Beispiel #1
0
def test_combine_heuristics(heuristic1, heuristic2, weights):
    np.random.seed(1337)
    predictions = [distributions_3d, distributions_5d]

    with pytest.raises(ValueError) as excinfo:
        heuristic1(predictions)
    assert "CombineHeuristics" in str(excinfo.value)

    if isinstance(heuristic1,
                  Certainty) and not isinstance(heuristic2, Certainty):
        with pytest.raises(Exception) as e_info:
            heuristics = CombineHeuristics([heuristic1, heuristic2],
                                           weights=weights,
                                           reduction='mean')
            assert 'heuristics should have the same value for `revesed` parameter' in str(
                e_info.value)
    else:
        heuristics = CombineHeuristics([heuristic1, heuristic2],
                                       weights=weights,
                                       reduction='mean')
        if isinstance(heuristic1, Certainty) and isinstance(
                heuristic2, Certainty):
            assert not heuristics.reversed
        else:
            assert heuristics.reversed
        ranks = heuristics(predictions)
        assert np.all(ranks == [1, 2, 0]
                      ), "Combine Heuristics is not right {}".format(ranks)
Beispiel #2
0
def test_combine_heuristics_reorder_list():
    # we are just testing if given calculated uncertainty measures for chunks of data
    # the `reorder_indices` would make correct decision. Here index 0 has the
    # highest uncertainty chosen but both methods (uncertainties1 and uncertainties2)
    bald_firstchunk = np.array([0.98])
    bald_secondchunk = np.array([0.87, 0.68])

    variance_firstchunk = np.array([0.76])
    variance_secondchunk = np.array([0.63, 0.48])
    streaming_prediction = [[bald_firstchunk, variance_firstchunk],
                            [bald_secondchunk, variance_secondchunk]]

    heuristics = CombineHeuristics([BALD(), Variance()], weights=[0.5, 0.5],
                                   reduction='mean')
    ranks = heuristics.reorder_indices(streaming_prediction)
    assert np.all(ranks == [0, 1, 2]), "Combine Heuristics is not right {}".format(ranks)
Beispiel #3
0
def test_combine_heuristics_uncertainty_generator():
    np.random.seed(1337)
    prediction_chunks = [chunks(distributions_3d, 2), chunks(distributions_5d, 2)]
    predictions = [distributions_3d, distributions_5d]

    heuristics = CombineHeuristics([BALD(), Variance()], weights=[0.5, 0.5],
                                   reduction='mean')

    assert np.allclose(
        heuristics.get_uncertainties(predictions),
        heuristics.get_uncertainties(prediction_chunks),
    )

    prediction_chunks = [chunks(distributions_3d, 2), chunks(distributions_5d, 2)]
    ranks = heuristics(prediction_chunks)
    assert np.all(ranks == [1, 2, 0]), "Combine Heuristics is not right {}".format(ranks)