Beispiel #1
0
def test_DBN(finetune_lr, pretraining_epochs, pretrain_lr, cdk, usepersistent,
             training_epochs, L1_reg, L2_reg, hidden_layers_sizes, dataset,
             batch_size, output_folder, shuffle, scaling, dropout, first_layer,
             dumppath):
    """
    Demonstrates how to train and test a Deep Belief Network.

    :type finetune_lr: float
    :param finetune_lr: learning rate used in the finetune stage
    :type pretraining_epochs: int
    :param pretraining_epochs: number of epoch to do pretraining
    :type pretrain_lr: float
    :param pretrain_lr: learning rate to be used during pre-training
    :type cdk: int
    :param cdk: number of Gibbs steps in CD/PCD
    :type training_epochs: int
    :param training_epochs: maximal number of iterations ot run the optimizer
    :type dataset: string
    :param dataset: path the the pickled dataset
    :type batch_size: int
    :param batch_size: the size of a minibatch
    """
    print locals()

    datasets = loadmat(dataset=dataset,
                       shuffle=shuffle,
                       datasel=datasel,
                       scaling=scaling,
                       robust=robust)
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

    print "%d training examples" % train_set_x.get_value(borrow=True).shape[0]
    print "%d feature dimensions" % train_set_x.get_value(borrow=True).shape[1]

    # numpy random generator
    numpy_rng = numpy.random.RandomState(123)
    print '... building the model'
    # construct the Deep Belief Network
    nclass = max(train_set_y.eval()) + 1
    dbn = DBN(numpy_rng=numpy_rng,
              n_ins=train_set_x.get_value(borrow=True).shape[1],
              hidden_layers_sizes=hidden_layers_sizes,
              n_outs=nclass,
              L1_reg=L1_reg,
              L2_reg=L2_reg,
              first_layer=first_layer)
    print 'n_ins:%d' % train_set_x.get_value(borrow=True).shape[1]
    print 'n_outs:%d' % nclass

    # SP contains an ordered list of (pos), ordered by chord class number [0,ydim-1]
    SP = balanced_seg.balanced(nclass, train_set_y)

    # getting pre-training and fine-tuning functions
    # save images of the weights(receptive fields) in this output folder
    # if not os.path.isdir(output_folder):
    # os.makedirs(output_folder)
    # os.chdir(output_folder)

    print '... getting the pretraining functions'
    pretraining_fns = dbn.pretraining_functions(train_set_x=train_set_x,
                                                batch_size=batch_size,
                                                cdk=cdk,
                                                usepersistent=usepersistent)
    # get the training, validation and testing function for the model
    print '... getting the finetuning functions'

    train_fn, train_model, validate_model, test_model = dbn.build_finetune_functions(
        datasets=datasets, batch_size=batch_size, learning_rate=finetune_lr)

    trng = MRG_RandomStreams(1234)
    use_noise = theano.shared(numpy.asarray(0., dtype=theano.config.floatX))
    if dropout:
        # dbn.x = dropout_layer(use_noise, dbn.x, trng, 0.8)
        for i in range(dbn.n_layers):
            dbn.sigmoid_layers[i].output = dropout_layer(
                use_noise, dbn.sigmoid_layers[i].output, trng, 0.5)

    # start-snippet-2
    #########################
    # PRETRAINING THE MODEL #
    #########################

    print '... pre-training the model'
    plotting_time = 0.
    start_time = timeit.default_timer()
    ## Pre-train layer-wise
    for i in xrange(dbn.n_layers):
        # go through pretraining epochs
        for epoch in xrange(pretraining_epochs):
            if pretrain_dropout:
                use_noise.set_value(1.)  # use dropout at pre-training
            # go through the training set
            c = []
            for batch_index in xrange(n_train_batches):
                # FIXME: n_train_batches is a fake item
                bc_idx = balanced_seg.get_bc_idx(SP, nclass)
                c.append(pretraining_fns[i](bc_idx=bc_idx, lr=pretrain_lr))
            print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),
            print numpy.mean(c)
            '''
            for j in range(dbn.n_layers):
                if j == 0:
                    # Plot filters after each training epoch
                    plotting_start = timeit.default_timer()
                    # Construct image from the weight matrix
                    this_layer = dbn.rbm_layers[j]
                    this_field = this_layer.W.get_value(borrow=True).T
                    print "field shape (%d,%d)"%this_field.shape
                    image = Image.fromarray(
                        tile_raster_images(
                            X=this_field[0:100], # take only the first 100 fields (100 * n_visible)
                            #the img_shape and tile_shape depends on n_visible and n_hidden of this_layer
                            # if n_visible = 144 (12,12), if n_visible = 1512 (36,42)
                            img_shape=(12, 12),
                            tile_shape=(10, 10),
                            tile_spacing=(1, 1)
                        )
                    )
                    image.save('filters_at_epoch_%i.png' % epoch)
                    plotting_stop = timeit.default_timer()
                    plotting_time += (plotting_stop - plotting_start)
            '''

