with(X=self.X)

    @patch(
        f"{MODEL_PATH}.construct_acquisition_and_optimizer_options",
        return_value=({"num_fantasies": 64}, {"num_restarts": 40, "raw_samples": 1024}),
    )
    @patch(f"{CURRENT_PATH}.KnowledgeGradient")
    @patch(f"{MODEL_PATH}.get_rounding_func", return_value="func")
    @patch(f"{MODEL_PATH}._to_inequality_constraints", return_value=[])
    @patch(f"{MODEL_PATH}.choose_botorch_acqf_class", return_value=qKnowledgeGradient)
    def test_gen(
        self,
        mock_choose_botorch_acqf_class,
        mock_inequality_constraints,
        mock_rounding,
        mock_kg,
        mock_construct_options,
    ):
        mock_kg.return_value.optimize.return_value = (
            torch.tensor([1.0]),
            torch.tensor([2.0]),
        )
        model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=KnowledgeGradient,
            acquisition_options=self.acquisition_options,
        )
        model.surrogate.construct(
            training_data=self.training_data, fidelity_features=self.fidelity_features
        )
        model._botorch_acqf_class = None
        model.gen(
            n=1,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.target_fidelities,
        )
        # Assert `construct_acquisition_and_optimizer_options` called with kwargs
        mock_construct_options.assert_called_with(
            acqf_options=self.acquisition_options,
            model_gen_options=self.model_gen_options,
        )
        # Assert `choose_botorch_acqf_class` is called
        mock_choose_botorch_acqf_class.assert_called_once()
        self.assertEqual(model._botorch_acqf_class, qKnowledgeGradient)
        # Assert `acquisition_class` called with kwargs
        mock_kg.assert_called_with(
            surrogate=self.surrogate,
            botorch_acqf_class=model.botorch_acqf_class,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            target_fidelities=self.target_fidelities,
            options=self.acquisition_options,
        )
        # Assert `optimize` called with kwargs
        mock_kg.return_value.optimize.assert_called_with(
            bounds=ANY,
            n=1,
            inequality_constraints=[],
            fixed_features=self.fixed_features,
            rounding_func="func",
            optimizer_options=self.optimizer_options,
        )

    def test_best_point(self):
        with self.assertRaises(NotImplementedError):
            self.model.best_point(
                bounds=self.bounds, objective_weights=self.objective_weights
            )

    @patch(
        f"{MODEL_PATH}.construct_acquisition_and_optimizer_options",
        return_value=({"num_fantasies": 64}, {"num_restarts": 40, "raw_samples": 1024}),
    )
    @patch(f"{CURRENT_PATH}.KnowledgeGradient", autospec=True)
    def test_evaluate_acquisition_function(self, _mock_kg, _mock_construct_options):
        model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=KnowledgeGradient,
            acquisition_options=self.acquisition_options,
        )
        model.surrogate.construct(
            training_data=self.training_data, fidelity_features=self.fidelity_features
        )
        model.evaluate_acquisition_function(
            X=self.X,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            acq_options=self.acquisition_options,
            target_fidelities=self.target_fidelities,
        )
        # `_mock_kg` is a mock of class, so to check the mock `evaluate` on
        # instance of that class, we use `_mock_kg.return_value.evaluate`
        _mock_kg.return_value.evaluate.assert_called()

    @patch(
        f"{ACQUISITION_PATH}.Acquisition._extract_training_data",
        # Mock to register calls, but still execute the function.
        side_effect=Acquisition._extract_training_data,
    )
    @patch(
        f"{ACQUISITION_PATH}.Acquisition.optimize",
        # Dummy candidates and acquisition function value.
        return_value=(torch.tensor([[2.0]]), torch.tensor([1.0])),
    )
    def test_list_surrogate_choice(self, _, mock_extract_training_data):
        model = BoTorchModel()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=self.task_features,
            feature_names=self.feature_names,
            metric_names=self.metric_names_for_list_surrogate,
            fidelity_features=self.fidelity_features,
            target_fidelities=self.target_fidelities,
            candidate_metadata=self.candidate_metadata,
        )
        model.gen(
            n=1,
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.target_fidelities,
        )
        mock_extract_training_data.assert_called_once()
        self.assertIsInstance(
            mock_extract_training_data.call_args[1]["surrogate"], ListSurrogate
        )
Beispiel #15
0
    def test_MOO(self, _):
        # Add mock for qNEHVI input constructor to catch arguments passed to it.
        qNEHVI_input_constructor = get_acqf_input_constructor(
            qNoisyExpectedHypervolumeImprovement)
        mock_input_constructor = mock.MagicMock(
            qNEHVI_input_constructor, side_effect=qNEHVI_input_constructor)
        _register_acqf_input_constructor(
            acqf_cls=qNoisyExpectedHypervolumeImprovement,
            input_constructor=mock_input_constructor,
        )

