def diag_ggn(self):
     with backpack(new_ext.DiagGGNExact()):
         _, _, loss = self.problem.forward_pass()
         loss.backward()
         diag_ggn = [
             p.diag_ggn_exact for p in self.problem.model.parameters()
         ]
     return diag_ggn
Beispiel #2
0
model = extend(model)
lossfunc = extend(lossfunc)

# %%
# We can now evaluate the loss and do a backward pass with Backpack
# -----------------------------------------------------------------

loss = lossfunc(model(X), y)

with backpack(
    extensions.BatchGrad(),
    extensions.Variance(),
    extensions.SumGradSquared(),
    extensions.BatchL2Grad(),
    extensions.DiagGGNMC(mc_samples=1),
    extensions.DiagGGNExact(),
    extensions.DiagHessian(),
    extensions.KFAC(mc_samples=1),
    extensions.KFLR(),
    extensions.KFRA(),
):
    loss.backward()

# %%
# And here are the results
# -----------------------------------------------------------------

for name, param in model.named_parameters():
    print(name)
    print(".grad.shape:             ", param.grad.shape)
    print(".grad_batch.shape:       ", param.grad_batch.shape)
Beispiel #3
0
def test_interface_diag_ggn():
    interface_test(new_ext.DiagGGNExact())
Beispiel #4
0
def test_interface_diag_ggn_conv():
    interface_test(new_ext.DiagGGNExact(), use_conv=True)
 def diag_ggn(self):
     with backpack(new_ext.DiagGGNExact()):
         self.loss().backward()
         diag_ggn = [p.diag_ggn_exact for p in self.model.parameters()]
     return diag_ggn
Beispiel #6
0
 def diag_ggn(self) -> List[Tensor]:  # noqa:D102
     with backpack(new_ext.DiagGGNExact()):
         _, _, loss = self.problem.forward_pass()
         loss.backward()
     return self.problem.collect_data("diag_ggn_exact")
Beispiel #7
0
"""

from torch.nn import CrossEntropyLoss, Flatten, Linear, Sequential

from backpack import backpack, extend, extensions
from backpack.utils.examples import load_mnist_data

B = 4
X, y = load_mnist_data(B)

print("# Gradient with PyTorch, exact GGN diagonal with BackPACK | B =", B)

model = Sequential(
    Flatten(),
    Linear(784, 10),
)
lossfunc = CrossEntropyLoss()

model = extend(model)
lossfunc = extend(lossfunc)

loss = lossfunc(model(X), y)

with backpack(extensions.DiagGGNExact()):
    loss.backward()

for name, param in model.named_parameters():
    print(name)
    print(".grad.shape:             ", param.grad.shape)
    print(".diag_ggn_exact.shape:   ", param.diag_ggn_exact.shape)