    end_time = timeit.default_timer()
    # end-snippet-2
    print >> sys.stderr, ('The pretraining code for file ' +
                          os.path.split(__file__)[1] + ' ran for %.2fm' %
                          ((end_time - start_time) / 60.))
    ########################
    # FINETUNING THE MODEL #
    ########################

    print '... finetuning the model'
    # early-stopping parameters
    patience = 10 * n_train_batches  # look as this many examples regardless
    patience_increase = 2.  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.999  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatches before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_validation_loss = numpy.inf
    test_score = 0.
    start_time = timeit.default_timer()

    done_looping = False
    epoch = 0

    # while (epoch < training_epochs) and (not done_looping):
    while (epoch < training_epochs):
        if earlystop and done_looping:
            print 'early-stopping'
            break
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):
            use_noise.set_value(1.)  # use dropout at training time
            # FIXME: n_train_batches is a fake item
            bc_idx = balanced_seg.get_bc_idx(SP, nclass)
            minibatch_avg_cost = train_fn(bc_idx)
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                use_noise.set_value(0.)  # stop dropout at validation/test time
                validation_losses = validate_model()
                training_losses = train_model()
                this_validation_loss = numpy.mean(validation_losses)
                this_training_loss = numpy.mean(training_losses)

                # also monitor the training losses
                print('epoch %i, minibatch %i/%i, training error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_training_loss * 100.))

                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if (this_validation_loss <
                            best_validation_loss * improvement_threshold):
                        patience = max(patience, iter * patience_increase)

                    with open(dumppath, "wb") as f:
                        cPickle.dump(dbn.params, f)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter
                    '''
                    # test it on the test set
                    test_losses = test_model()
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))
                    '''

            if patience <= iter:
                done_looping = True
                if earlystop:
                    break

    end_time = timeit.default_timer()
    print(('Optimization complete with best validation score of %f %%, '
           'obtained at iteration %i, '
           'with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The fine tuning code for file ' +
                          os.path.split(__file__)[1] + ' ran for %.2fm' %
                          ((end_time - start_time) / 60.))
def train_lstm(
        # word embedding in ACE's context can be regarded as the feature vector size of each ns frame
        dim_proj=None,  # word embeding dimension and LSTM number of hidden units.
        xdim=None,
        ydim=None,
        format=None,
        patience=10,  # Number of epoch to wait before early stop if no progress
        max_epochs=500,  # The maximum number of epoch to run
        dispFreq=10,  # Display to stdout the training progress every N updates
        decay_c=0.,  # Weight decay for the classifier applied to the U weights.
        lrate=0.001,  # Learning rate for sgd (not used for adadelta and rmsprop)
        # n_words=10000,  # Vocabulary size
    optimizer=adadelta,  # sgd, adadelta and rmsprop available, sgd very hard to use, not recommanded (probably need momentum and decaying learning rate).
        encoder='lstm',  # TODO: can be removed must be lstm.
        dumppath='blstm_model.npz',  # The best model will be saved there
        validFreq=400,  # Compute the validation error after this number of update.
        saveFreq=1000,  # Save the parameters after every saveFreq updates
        maxlen=None,  # Sequence longer then this get ignored
        batch_size=100,  # The batch size during training.
        valid_batch_size=100,  # The batch size used for validation/test set.
        dataset=None,

        # Parameter for extra option
        noise_std=0.,
        use_dropout=True,  # if False slightly faster, but worst test error
        # This frequently need a bigger model.
    reload_model=None,  # Path to a saved model we want to start from.
        test_size=-1,  # If >0, we keep only this number of test example.
        scaling=1):

    # Model options
    model_options = locals().copy()
    print "model options", model_options

    #load_data, prepare_data = get_dataset(dataset)

    print 'Loading data'
    train, valid, test = load_data_varlen(dataset=dataset,
                                          valid_portion=0.1,
                                          test_portion=0.1,
                                          maxlen=None,
                                          scaling=scaling,
                                          robust=0,
                                          format=format,
                                          h5py=1)

    print 'data loaded'
    '''
    if test_size > 0:
        # The test set is sorted by size, but we want to keep random
        # size example.  So we must select a random selection of the
        # examples.
        idx = numpy.arange(len(test[0]))
        numpy.random.shuffle(idx)
        idx = idx[:test_size]
        test = ([test[0][n] for n in idx], [test[1][n] for n in idx])
    '''

    ydim = numpy.max(train[1]) + 1
    # ydim = numpy.max(train[1])
    print 'ydim = %d' % ydim

    model_options['ydim'] = ydim
    model_options['xdim'] = xdim
    model_options['dim_proj'] = dim_proj

    print 'Building model'
    # This create the initial parameters as numpy ndarrays.
    # Dict name (string) -> numpy ndarray
    params = init_params(model_options)

    if reload_model:
        load_params('lstm_model.npz', params)

