def _init_operators(self, current_stage="online"):
     # The difference between this method and the parent one is that non-hierarchical affine
     # expansion storage is requested during the online stage and during the postprocessing
     # of the offline stage.
     if current_stage == "online":
         # Initialize all terms using a non-hierarchical affine expansion storage, and then loading from file
         for term in self.terms:
             self.operator[term] = OnlineNonHierarchicalAffineExpansionStorage(0) # it will be resized by assemble_operator
             self.assemble_operator(term, "online")
             self.Q[term] = len(self.operator[term])
         # Initialize additional reduced operator related to vanishing viscosity
         self.operator["vanishing_viscosity"] = OnlineNonHierarchicalAffineExpansionStorage(1)
         self.assemble_operator("vanishing_viscosity", "online")
     elif current_stage == "offline":
         # Call Parent
         EllipticCoerciveReducedProblem_DerivedClass._init_operators(self, current_stage)
     elif current_stage == "offline_vanishing_viscosity_postprocessing":
         # Initialize additional truth operators
         self.truth_problem.operator["k"] = AffineExpansionStorage(self.truth_problem.assemble_operator("k"))
         self.truth_problem.operator["m"] = AffineExpansionStorage(self.truth_problem.assemble_operator("m"))
         # Initialize all terms using a non-hierarchical affine expansion storage
         for term in self.terms:
             self.Q[term] = self.truth_problem.Q[term]
             self.operator[term] = OnlineNonHierarchicalAffineExpansionStorage(self.Q[term])
         # Initialize additional reduced operator related to vanishing viscosity
         self.operator["vanishing_viscosity"] = OnlineNonHierarchicalAffineExpansionStorage(1)
     else:
         # Call Parent, which may eventually raise an error
         EllipticCoerciveReducedProblem_DerivedClass._init_operators(self, current_stage)
 def _init_inner_products(self, current_stage="online"):
     # The difference between this method and the parent one is that non-hierarchical affine
     # expansion storage is requested during the online stage and during the postprocessing
     # of the offline stage.
     if current_stage == "online":
         self.inner_product = OnlineNonHierarchicalAffineExpansionStorage(
             1)
         self.projection_inner_product = OnlineNonHierarchicalAffineExpansionStorage(
             1)
         self.assemble_operator("inner_product", "online")
         self.assemble_operator("projection_inner_product", "online")
         self._disable_inner_product_combination = True
     elif current_stage == "offline":
         EllipticCoerciveReducedProblem_DerivedClass._init_inner_products(
             self, current_stage)
     elif current_stage == "offline_vanishing_viscosity_postprocessing":
         self.inner_product = OnlineNonHierarchicalAffineExpansionStorage(
             1)
         self.projection_inner_product = OnlineNonHierarchicalAffineExpansionStorage(
             1)
         self._disable_inner_product_combination = True
     else:
         # Call Parent, which may eventually raise an error
         EllipticCoerciveReducedProblem_DerivedClass._init_inner_products(
             self, current_stage)
Beispiel #3
0
 def _init_operators(self, current_stage="online"):
     # Initialize additional reduced operators related to rectification. Note that these operators
     # are not hierarchical because:
     # * the basis is possibly non-hierarchical
     # * the coefficients of the reduced solution for different reduced sizes are definitely not hierarchical
     if current_stage == "online":
         self.operator[
             "projection_truth_snapshots"] = OnlineNonHierarchicalAffineExpansionStorage(
                 1)
         assert len(self.online_solve_kwargs_with_rectification) is len(
             self.online_solve_kwargs_without_rectification)
         self.operator[
             "projection_reduced_snapshots"] = OnlineNonHierarchicalAffineExpansionStorage(
                 len(self.online_solve_kwargs_with_rectification))
         self.assemble_operator("projection_truth_snapshots", "online")
         self.assemble_operator("projection_reduced_snapshots",
                                "online")
         # Call Parent
         EllipticCoerciveReducedProblem_DerivedClass._init_operators(
             self, current_stage)
     elif current_stage == "offline":
         # Call Parent
         EllipticCoerciveReducedProblem_DerivedClass._init_operators(
             self, current_stage)
     elif current_stage == "offline_rectification_postprocessing":
         self.operator[
             "projection_truth_snapshots"] = OnlineNonHierarchicalAffineExpansionStorage(
                 1)
         assert len(self.online_solve_kwargs_with_rectification) is len(
             self.online_solve_kwargs_without_rectification)
         self.operator[
             "projection_reduced_snapshots"] = OnlineNonHierarchicalAffineExpansionStorage(
                 len(self.online_solve_kwargs_with_rectification))
         # We do not call Parent method as there is no need to re-initialize offline operators
     else:
         # Call Parent, which may eventually raise an error
         EllipticCoerciveReducedProblem_DerivedClass._init_operators(
             self, current_stage)
 class OnlineVanishingViscosityDecoratedReducedProblem_Class(EllipticCoerciveReducedProblem_DerivedClass):
     
     def __init__(self, truth_problem, **kwargs):
         # Call to parent
         EllipticCoerciveReducedProblem_DerivedClass.__init__(self, truth_problem, **kwargs)
         