        model = BoTorchModel()
        model.fit(
            Xs=self.moo_training_data.Xs,
            Ys=self.moo_training_data.Ys,
            Yvars=self.moo_training_data.Yvars,
            search_space_digest=self.search_space_digest,
            metric_names=self.moo_metric_names,
            candidate_metadata=self.candidate_metadata,
        )
        self.assertIsInstance(model.surrogate.model, FixedNoiseGP)
        _, _, gen_metadata, _ = model.gen(
            n=1,
            bounds=self.search_space_digest.bounds,
            objective_weights=self.moo_objective_weights,
            objective_thresholds=self.moo_objective_thresholds,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.mf_search_space_digest.target_fidelities,
        )
        ckwargs = mock_input_constructor.call_args[1]
        self.assertIs(model.botorch_acqf_class,
                      qNoisyExpectedHypervolumeImprovement)
        mock_input_constructor.assert_called_once()
        m = ckwargs["model"]
        self.assertIsInstance(m, FixedNoiseGP)
        self.assertEqual(m.num_outputs, 2)
        training_data = ckwargs["training_data"]
        for attr in ("Xs", "Ys", "Yvars"):
            self.assertTrue(
                all(
                    torch.equal(x1, x2) for x1, x2 in zip(
                        getattr(training_data, attr),
                        getattr(self.moo_training_data, attr),
                    )))
        self.assertTrue(
            torch.equal(ckwargs["objective_thresholds"],
                        self.moo_objective_thresholds[:2]))
        self.assertIsNone(ckwargs["outcome_constraints"], )
        self.assertIsNone(ckwargs["X_pending"], )
        obj_t = gen_metadata["objective_thresholds"]
        self.assertTrue(
            torch.equal(obj_t[:2], self.moo_objective_thresholds[:2]))
        self.assertTrue(np.isnan(obj_t[2].item()))

        self.assertIsInstance(
            ckwargs.get("objective"),
            WeightedMCMultiOutputObjective,
        )
        self.assertTrue(
            torch.equal(
                mock_input_constructor.call_args[1].get("objective").weights,
                self.moo_objective_weights[:2],
            ))
        expected_X_baseline = _filter_X_observed(
            Xs=self.moo_training_data.Xs,
            objective_weights=self.moo_objective_weights,
            outcome_constraints=self.outcome_constraints,
            bounds=self.search_space_digest.bounds,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
        )
        self.assertTrue(
            torch.equal(
                mock_input_constructor.call_args[1].get("X_baseline"),
                expected_X_baseline,
            ))
        # test inferred objective_thresholds
        with ExitStack() as es:
            _mock_model_infer_objective_thresholds = es.enter_context(
                mock.patch(
                    "ax.models.torch.botorch_modular.acquisition."
                    "infer_objective_thresholds",
                    return_value=torch.tensor([9.9, 3.3,
                                               float("nan")]),
                ))