    # This create Theano Shared Variable from the parameters.
    # Dict name (string) -> Theano Tensor Shared Variable
    # params and tparams have different copy of the weights.
    tparams = init_tparams(params)

    # use_noise is for dropout
    (use_noise, x, mask, oh_mask, y, f_pred_prob, f_pred,
     cost) = build_model(tparams, model_options)

    if decay_c > 0.:
        decay_c = theano.shared(numpy_floatX(decay_c), name='decay_c')
        weight_decay = 0.
        weight_decay += (tparams['U']**2).sum()
        weight_decay *= decay_c
        cost += weight_decay

    f_cost = theano.function([x, mask, oh_mask, y], cost, name='f_cost')

    grads = T.grad(cost, wrt=tparams.values())
    f_grad = theano.function([x, mask, oh_mask, y], grads, name='f_grad')

    lr = T.scalar(name='lr')
    f_grad_shared, f_update = optimizer(lr, tparams, grads, x, mask, oh_mask,
                                        y, cost)

    print 'Optimization'

    kf_valid = get_minibatches_idx(len(valid[0]), valid_batch_size)
    kf_test = get_minibatches_idx(len(test[0]), valid_batch_size)

    print "%d train examples" % len(train[0])
    print "%d valid examples" % len(valid[0])
    print "%d test examples" % len(test[0])

    history_errs = []
    best_p = None
    bad_count = 0

    if validFreq == -1:
        validFreq = len(train[0]) / batch_size
    if saveFreq == -1:
        saveFreq = len(train[0]) / batch_size

    uidx = 0  # the number of update done
    estop = False  # early stop
    start_time = time.time()

    # SP contains an ordered list of (pos), ordered by chord class number [0,ydim-1]
    SP = balanced_seg.balanced_noeval(ydim, train[1])

    try:
        for eidx in xrange(max_epochs):
            n_samples = 0

            # Get new shuffled index for the training set.
            kf = get_minibatches_idx(len(train[0]), batch_size, shuffle=True)

            for _, train_index in kf:
                uidx += 1
                use_noise.set_value(1.)

                # FIXME: train_index is not used, kf is not used
                bc_idx = balanced_seg.get_bc_idx(SP, ydim)
                # Select the random examples for this minibatch
                y = [train[1][t] for t in bc_idx]
                x = [train[0][t] for t in bc_idx]

                # Get the data in numpy.ndarray format
                # This swap the axis!
                # Return something of shape (minibatch maxlen, n samples)
                x, mask, oh_mask, y = prepare_data(x,
                                                   y,
                                                   xdim=xdim,
                                                   maxlen=maxlen)
                n_samples += x.shape[1]

                cost = f_grad_shared(x, mask, oh_mask, y)
                f_update(lrate)

                if numpy.isnan(cost) or numpy.isinf(cost):
                    print 'NaN detected'
                    return 1., 1., 1.

                if numpy.mod(uidx, dispFreq) == 0:
                    print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost

                if dumppath and numpy.mod(uidx, saveFreq) == 0:
                    print 'Saving...',

                    # save the best param set to date (best_p)
                    if best_p is not None:
                        params = best_p
                    else:
                        params = unzip(tparams)
                    numpy.savez(dumppath, history_errs=history_errs, **params)
                    # pkl.dump(model_options, open('%s.pkl' % dumppath, 'wb'), -1)
                    print 'Done'

                if numpy.mod(uidx, validFreq) == 0:
                    use_noise.set_value(0.)
                    train_err = pred_error(f_pred, prepare_data, train, kf)
                    valid_err = pred_error(f_pred, prepare_data, valid,
                                           kf_valid)
                    # test_err = pred_error(f_pred, prepare_data, test, kf_test)
                    test_err = 1

                    history_errs.append([valid_err, test_err])

                    # save param only if the validation error is less than the history minimum
                    if (uidx == 0 or valid_err <=
                            numpy.array(history_errs)[:, 0].min()):

                        best_p = unzip(tparams)
                        bad_counter = 0

                    print('Train ', train_err, 'Valid ', valid_err, 'Test ',
                          test_err)