         # Store vanishing viscosity data
         self._viscosity = truth_problem._viscosity
         self._N_threshold_min = truth_problem._N_threshold_min
         self._N_threshold_max = truth_problem._N_threshold_max
         
         # Temporary storage for vanishing viscosity eigenvalues
         self.vanishing_viscosity_eigenvalues = list()
         
         # Default values for keyword arguments in solve
         self._online_solve_default_kwargs = OrderedDict()
         self._online_solve_default_kwargs["online_stabilization"] = False
         self._online_solve_default_kwargs["online_vanishing_viscosity"] = True
         self.OnlineSolveKwargs = OnlineSolveKwargsGenerator(**self._online_solve_default_kwargs)
         
         # Flag to disable inner product combination after vanishing viscosity operator has been setup
         self._disable_inner_product_combination = False
         # Flag to disable error estimation after vanishing viscosity operator has been setup
         self._disable_error_estimation = False
         
     def _init_operators(self, current_stage="online"):
         # The difference between this method and the parent one is that non-hierarchical affine
         # expansion storage is requested during the online stage and during the postprocessing
         # of the offline stage.
         if current_stage == "online":
             # Initialize all terms using a non-hierarchical affine expansion storage, and then loading from file
             for term in self.terms:
                 self.operator[term] = OnlineNonHierarchicalAffineExpansionStorage(0) # it will be resized by assemble_operator
                 self.assemble_operator(term, "online")
                 self.Q[term] = len(self.operator[term])
             # Initialize additional reduced operator related to vanishing viscosity
             self.operator["vanishing_viscosity"] = OnlineNonHierarchicalAffineExpansionStorage(1)
             self.assemble_operator("vanishing_viscosity", "online")
         elif current_stage == "offline":
             # Call Parent
             EllipticCoerciveReducedProblem_DerivedClass._init_operators(self, current_stage)
         elif current_stage == "offline_vanishing_viscosity_postprocessing":
             # Initialize additional truth operators
             self.truth_problem.operator["k"] = AffineExpansionStorage(self.truth_problem.assemble_operator("k"))
             self.truth_problem.operator["m"] = AffineExpansionStorage(self.truth_problem.assemble_operator("m"))
             # Initialize all terms using a non-hierarchical affine expansion storage
             for term in self.terms:
                 self.Q[term] = self.truth_problem.Q[term]
                 self.operator[term] = OnlineNonHierarchicalAffineExpansionStorage(self.Q[term])
             # Initialize additional reduced operator related to vanishing viscosity
             self.operator["vanishing_viscosity"] = OnlineNonHierarchicalAffineExpansionStorage(1)
         else:
             # Call Parent, which may eventually raise an error
             EllipticCoerciveReducedProblem_DerivedClass._init_operators(self, current_stage)
             
     def _init_inner_products(self, current_stage="online"):
         # The difference between this method and the parent one is that non-hierarchical affine
         # expansion storage is requested during the online stage and during the postprocessing
         # of the offline stage.
         if current_stage == "online":
             self.inner_product = OnlineNonHierarchicalAffineExpansionStorage(1)
             self.projection_inner_product = OnlineNonHierarchicalAffineExpansionStorage(1)
             self.assemble_operator("inner_product", "online")
             self.assemble_operator("projection_inner_product", "online")
             self._disable_inner_product_combination = True
         elif current_stage == "offline":
             EllipticCoerciveReducedProblem_DerivedClass._init_inner_products(self, current_stage)
         elif current_stage == "offline_vanishing_viscosity_postprocessing":
             self.inner_product = OnlineNonHierarchicalAffineExpansionStorage(1)
             self.projection_inner_product = OnlineNonHierarchicalAffineExpansionStorage(1)
             self._disable_inner_product_combination = True
         else:
             # Call Parent, which may eventually raise an error
             EllipticCoerciveReducedProblem_DerivedClass._init_inner_products(self, current_stage)
             
     def _combine_all_inner_products(self):
         if self._disable_inner_product_combination:
             return NotImplemented
         else:
             return EllipticCoerciveReducedProblem_DerivedClass._combine_all_inner_products(self)
         