            objective_weights = torch.tensor([-1.0, -1.0, 0.0])
            outcome_constraints = (
                torch.tensor([[1.0, 0.0, 0.0]]),
                torch.tensor([[10.0]]),
            )
            linear_constraints = (
                torch.tensor([[1.0, 0.0, 0.0]]),
                torch.tensor([[2.0]]),
            )
            _, _, gen_metadata, _ = model.gen(
                n=1,
                bounds=self.search_space_digest.bounds,
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
                linear_constraints=linear_constraints,
                fixed_features=self.fixed_features,
                pending_observations=self.pending_observations,
                model_gen_options=self.model_gen_options,
                rounding_func=self.rounding_func,
                target_fidelities=self.mf_search_space_digest.
                target_fidelities,
            )
            expected_X_baseline = _filter_X_observed(
                Xs=self.moo_training_data.Xs,
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
                bounds=self.search_space_digest.bounds,
                linear_constraints=linear_constraints,
                fixed_features=self.fixed_features,
            )
            ckwargs = _mock_model_infer_objective_thresholds.call_args[1]
            self.assertTrue(
                torch.equal(
                    ckwargs["objective_weights"],
                    objective_weights,
                ))
            oc = ckwargs["outcome_constraints"]
            self.assertTrue(torch.equal(oc[0], outcome_constraints[0]))
            self.assertTrue(torch.equal(oc[1], outcome_constraints[1]))
            m = ckwargs["model"]
            self.assertIsInstance(m, FixedNoiseGP)
            self.assertEqual(m.num_outputs, 2)
            self.assertIn("objective_thresholds", gen_metadata)
            obj_t = gen_metadata["objective_thresholds"]
            self.assertTrue(torch.equal(obj_t[:2], torch.tensor([9.9, 3.3])))
            self.assertTrue(np.isnan(obj_t[2].item()))

        # Avoid polluting the registry for other tests; re-register correct input
        # contructor for qNEHVI.
        _register_acqf_input_constructor(
            acqf_cls=qNoisyExpectedHypervolumeImprovement,
            input_constructor=qNEHVI_input_constructor,
        )
Beispiel #16
0
def get_botorch_model() -> BoTorchModel:
    return BoTorchModel(
        surrogate=get_surrogate(), acquisition_class=get_acquisition_type()
    )
Beispiel #17
0
def get_botorch_model_with_default_acquisition_class() -> BoTorchModel:
    return BoTorchModel(
        surrogate=get_surrogate(),
        acquisition_class=Acquisition,
        botorch_acqf_class=get_acquisition_function_type(),
    )
Beispiel #18
0
class BoTorchModelTest(TestCase):
    def setUp(self):
        self.botorch_model_class = SingleTaskGP
        self.surrogate = Surrogate(
            botorch_model_class=self.botorch_model_class)
        self.acquisition_class = Acquisition
        self.botorch_acqf_class = qExpectedImprovement
        self.acquisition_options = ACQ_OPTIONS
        self.model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            botorch_acqf_class=self.botorch_acqf_class,
            acquisition_options=self.acquisition_options,
        )

        self.dtype = torch.float
        self.device = torch.device("cpu")
        tkwargs = {"dtype": self.dtype, "device": self.device}
        Xs1, Ys1, Yvars1, self.bounds, _, _, _ = get_torch_test_data(
            dtype=self.dtype)
        Xs2, Ys2, Yvars2, _, _, _, _ = get_torch_test_data(dtype=self.dtype,
                                                           offset=1.0)
        self.Xs = Xs1
        self.Ys = Ys1
        self.Yvars = Yvars1
        self.X_test = Xs2[0]
        self.block_design_training_data = TrainingData(Xs=self.Xs,
                                                       Ys=self.Ys,
                                                       Yvars=self.Yvars)
        self.non_block_design_training_data = TrainingData(
            Xs=Xs1 + Xs2,
            Ys=Ys1 + Ys2,
            Yvars=Yvars1 + Yvars2,
        )
        self.search_space_digest = SearchSpaceDigest(
            feature_names=["x1", "x2", "x3"],
            bounds=[(0.0, 10.0), (0.0, 10.0), (0.0, 10.0)],
        )
        self.mf_search_space_digest = SearchSpaceDigest(
            feature_names=["x1", "x2", "x3"],
            bounds=[(0.0, 10.0), (0.0, 10.0), (0.0, 10.0)],
            task_features=[],
            fidelity_features=[2],
            target_fidelities={1: 1.0},
        )
        self.metric_names = ["y"]
        self.metric_names_for_list_surrogate = ["y1", "y2"]
        self.candidate_metadata = []
        self.optimizer_options = {
            Keys.NUM_RESTARTS: 40,
            Keys.RAW_SAMPLES: 1024
        }
        self.model_gen_options = {
            Keys.OPTIMIZER_KWARGS: self.optimizer_options
        }
        self.objective_weights = torch.tensor([1.0], **tkwargs)
        self.moo_objective_weights = torch.tensor([1.0, 1.5, 0.0], **tkwargs)
        self.moo_objective_thresholds = torch.tensor(
            [0.5, 1.5, float("nan")], **tkwargs)
        self.outcome_constraints = None
        self.linear_constraints = None
        self.fixed_features = None
        self.pending_observations = None
        self.rounding_func = "func"
        self.moo_training_data = TrainingData(
            Xs=self.Xs * 3,
            Ys=self.non_block_design_training_data.Ys + self.Ys,
            Yvars=self.Yvars * 3,
        )
        self.moo_metric_names = ["y1", "y2", "y3"]