                    # early stopping
                    if (len(history_errs) > patience and valid_err >=
                            numpy.array(history_errs)[:-patience, 0].min()):
                        bad_counter += 1
                        if bad_counter > patience:
                            print 'Early Stop!'
                            estop = True
                            break

            print 'Seen %d samples' % n_samples

            if estop:
                break

    except KeyboardInterrupt:
        print "Training interupted"

    end_time = time.time()
    if best_p is not None:
        zipp(best_p, tparams)
    else:
        best_p = unzip(tparams)

    use_noise.set_value(0.)
    kf_train_sorted = get_minibatches_idx(len(train[0]), batch_size)
    train_err = pred_error(f_pred, prepare_data, train, kf_train_sorted)
    valid_err = pred_error(f_pred, prepare_data, valid, kf_valid)
    # test_err = pred_error(f_pred, prepare_data, test, kf_test)
    test_err = 1

    print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err
    if dumppath:
        numpy.savez(dumppath,
                    train_err=train_err,
                    valid_err=valid_err,
                    test_err=test_err,
                    history_errs=history_errs,
                    **best_p)
    print 'The code run for %d epochs, with %f sec/epochs' % (
        (eidx + 1), (end_time - start_time) / (1. * (eidx + 1)))
    print >> sys.stderr, ('Training took %.1fs' % (end_time - start_time))
    return train_err, valid_err, test_err
def train_lstm(
    # word embedding in ACE's context can be regarded as the feature vector size of each ns frame
    dim_proj=None,  # word embeding dimension and LSTM number of hidden units.
    xdim=None,
    ydim=None,
    format=None,
    patience=10,  # Number of epoch to wait before early stop if no progress
    max_epochs=500,  # The maximum number of epoch to run
    dispFreq=10,  # Display to stdout the training progress every N updates
    decay_c=0.,  # Weight decay for the classifier applied to the U weights.
    lrate=0.001,  # Learning rate for sgd (not used for adadelta and rmsprop)
    # n_words=10000,  # Vocabulary size
    optimizer=adadelta,  # sgd, adadelta and rmsprop available, sgd very hard to use, not recommanded (probably need momentum and decaying learning rate).
    encoder='lstm',  # TODO: can be removed must be lstm.
    dumppath='blstm_model.npz',  # The best model will be saved there
    validFreq=400,  # Compute the validation error after this number of update.
    saveFreq=1000,  # Save the parameters after every saveFreq updates
    maxlen=None,  # Sequence longer then this get ignored
    batch_size=100,  # The batch size during training.
    valid_batch_size=100,  # The batch size used for validation/test set.
    dataset=None,

    # Parameter for extra option
    noise_std=0.,
    use_dropout=True,  # if False slightly faster, but worst test error
                       # This frequently need a bigger model.
    reload_model=None,  # Path to a saved model we want to start from.
    test_size=-1,  # If >0, we keep only this number of test example.
    scaling=1
):

    # Model options
    model_options = locals().copy()
    print "model options", model_options

    #load_data, prepare_data = get_dataset(dataset)

    print 'Loading data'
    train, valid, test = load_data_varlen(dataset=dataset, valid_portion=0.1, test_portion=0.1,
                                   maxlen=None, scaling=scaling, robust=0, format=format, h5py=1)
                                   
    print 'data loaded'
    
    '''
    if test_size > 0:
        # The test set is sorted by size, but we want to keep random
        # size example.  So we must select a random selection of the
        # examples.
        idx = numpy.arange(len(test[0]))
        numpy.random.shuffle(idx)
        idx = idx[:test_size]
        test = ([test[0][n] for n in idx], [test[1][n] for n in idx])
    '''
    

    ydim = numpy.max(train[1]) + 1
    # ydim = numpy.max(train[1])
    print 'ydim = %d'%ydim

    model_options['ydim'] = ydim
    model_options['xdim'] = xdim
    model_options['dim_proj'] = dim_proj

    print 'Building model'
    # This create the initial parameters as numpy ndarrays.
    # Dict name (string) -> numpy ndarray
    params = init_params(model_options)

    if reload_model:
        load_params('lstm_model.npz', params)

    # This create Theano Shared Variable from the parameters.
    # Dict name (string) -> Theano Tensor Shared Variable
    # params and tparams have different copy of the weights.
    tparams = init_tparams(params)