     def _combine_all_projection_inner_products(self):
         if self._disable_inner_product_combination:
             return NotImplemented
         else:
             return EllipticCoerciveReducedProblem_DerivedClass._combine_all_projection_inner_products(self)
         
     def _init_basis_functions(self, current_stage="online"):
         if current_stage == "online":
             if self.basis_functions is None: # avoid re-initializing basis functions matrix multiple times
                 self.basis_functions = NonHierarchicalBasisFunctionsMatrix(self.truth_problem.V)
             self.basis_functions.init(self.truth_problem.components)
             basis_functions_loaded = self.basis_functions.load(self.folder["basis"], "basis")
             if basis_functions_loaded:
                 self.N = len(self.basis_functions)
                 self.N_bc = 0 # TODO handle inhomogeneous bcs
         elif current_stage == "offline":
             EllipticCoerciveReducedProblem_DerivedClass._init_basis_functions(self, current_stage)
         elif current_stage == "offline_vanishing_viscosity_postprocessing":
             self.basis_functions = NonHierarchicalBasisFunctionsMatrix(self.truth_problem.V)
             self.basis_functions.init(self.truth_problem.components)
         else:
             # Call Parent, which may eventually raise an error
             EllipticCoerciveReducedProblem_DerivedClass._init_basis_functions(self, current_stage)
             
     def _init_error_estimation_operators(self, current_stage="online"):
         if current_stage in ("online", "offline_vanishing_viscosity_postprocessing"):
             # Disable error estimation, which would not take into account the additional vanishing viscosity operator
             self._disable_error_estimation = True
         elif current_stage == "offline":
             # Call Parent
             EllipticCoerciveReducedProblem_DerivedClass._init_error_estimation_operators(self, current_stage)
         else:
             # Call Parent, which may eventually raise an error
             EllipticCoerciveReducedProblem_DerivedClass._init_error_estimation_operators(self, current_stage)
             
     def build_reduced_operators(self, current_stage="offline"):
         if current_stage == "offline_vanishing_viscosity_postprocessing":
             EllipticCoerciveReducedProblem_DerivedClass.build_reduced_operators(self, "offline_vanishing_viscosity_postprocessing")
             # Compute vanishing viscosity reduced operator
             print("build vanishing viscosity reduced operator")
             self.operator["vanishing_viscosity"] = self.assemble_operator("vanishing_viscosity", "offline_vanishing_viscosity_postprocessing")
         else:
             # Call Parent, which may eventually raise an error
             EllipticCoerciveReducedProblem_DerivedClass.build_reduced_operators(self, current_stage)
         