    def test_init(self):
        # Default model with no specifications.
        model = BoTorchModel()
        self.assertEqual(model.acquisition_class, Acquisition)
        # Model that specifies `botorch_acqf_class`.
        model = BoTorchModel(botorch_acqf_class=qExpectedImprovement)
        self.assertEqual(model.acquisition_class, Acquisition)
        self.assertEqual(model.botorch_acqf_class, qExpectedImprovement)

        # Check defaults for refitting settings.
        self.assertTrue(model.refit_on_update)
        self.assertFalse(model.refit_on_cv)
        self.assertTrue(model.warm_start_refit)

        # Check setting non-default refitting settings
        mdl2 = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=self.acquisition_class,
            acquisition_options=self.acquisition_options,
            refit_on_update=False,
            refit_on_cv=True,
            warm_start_refit=False,
        )
        self.assertFalse(mdl2.refit_on_update)
        self.assertTrue(mdl2.refit_on_cv)
        self.assertFalse(mdl2.warm_start_refit)

    def test_surrogate_property(self):
        self.assertEqual(self.surrogate, self.model.surrogate)
        self.model._surrogate = None
        with self.assertRaisesRegex(ValueError,
                                    "Surrogate has not yet been set."):
            self.model.surrogate

    def test_botorch_acqf_class_property(self):
        self.assertEqual(self.botorch_acqf_class,
                         self.model.botorch_acqf_class)
        self.model._botorch_acqf_class = None
        with self.assertRaisesRegex(
                ValueError,
                "BoTorch `AcquisitionFunction` has not yet been set."):
            self.model.botorch_acqf_class

    @mock.patch(f"{SURROGATE_PATH}.Surrogate.fit")
    @mock.patch(f"{MODEL_PATH}.choose_model_class", return_value=SingleTaskGP)
    def test_fit(self, mock_choose_model_class, mock_fit):
        # If surrogate is not yet set, initialize it with dispatcher functions.
        self.model._surrogate = None
        self.model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            search_space_digest=self.mf_search_space_digest,
            metric_names=self.metric_names,
            candidate_metadata=self.candidate_metadata,
        )
        # `choose_model_class` is called.
        mock_choose_model_class.assert_called_with(
            Yvars=self.Yvars,
            search_space_digest=self.mf_search_space_digest,
        )
        # Since we want to refit on updates but not warm start refit, we clear the
        # state dict.
        mock_fit.assert_called_with(
            training_data=self.block_design_training_data,
            search_space_digest=self.mf_search_space_digest,
            metric_names=self.metric_names,
            candidate_metadata=self.candidate_metadata,
            state_dict=None,
            refit=True,
        )

    @mock.patch(f"{SURROGATE_PATH}.Surrogate.update")
    def test_update(self, mock_update):
        self.model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            search_space_digest=self.mf_search_space_digest,
            metric_names=self.metric_names,
            candidate_metadata=self.candidate_metadata,
        )
        for refit_on_update, warm_start_refit in [
            (True, True),
            (True, False),
            (False, True),
        ]:
            self.model.refit_on_update = refit_on_update
            self.model.warm_start_refit = warm_start_refit
            self.model.update(
                Xs=self.Xs,
                Ys=self.Ys,
                Yvars=self.Yvars,
                search_space_digest=self.mf_search_space_digest,
                metric_names=self.metric_names,
                candidate_metadata=self.candidate_metadata,
            )
            expected_state_dict = (None if refit_on_update
                                   and not warm_start_refit else
                                   self.model.surrogate.model.state_dict())