    # use_noise is for dropout
    (use_noise, x, mask, oh_mask,
     y, f_pred_prob, f_pred, cost) = build_model(tparams, model_options)
    
    if decay_c > 0.:
        decay_c = theano.shared(numpy_floatX(decay_c), name='decay_c')
        weight_decay = 0.
        weight_decay += (tparams['U'] ** 2).sum()
        weight_decay *= decay_c
        cost += weight_decay

    f_cost = theano.function([x, mask, oh_mask, y], cost, name='f_cost')

    grads = T.grad(cost, wrt=tparams.values())
    f_grad = theano.function([x, mask, oh_mask, y], grads, name='f_grad')

    lr = T.scalar(name='lr')
    f_grad_shared, f_update = optimizer(lr, tparams, grads,
                                        x, mask, oh_mask, y, cost)

    print 'Optimization'

    kf_valid = get_minibatches_idx(len(valid[0]), valid_batch_size)
    kf_test = get_minibatches_idx(len(test[0]), valid_batch_size)

    print "%d train examples" % len(train[0])
    print "%d valid examples" % len(valid[0])
    print "%d test examples" % len(test[0])

    history_errs = []
    best_p = None
    bad_count = 0

    if validFreq == -1:
        validFreq = len(train[0]) / batch_size
    if saveFreq == -1:
        saveFreq = len(train[0]) / batch_size

    uidx = 0  # the number of update done
    estop = False  # early stop
    start_time = time.time()
    
    # SP contains an ordered list of (pos), ordered by chord class number [0,ydim-1]
    SP = balanced_seg.balanced_noeval(ydim,train[1])
    
    try:
        for eidx in xrange(max_epochs):
            n_samples = 0

            # Get new shuffled index for the training set.
            kf = get_minibatches_idx(len(train[0]), batch_size, shuffle=True)

            for _, train_index in kf:
                uidx += 1
                use_noise.set_value(1.)
                
                # FIXME: train_index is not used, kf is not used
                bc_idx = balanced_seg.get_bc_idx(SP,ydim)
                # Select the random examples for this minibatch
                y = [train[1][t] for t in bc_idx]
                x = [train[0][t] for t in bc_idx]
                
                # Get the data in numpy.ndarray format
                # This swap the axis!
                # Return something of shape (minibatch maxlen, n samples)
                x, mask, oh_mask, y = prepare_data(x, y, xdim=xdim, maxlen=maxlen)
                n_samples += x.shape[1]

                cost = f_grad_shared(x, mask, oh_mask, y)
                f_update(lrate)

                if numpy.isnan(cost) or numpy.isinf(cost):
                    print 'NaN detected'
                    return 1., 1., 1.

                if numpy.mod(uidx, dispFreq) == 0:
                    print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost

                if dumppath and numpy.mod(uidx, saveFreq) == 0:
                    print 'Saving...',
                    
                    # save the best param set to date (best_p)
                    if best_p is not None:
                        params = best_p
                    else:
                        params = unzip(tparams)
                    numpy.savez(dumppath, history_errs=history_errs, **params)
                    # pkl.dump(model_options, open('%s.pkl' % dumppath, 'wb'), -1)
                    print 'Done'

                if numpy.mod(uidx, validFreq) == 0:
                    use_noise.set_value(0.)
                    train_err = pred_error(f_pred, prepare_data, train, kf)
                    valid_err = pred_error(f_pred, prepare_data, valid, kf_valid)
                    # test_err = pred_error(f_pred, prepare_data, test, kf_test)
                    test_err = 1

                    history_errs.append([valid_err, test_err])
                    
                    # save param only if the validation error is less than the history minimum
                    if (uidx == 0 or
                        valid_err <= numpy.array(history_errs)[:,
                                                               0].min()):

                        best_p = unzip(tparams)
                        bad_counter = 0

                    print ('Train ', train_err, 'Valid ', valid_err,
                           'Test ', test_err)
                    
                    # early stopping
                    if (len(history_errs) > patience and
                        valid_err >= numpy.array(history_errs)[:-patience,
                                                               0].min()):
                        bad_counter += 1
                        if bad_counter > patience:
                            print 'Early Stop!'
                            estop = True
                            break

            print 'Seen %d samples' % n_samples

            if estop:
                break

    except KeyboardInterrupt:
        print "Training interupted"

    end_time = time.time()
    if best_p is not None:
        zipp(best_p, tparams)
    else:
        best_p = unzip(tparams)

    use_noise.set_value(0.)
    kf_train_sorted = get_minibatches_idx(len(train[0]), batch_size)
    train_err = pred_error(f_pred, prepare_data, train, kf_train_sorted)
    valid_err = pred_error(f_pred, prepare_data, valid, kf_valid)
    # test_err = pred_error(f_pred, prepare_data, test, kf_test)
    test_err = 1