     def assemble_operator(self, term, current_stage="online"):
         if term == "vanishing_viscosity":
             assert current_stage in ("online", "offline_vanishing_viscosity_postprocessing")
             if current_stage == "online": # load from file
                 self.operator["vanishing_viscosity"].load(self.folder["reduced_operators"], "operator_vanishing_viscosity")
                 return self.operator["vanishing_viscosity"]
             elif current_stage == "offline_vanishing_viscosity_postprocessing":
                 assert len(self.vanishing_viscosity_eigenvalues) is self.N
                 assert all([len(vanishing_viscosity_eigenvalues_n) is n + 1 for (n, vanishing_viscosity_eigenvalues_n) in enumerate(self.vanishing_viscosity_eigenvalues)])
                 print("build reduced vanishing viscosity operator")
                 for n in range(1, self.N + 1):
                     vanishing_viscosity_expansion = OnlineAffineExpansionStorage(1)
                     vanishing_viscosity_eigenvalues = self.vanishing_viscosity_eigenvalues[n - 1]
                     vanishing_viscosity_operator = OnlineMatrix(n, n)
                     n_min = int(n*self._N_threshold_min)
                     n_max = int(n*self._N_threshold_max)
                     lambda_n_min = vanishing_viscosity_eigenvalues[n_min]
                     lambda_n_max = vanishing_viscosity_eigenvalues[n_max]
                     for i in range(n):
                         lambda_i = vanishing_viscosity_eigenvalues[i]
                         if i < n_min:
                             viscosity_i = 0.
                         elif i < n_max:
                             viscosity_i = (
                                 self._viscosity *
                                 (lambda_i - lambda_n_min)**2/(lambda_n_max - lambda_n_min)**3 *
                                 (2*lambda_n_max**2 - (lambda_n_min + lambda_n_max)*lambda_i)
                             )
                         else:
                             viscosity_i = self._viscosity*lambda_i
                         vanishing_viscosity_operator[i, i] = viscosity_i*lambda_i
                     vanishing_viscosity_expansion[0] = vanishing_viscosity_operator
                     self.operator["vanishing_viscosity"][:n, :n] = vanishing_viscosity_expansion
                 # Save to file
                 self.operator["vanishing_viscosity"].save(self.folder["reduced_operators"], "operator_vanishing_viscosity")
                 return self.operator["vanishing_viscosity"]
             else:
                 raise ValueError("Invalid stage in assemble_operator().")
         else:
             if current_stage == "offline_vanishing_viscosity_postprocessing":
                 if term in self.terms:
                     for n in range(1, self.N + 1):
                         assert self.Q[term] == self.truth_problem.Q[term]
                         term_expansion = OnlineAffineExpansionStorage(self.Q[term])
                         assert self.terms_order[term] in (1, 2)
                         if self.terms_order[term] == 2:
                             for q in range(self.Q[term]):
                                 term_expansion[q] = transpose(self.basis_functions[:n])*self.truth_problem.operator[term][q]*self.basis_functions[:n]
                             self.operator[term][:n, :n] = term_expansion
                         elif self.terms_order[term] == 1:
                             for q in range(self.Q[term]):
                                 term_expansion[q] = transpose(self.basis_functions[:n])*self.truth_problem.operator[term][q]
                             self.operator[term][:n] = term_expansion
                         else:
                             raise ValueError("Invalid value for order of term " + term)
                     self.operator[term].save(self.folder["reduced_operators"], "operator_" + term)
                     return self.operator[term]
                 elif term.startswith("inner_product"):
                     assert len(self.inner_product) == 1 # the affine expansion storage contains only the inner product matrix
                     assert len(self.truth_problem.inner_product) == 1 # the affine expansion storage contains only the inner product matrix
                     for n in range(1, self.N + 1):
                         inner_product_expansion = OnlineAffineExpansionStorage(1)
                         inner_product_expansion[0] = transpose(self.basis_functions[:n])*self.truth_problem.inner_product[0]*self.basis_functions[:n]
                         self.inner_product[:n, :n] = inner_product_expansion
                     self.inner_product.save(self.folder["reduced_operators"], term)
                     return self.inner_product
                 elif term.startswith("projection_inner_product"):
                     assert len(self.projection_inner_product) == 1 # the affine expansion storage contains only the inner product matrix
                     assert len(self.truth_problem.projection_inner_product) == 1 # the affine expansion storage contains only the inner product matrix
                     for n in range(1, self.N + 1):
                         projection_inner_product_expansion = OnlineAffineExpansionStorage(1)
                         projection_inner_product_expansion[0] = transpose(self.basis_functions[:n])*self.truth_problem.projection_inner_product[0]*self.basis_functions[:n]
                         self.projection_inner_product[:n, :n] = projection_inner_product_expansion
                     self.projection_inner_product.save(self.folder["reduced_operators"], term)
                     return self.projection_inner_product
                 elif term.startswith("dirichlet_bc"):
                     raise ValueError("There should be no need to assemble Dirichlet BCs when querying the offline vanishing viscosity postprocessing stage.")
                 else:
                     raise ValueError("Invalid term for assemble_operator().")
             else:
                 return EllipticCoerciveReducedProblem_DerivedClass.assemble_operator(self, term, current_stage)
     
     def _online_size_from_kwargs(self, N, **kwargs):
         N, kwargs = EllipticCoerciveReducedProblem_DerivedClass._online_size_from_kwargs(self, N, **kwargs)
         kwargs = self.OnlineSolveKwargs(**kwargs)
         return N, kwargs
     
     def _solve(self, N, **kwargs):
         # Temporarily change value of stabilized attribute in truth problem
         bak_stabilized = self.truth_problem.stabilized
         self.truth_problem.stabilized = kwargs["online_stabilization"]
         # Solve reduced problem
         if kwargs["online_vanishing_viscosity"]:
             assembled_operator = dict()
             assembled_operator["a"] = (
                 sum(product(self.compute_theta("a"), self.operator["a"][:N, :N])) +
                 self.operator["vanishing_viscosity"][:N, :N][0]
             )
             assembled_operator["f"] = sum(product(self.compute_theta("f"), self.operator["f"][:N]))
             self._solution = OnlineFunction(N)
             solver = LinearSolver(assembled_operator["a"], self._solution, assembled_operator["f"])
             solver.set_parameters(self._linear_solver_parameters)
             solver.solve()
         else:
             EllipticCoerciveReducedProblem_DerivedClass._solve(self, N, **kwargs)
         # Restore original value of stabilized attribute in truth problem
         self.truth_problem.stabilized = bak_stabilized
         
     def estimate_error(self):
         if self._disable_error_estimation:
             return NotImplemented
         else:
             return EllipticCoerciveReducedProblem_DerivedClass.estimate_error(self)