            # Check for correct call args
            call_args = mock_update.call_args_list[-1][1]
            self.assertEqual(call_args.get("training_data"),
                             self.block_design_training_data)
            self.assertEqual(call_args.get("search_space_digest"),
                             self.mf_search_space_digest)
            self.assertEqual(call_args.get("metric_names"), self.metric_names)
            self.assertEqual(call_args.get("candidate_metadata"),
                             self.candidate_metadata)

            # Check correct `refit` and `state_dict` values.
            self.assertEqual(mock_update.call_args_list[-1][1].get("refit"),
                             refit_on_update)
            if expected_state_dict is None:
                self.assertIsNone(
                    mock_update.call_args_list[-1][1].get("state_dict"),
                    expected_state_dict,
                )
            else:
                self.assertEqual(
                    mock_update.call_args_list[-1][1].get("state_dict").keys(),
                    expected_state_dict.keys(),
                )

    @mock.patch(f"{SURROGATE_PATH}.Surrogate.predict")
    def test_predict(self, mock_predict):
        self.model.predict(X=self.X_test)
        mock_predict.assert_called_with(X=self.X_test)

    @mock.patch(f"{MODEL_PATH}.BoTorchModel.fit")
    def test_cross_validate(self, mock_fit):
        self.model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            search_space_digest=self.mf_search_space_digest,
            candidate_metadata=self.candidate_metadata,
            metric_names=self.metric_names,
        )

        old_surrogate = self.model.surrogate
        old_surrogate._model = mock.MagicMock()
        old_surrogate._model.state_dict.return_value = {"key": "val"}

        for refit_on_cv, warm_start_refit in [
            (True, True),
            (True, False),
            (False, True),
        ]:
            self.model.refit_on_cv = refit_on_cv
            self.model.warm_start_refit = warm_start_refit
            with mock.patch(
                    f"{SURROGATE_PATH}.Surrogate.clone_reset",
                    return_value=mock.MagicMock(spec=Surrogate),
            ) as mock_clone_reset:
                self.model.cross_validate(
                    Xs_train=self.Xs,
                    Ys_train=self.Ys,
                    Yvars_train=self.Yvars,
                    X_test=self.X_test,
                    search_space_digest=self.mf_search_space_digest,
                    metric_names=self.metric_names,
                )
                # Check that `predict` is called on the cloned surrogate, not
                # on the original one.
                mock_predict = mock_clone_reset.return_value.predict
                mock_predict.assert_called_once()

                # Check correct X_test.
                self.assertTrue(
                    torch.equal(
                        mock_predict.call_args_list[-1][1].get("X"),
                        self.X_test,
                    ), )

            # Check that surrogate is reset back to `old_surrogate` at the
            # end of cross-validation.
            self.assertTrue(self.model.surrogate is old_surrogate)

            expected_state_dict = (None
                                   if refit_on_cv and not warm_start_refit else
                                   self.model.surrogate.model.state_dict())

            # Check correct `refit` and `state_dict` values.
            self.assertEqual(mock_fit.call_args_list[-1][1].get("refit"),
                             refit_on_cv)
            if expected_state_dict is None:
                self.assertIsNone(
                    mock_fit.call_args_list[-1][1].get("state_dict"),
                    expected_state_dict,
                )
            else:
                self.assertEqual(
                    mock_fit.call_args_list[-1][1].get("state_dict").keys(),
                    expected_state_dict.keys(),
                )