    print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err
    if dumppath:
        numpy.savez(dumppath, train_err=train_err,
                    valid_err=valid_err, test_err=test_err,
                    history_errs=history_errs, **best_p)
    print 'The code run for %d epochs, with %f sec/epochs' % (
        (eidx + 1), (end_time - start_time) / (1. * (eidx + 1)))
    print >> sys.stderr, ('Training took %.1fs' %
                          (end_time - start_time))
    return train_err, valid_err, test_err
Beispiel #4
0
def test_DBN(finetune_lr, pretraining_epochs,
             pretrain_lr, cdk, usepersistent, training_epochs,
             L1_reg, L2_reg,
             hidden_layers_sizes,
             dataset, batch_size, output_folder, shuffle, scaling, dropout, first_layer, dumppath):
    """
    Demonstrates how to train and test a Deep Belief Network.

    :type finetune_lr: float
    :param finetune_lr: learning rate used in the finetune stage
    :type pretraining_epochs: int
    :param pretraining_epochs: number of epoch to do pretraining
    :type pretrain_lr: float
    :param pretrain_lr: learning rate to be used during pre-training
    :type cdk: int
    :param cdk: number of Gibbs steps in CD/PCD
    :type training_epochs: int
    :param training_epochs: maximal number of iterations ot run the optimizer
    :type dataset: string
    :param dataset: path the the pickled dataset
    :type batch_size: int
    :param batch_size: the size of a minibatch
    """
    print locals()
    
    datasets = loadmat(dataset=dataset, shuffle=shuffle, datasel=datasel, scaling=scaling, robust=robust)
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    
    print "%d training examples" % train_set_x.get_value(borrow=True).shape[0]
    print "%d feature dimensions" % train_set_x.get_value(borrow=True).shape[1]

    # numpy random generator
    numpy_rng = numpy.random.RandomState(123)
    print '... building the model'
    # construct the Deep Belief Network
    nclass = max(train_set_y.eval())+1
    dbn = DBN(numpy_rng=numpy_rng, n_ins=train_set_x.get_value(borrow=True).shape[1],
              hidden_layers_sizes=hidden_layers_sizes,
              n_outs=nclass, L1_reg=L1_reg, L2_reg=L2_reg, first_layer=first_layer)
    print 'n_ins:%d'% train_set_x.get_value(borrow=True).shape[1]
    print 'n_outs:%d'% nclass
    
    # SP contains an ordered list of (pos), ordered by chord class number [0,ydim-1]
    SP = balanced_seg.balanced(nclass,train_set_y)
    
    # getting pre-training and fine-tuning functions
    # save images of the weights(receptive fields) in this output folder
    # if not os.path.isdir(output_folder):
        # os.makedirs(output_folder)
    # os.chdir(output_folder)
    
    print '... getting the pretraining functions'
    pretraining_fns = dbn.pretraining_functions(train_set_x=train_set_x,
                                                batch_size=batch_size,
                                                cdk=cdk, usepersistent=usepersistent)
    # get the training, validation and testing function for the model
    print '... getting the finetuning functions'

    train_fn, train_model, validate_model, test_model = dbn.build_finetune_functions(
        datasets=datasets,
        batch_size=batch_size,
        learning_rate=finetune_lr
    )
    
    trng = MRG_RandomStreams(1234)
    use_noise = theano.shared(numpy.asarray(0., dtype=theano.config.floatX))
    if dropout:
        # dbn.x = dropout_layer(use_noise, dbn.x, trng, 0.8)
        for i in range(dbn.n_layers):
            dbn.sigmoid_layers[i].output = dropout_layer(use_noise, dbn.sigmoid_layers[i].output, trng, 0.5)

    # start-snippet-2
    #########################
    # PRETRAINING THE MODEL #
    #########################

    print '... pre-training the model'
    plotting_time = 0.
    start_time = timeit.default_timer()
    ## Pre-train layer-wise
    for i in xrange(dbn.n_layers):
        # go through pretraining epochs
        for epoch in xrange(pretraining_epochs):
            if pretrain_dropout:
                use_noise.set_value(1.) # use dropout at pre-training
            # go through the training set
            c = []
            for batch_index in xrange(n_train_batches):
                c.append(pretraining_fns[i](index=batch_index,
                                            lr=pretrain_lr))
            print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),
            print numpy.mean(c)
            
