Beispiel #1
0
 def train_predict_pool(cls, args):
     X, y, tr, ts, textModel_params = args
     params = TextModel.params()
     textModel_params = {k: v for k, v in textModel_params.items() if k in params}
     t = TextModel([X[x] for x in tr], **textModel_params)
     m = cls(t).fit([t[X[x]] for x in tr], [y[x] for x in tr])
     return ts, np.array(m.predict([t[X[x]] for x in ts]))
Beispiel #2
0
 def train_predict_pool(cls, args):
     X, y, tr, ts, textModel_params = args
     params = TextModel.params()
     textModel_params = {
         k: v
         for k, v in textModel_params.items() if k in params
     }
     t = TextModel([X[x] for x in tr], **textModel_params)
     m = cls(t).fit([t[X[x]] for x in tr], [y[x] for x in tr])
     return ts, np.array(m.predict([t[X[x]] for x in ts]))
Beispiel #3
0
def clean_params(kw):
    params = TextModel.params()
    return {k: v for k, v in kw.items() if k in params}