    @mock.patch(
        f"{MODEL_PATH}.construct_acquisition_and_optimizer_options",
        return_value=(
            ACQ_OPTIONS,
            {
                "num_restarts": 40,
                "raw_samples": 1024
            },
        ),
    )
    @mock.patch(f"{CURRENT_PATH}.Acquisition")
    @mock.patch(f"{MODEL_PATH}.get_rounding_func", return_value="func")
    @mock.patch(f"{MODEL_PATH}._to_inequality_constraints", return_value=[])
    @mock.patch(f"{MODEL_PATH}.choose_botorch_acqf_class",
                return_value=qExpectedImprovement)
    def test_gen(
        self,
        mock_choose_botorch_acqf_class,
        mock_inequality_constraints,
        mock_rounding,
        mock_acquisition,
        mock_construct_options,
    ):
        mock_acquisition.return_value.optimize.return_value = (
            torch.tensor([1.0]),
            torch.tensor([2.0]),
        )
        model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=Acquisition,
            acquisition_options=self.acquisition_options,
        )
        model.surrogate.construct(
            training_data=self.block_design_training_data,
            fidelity_features=self.mf_search_space_digest.fidelity_features,
        )
        model._botorch_acqf_class = None
        # Assert that error is raised if we haven't fit the model
        with self.assertRaises(RuntimeError):
            model.gen(
                n=1,
                bounds=self.mf_search_space_digest.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=self.outcome_constraints,
                linear_constraints=self.linear_constraints,
                fixed_features=self.fixed_features,
                pending_observations=self.pending_observations,
                model_gen_options=self.model_gen_options,
                rounding_func=self.rounding_func,
                target_fidelities=self.mf_search_space_digest.
                target_fidelities,
            )
        # Add search space digest reference to make the model think it's been fit
        model._search_space_digest = self.mf_search_space_digest
        model.gen(
            n=1,
            bounds=self.mf_search_space_digest.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.mf_search_space_digest.target_fidelities,
        )

        # Assert `construct_acquisition_and_optimizer_options` called with kwargs
        mock_construct_options.assert_called_with(
            acqf_options=self.acquisition_options,
            model_gen_options=self.model_gen_options,
        )
        # Assert `choose_botorch_acqf_class` is called
        mock_choose_botorch_acqf_class.assert_called_once()
        self.assertEqual(model._botorch_acqf_class, qExpectedImprovement)
        # Assert `acquisition_class` called with kwargs
        mock_acquisition.assert_called_with(
            surrogate=self.surrogate,
            botorch_acqf_class=model.botorch_acqf_class,
            search_space_digest=self.mf_search_space_digest,
            objective_weights=self.objective_weights,
            objective_thresholds=None,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            options=self.acquisition_options,
        )
        # Assert `optimize` called with kwargs
        mock_acquisition.return_value.optimize.assert_called_with(
            n=1,
            search_space_digest=self.mf_search_space_digest,
            inequality_constraints=[],
            fixed_features=self.fixed_features,
            rounding_func="func",
            optimizer_options=self.optimizer_options,
        )

    def test_best_point(self):
        with self.assertRaises(NotImplementedError):
            self.model.best_point(bounds=self.bounds,
                                  objective_weights=self.objective_weights)

    @mock.patch(
        f"{MODEL_PATH}.construct_acquisition_and_optimizer_options",
        return_value=({
            "num_fantasies": 64
        }, {
            "num_restarts": 40,
            "raw_samples": 1024
        }),
    )
    @mock.patch(f"{CURRENT_PATH}.Acquisition", autospec=True)
    def test_evaluate_acquisition_function(self, mock_ei,
                                           _mock_construct_options):
        model = BoTorchModel(
            surrogate=self.surrogate,
            acquisition_class=Acquisition,
            acquisition_options=self.acquisition_options,
        )
        model.surrogate.construct(
            training_data=self.block_design_training_data,
            search_space_digest=SearchSpaceDigest(
                feature_names=[],
                bounds=[],
                fidelity_features=self.mf_search_space_digest.
                fidelity_features,
            ),
        )
        model.evaluate_acquisition_function(
            X=self.X_test,
            search_space_digest=self.mf_search_space_digest,
            objective_weights=self.objective_weights,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            acq_options=self.acquisition_options,
        )
        # `mock_ei` is a mock of class, so to check the mock `evaluate` on
        # instance of that class, we use `mock_ei.return_value.evaluate`
        mock_ei.return_value.evaluate.assert_called()