            '''
            for j in range(dbn.n_layers):
                if j == 0:
                    # Plot filters after each training epoch
                    plotting_start = timeit.default_timer()
                    # Construct image from the weight matrix
                    this_layer = dbn.rbm_layers[j]
                    this_field = this_layer.W.get_value(borrow=True).T
                    print "field shape (%d,%d)"%this_field.shape
                    image = Image.fromarray(
                        tile_raster_images(
                            X=this_field[0:100], # take only the first 100 fields (100 * n_visible)
                            #the img_shape and tile_shape depends on n_visible and n_hidden of this_layer
                            # if n_visible = 144 (12,12), if n_visible = 1512 (36,42)
                            img_shape=(12, 12),
                            tile_shape=(10, 10),
                            tile_spacing=(1, 1)
                        )
                    )
                    image.save('filters_at_epoch_%i.png' % epoch)
                    plotting_stop = timeit.default_timer()
                    plotting_time += (plotting_stop - plotting_start)
            '''

    end_time = timeit.default_timer()
    # end-snippet-2
    print >> sys.stderr, ('The pretraining code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
    ########################
    # FINETUNING THE MODEL #
    ########################

    print '... finetuning the model'
    # early-stopping parameters
    patience = 10 * n_train_batches  # look as this many examples regardless
    patience_increase = 2.    # wait this much longer when a new best is
                              # found
    improvement_threshold = 0.999  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatches before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    test_score = 0.
    start_time = timeit.default_timer()

    done_looping = False
    epoch = 0
    
    

    # while (epoch < training_epochs) and (not done_looping):
    while (epoch < training_epochs):
        if earlystop and done_looping:
            print 'early-stopping'
            break
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):
            use_noise.set_value(1.) # use dropout at training time
            # FIXME: n_train_batches is a fake item
            bc_idx = balanced_seg.get_bc_idx(SP,nclass)
            minibatch_avg_cost = train_fn(bc_idx)
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                use_noise.set_value(0.) # stop dropout at validation/test time
                validation_losses = validate_model()
                training_losses = train_model()
                this_validation_loss = numpy.mean(validation_losses)
                this_training_loss = numpy.mean(training_losses)
                
                # also monitor the training losses
                print(
                    'epoch %i, minibatch %i/%i, training error %f %%'
                    % (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_training_loss * 100.
                    )
                )
                
                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%'
                    % (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if (
                        this_validation_loss < best_validation_loss *
                        improvement_threshold
                    ):
                        patience = max(patience, iter * patience_increase)
                        
                    with open(dumppath, "wb") as f:
                        cPickle.dump(dbn.params, f)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter
                    
                    '''
                    # test it on the test set
                    test_losses = test_model()
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))
                    '''

            if patience <= iter:
                done_looping = True
                if earlystop:
                    break

    end_time = timeit.default_timer()
    print(
        (
            'Optimization complete with best validation score of %f %%, '
            'obtained at iteration %i, '
            'with test performance %f %%'
        ) % (best_validation_loss * 100., best_iter + 1, test_score * 100.)
    )
    print >> sys.stderr, ('The fine tuning code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time)
                                              / 60.))
Beispiel #5
0
def test_mlp(learning_rate, L1_reg, L2_reg, n_epochs, hidden_layers_sizes,
             dataset, batch_size, datasel, shuffle, scaling, dropout,
             earlystop, dumppath):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the dataset


   """
    print locals()

    datasets = loadmat(dataset=dataset,
                       shuffle=shuffle,
                       datasel=datasel,
                       scaling=scaling,
                       robust=robust,
                       h5py=1)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    bcidx = T.ivector('bcidx')
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    rng = numpy.random.RandomState(1234)

    nclass = max(train_set_y.eval()) + 1
    print "n_in = %d" % train_set_x.get_value(borrow=True).shape[1]
    print "n_out = %d" % nclass

    # construct the MLP class
    classifier = MLP(rng=rng,
                     input=x,
                     n_in=train_set_x.get_value(borrow=True).shape[1],
                     hidden_layers_sizes=hidden_layers_sizes,
                     n_out=nclass)

    # dropout the hidden layers
    trng = RandomStreams(1234)
    use_noise = theano.shared(numpy.asarray(0., dtype=theano.config.floatX))
    if dropout:
        # classifier.input = dropout_layer(use_noise, classifier.input, trng, 0.8)
        for i in range(classifier.n_layers):
            classifier.hiddenlayers[i].output = dropout_layer(
                use_noise, classifier.hiddenlayers[i].output, trng, 0.5)

    # start-snippet-4
    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 +
            L2_reg * classifier.L2_sqr)
    # end-snippet-4

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    train_score = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    pred_probs = theano.function(
        inputs=[index],
        outputs=classifier.predprobs,
        givens={
            x: train_set_x[index:1000],
            # y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # start-snippet-5
    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [(param, param - learning_rate * gparam)
               for param, gparam in zip(classifier.params, gparams)]