    @mock.patch(f"{LIST_SURROGATE_PATH}.ListSurrogate.__init__",
                return_value=None)
    @mock.patch(f"{LIST_SURROGATE_PATH}.ListSurrogate.fit", return_value=None)
    def test_surrogate_options_propagation(self, _, mock_init):
        model = BoTorchModel(surrogate_options={"some_option": "some_value"})
        model.fit(
            Xs=self.non_block_design_training_data.Xs,
            Ys=self.non_block_design_training_data.Ys,
            Yvars=self.non_block_design_training_data.Yvars,
            search_space_digest=self.mf_search_space_digest,
            metric_names=self.metric_names_for_list_surrogate,
            candidate_metadata=self.candidate_metadata,
        )
        mock_init.assert_called_with(
            botorch_submodel_class_per_outcome={
                outcome: FixedNoiseMultiFidelityGP
                for outcome in self.metric_names_for_list_surrogate
            },
            some_option="some_value",
        )

    @mock.patch(
        f"{ACQUISITION_PATH}.Acquisition.optimize",
        # Dummy candidates and acquisition function value.
        return_value=(torch.tensor([[2.0]]), torch.tensor([1.0])),
    )
    def test_list_surrogate_choice(self, _):  # , mock_extract_training_data):
        model = BoTorchModel()
        model.fit(
            Xs=self.non_block_design_training_data.Xs,
            Ys=self.non_block_design_training_data.Ys,
            Yvars=self.non_block_design_training_data.Yvars,
            search_space_digest=self.mf_search_space_digest,
            metric_names=self.metric_names_for_list_surrogate,
            candidate_metadata=self.candidate_metadata,
        )
        # A list surrogate should be chosen, since Xs are not all the same.
        self.assertIsInstance(model.surrogate, ListSurrogate)
        self.assertIsInstance(model.surrogate.model, ModelListGP)
        for submodel in model.surrogate.model.models:
            # There are fidelity features and nonempty Yvars, so
            # fixed noise MFGP should be chosen.
            self.assertIsInstance(submodel, FixedNoiseMultiFidelityGP)

    @mock.patch(
        f"{ACQUISITION_PATH}.Acquisition.optimize",
        # Dummy candidates and acquisition function value.
        return_value=(torch.tensor([[2.0]]), torch.tensor([1.0])),
    )
    def test_MOO(self, _):
        # Add mock for qNEHVI input constructor to catch arguments passed to it.
        qNEHVI_input_constructor = get_acqf_input_constructor(
            qNoisyExpectedHypervolumeImprovement)
        mock_input_constructor = mock.MagicMock(
            qNEHVI_input_constructor, side_effect=qNEHVI_input_constructor)
        _register_acqf_input_constructor(
            acqf_cls=qNoisyExpectedHypervolumeImprovement,
            input_constructor=mock_input_constructor,
        )

        model = BoTorchModel()
        model.fit(
            Xs=self.moo_training_data.Xs,
            Ys=self.moo_training_data.Ys,
            Yvars=self.moo_training_data.Yvars,
            search_space_digest=self.search_space_digest,
            metric_names=self.moo_metric_names,
            candidate_metadata=self.candidate_metadata,
        )
        self.assertIsInstance(model.surrogate.model, FixedNoiseGP)
        _, _, gen_metadata, _ = model.gen(
            n=1,
            bounds=self.search_space_digest.bounds,
            objective_weights=self.moo_objective_weights,
            objective_thresholds=self.moo_objective_thresholds,
            outcome_constraints=self.outcome_constraints,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
            pending_observations=self.pending_observations,
            model_gen_options=self.model_gen_options,
            rounding_func=self.rounding_func,
            target_fidelities=self.mf_search_space_digest.target_fidelities,
        )
        ckwargs = mock_input_constructor.call_args[1]
        self.assertIs(model.botorch_acqf_class,
                      qNoisyExpectedHypervolumeImprovement)
        mock_input_constructor.assert_called_once()
        m = ckwargs["model"]
        self.assertIsInstance(m, FixedNoiseGP)
        self.assertEqual(m.num_outputs, 2)
        training_data = ckwargs["training_data"]
        for attr in ("Xs", "Ys", "Yvars"):
            self.assertTrue(
                all(
                    torch.equal(x1, x2) for x1, x2 in zip(
                        getattr(training_data, attr),
                        getattr(self.moo_training_data, attr),
                    )))
        self.assertTrue(
            torch.equal(ckwargs["objective_thresholds"],
                        self.moo_objective_thresholds[:2]))
        self.assertIsNone(ckwargs["outcome_constraints"], )
        self.assertIsNone(ckwargs["X_pending"], )
        obj_t = gen_metadata["objective_thresholds"]
        self.assertTrue(
            torch.equal(obj_t[:2], self.moo_objective_thresholds[:2]))
        self.assertTrue(np.isnan(obj_t[2].item()))

        self.assertIsInstance(
            ckwargs.get("objective"),
            WeightedMCMultiOutputObjective,
        )
        self.assertTrue(
            torch.equal(
                mock_input_constructor.call_args[1].get("objective").weights,
                self.moo_objective_weights[:2],
            ))
        expected_X_baseline = _filter_X_observed(
            Xs=self.moo_training_data.Xs,
            objective_weights=self.moo_objective_weights,
            outcome_constraints=self.outcome_constraints,
            bounds=self.search_space_digest.bounds,
            linear_constraints=self.linear_constraints,
            fixed_features=self.fixed_features,
        )
        self.assertTrue(
            torch.equal(
                mock_input_constructor.call_args[1].get("X_baseline"),
                expected_X_baseline,
            ))
        # test inferred objective_thresholds
        with ExitStack() as es:
            _mock_model_infer_objective_thresholds = es.enter_context(
                mock.patch(
                    "ax.models.torch.botorch_modular.acquisition."
                    "infer_objective_thresholds",
                    return_value=torch.tensor([9.9, 3.3,
                                               float("nan")]),
                ))

            objective_weights = torch.tensor([-1.0, -1.0, 0.0])
            outcome_constraints = (
                torch.tensor([[1.0, 0.0, 0.0]]),
                torch.tensor([[10.0]]),
            )
            linear_constraints = (
                torch.tensor([[1.0, 0.0, 0.0]]),
                torch.tensor([[2.0]]),
            )
            _, _, gen_metadata, _ = model.gen(
                n=1,
                bounds=self.search_space_digest.bounds,
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
                linear_constraints=linear_constraints,
                fixed_features=self.fixed_features,
                pending_observations=self.pending_observations,
                model_gen_options=self.model_gen_options,
                rounding_func=self.rounding_func,
                target_fidelities=self.mf_search_space_digest.
                target_fidelities,
            )
            expected_X_baseline = _filter_X_observed(
                Xs=self.moo_training_data.Xs,
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
                bounds=self.search_space_digest.bounds,
                linear_constraints=linear_constraints,
                fixed_features=self.fixed_features,
            )
            ckwargs = _mock_model_infer_objective_thresholds.call_args[1]
            self.assertTrue(
                torch.equal(
                    ckwargs["objective_weights"],
                    objective_weights,
                ))
            oc = ckwargs["outcome_constraints"]
            self.assertTrue(torch.equal(oc[0], outcome_constraints[0]))
            self.assertTrue(torch.equal(oc[1], outcome_constraints[1]))
            m = ckwargs["model"]
            self.assertIsInstance(m, FixedNoiseGP)
            self.assertEqual(m.num_outputs, 2)
            self.assertIn("objective_thresholds", gen_metadata)
            obj_t = gen_metadata["objective_thresholds"]
            self.assertTrue(torch.equal(obj_t[:2], torch.tensor([9.9, 3.3])))
            self.assertTrue(np.isnan(obj_t[2].item()))

        # Avoid polluting the registry for other tests; re-register correct input
        # contructor for qNEHVI.
        _register_acqf_input_constructor(
            acqf_cls=qNoisyExpectedHypervolumeImprovement,
            input_constructor=qNEHVI_input_constructor,
        )