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    # train_model = theano.function(
    # inputs=[index],
    # outputs=cost,
    # updates=updates,
    # givens={
    # x: train_set_x[index * batch_size: (index + 1) * batch_size],
    # y: train_set_y[index * batch_size: (index + 1) * batch_size]
    # }
    # )
    train_model = theano.function(inputs=[bcidx],
                                  outputs=cost,
                                  updates=updates,
                                  givens={
                                      x: train_set_x[bcidx],
                                      y: train_set_y[bcidx]
                                  })
    # end-snippet-5

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'

    # early-stopping parameters
    patience = 100 * n_train_batches  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.999  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    # SP contains an ordered list of (pos), ordered by chord class number [0,ydim-1]
    SP = balanced_seg.balanced(nclass, train_set_y)

    while (epoch < n_epochs):
        if earlystop and done_looping:
            print 'early-stopping'
            break
    # while (epoch < n_epochs):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):
            use_noise.set_value(1.)  # use dropout
            # FIXME: n_train_batches is a fake item
            # get balanced batch indices
            bc_idx = balanced_seg.get_bc_idx(SP, nclass)
            minibatch_avg_cost = train_model(bc_idx)
            # minibatch_avg_cost = train_model(minibatch_index)

            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                use_noise.set_value(
                    0.)  # at validation/testing time, no dropout
                validation_losses = [
                    validate_model(i) for i in xrange(n_valid_batches)
                ]
                training_losses = [
                    train_score(i) for i in xrange(n_train_batches)
                ]
                this_validation_loss = numpy.mean(validation_losses)
                this_training_loss = numpy.mean(training_losses)
                probs = [pred_probs(i) for i in xrange(n_train_batches)]

                print('epoch %i, minibatch %i/%i, training error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_training_loss * 100.))

                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if (this_validation_loss <
                            best_validation_loss * improvement_threshold):
                        patience = max(patience, iter * patience_increase)
                    # save model
                    with open(dumppath, "wb") as f:
                        cPickle.dump(classifier.params, f)

                    best_validation_loss = this_validation_loss
                    best_iter = iter
                    '''
                    # test it on the test set
                    test_losses = [test_model(i) for i
                                   in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))
                    '''

            if patience <= iter:
                done_looping = True
                if earlystop:
                    break

    end_time = timeit.default_timer()
    print(('Optimization complete. Best validation score of %f %% '
           'obtained at iteration %i, with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
Beispiel #6
0
def test_mlp(learning_rate, L1_reg, L2_reg, n_epochs,
             hidden_layers_sizes, dataset, batch_size, datasel, shuffle, scaling, dropout, earlystop, dumppath):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the dataset


   """
    print locals()
    
    datasets = loadmat(dataset=dataset,shuffle=shuffle,datasel=datasel,scaling=scaling,robust=robust)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    bcidx = T.ivector('bcidx')
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    rng = numpy.random.RandomState(1234)
    
    nclass = max(train_set_y.eval()) + 1
    print "n_in = %d"%train_set_x.get_value(borrow=True).shape[1]
    print "n_out = %d"%nclass

    # construct the MLP class
    classifier = MLP(
        rng=rng,
        input=x,
        n_in=train_set_x.get_value(borrow=True).shape[1],
        hidden_layers_sizes=hidden_layers_sizes,
        n_out=nclass
    )
    
    # dropout the hidden layers
    trng = RandomStreams(1234)
    use_noise = theano.shared(numpy.asarray(0., dtype=theano.config.floatX))
    if dropout:
        # classifier.input = dropout_layer(use_noise, classifier.input, trng, 0.8)
        for i in range(classifier.n_layers):
            classifier.hiddenlayers[i].output = dropout_layer(use_noise, classifier.hiddenlayers[i].output, trng, 0.5)
            
    # start-snippet-4
    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )
    # end-snippet-4

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )
    
    train_score = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )
    
    pred_probs = theano.function(
        inputs=[index],
        outputs=classifier.predprobs,
        givens={
            x: train_set_x[index:1000],
            # y: train_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    # start-snippet-5
    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(classifier.params, gparams)
    ]

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    # train_model = theano.function(
        # inputs=[index],
        # outputs=cost,
        # updates=updates,
        # givens={
            # x: train_set_x[index * batch_size: (index + 1) * batch_size],
            # y: train_set_y[index * batch_size: (index + 1) * batch_size]
        # }
    # )
    train_model = theano.function(
        inputs=[bcidx],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[bcidx],
            y: train_set_y[bcidx]
        }
    )
    # end-snippet-5

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'

    # early-stopping parameters
    patience = 100 * n_train_batches  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.999  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False
    
    # SP contains an ordered list of (pos), ordered by chord class number [0,ydim-1]
    SP = balanced_seg.balanced(nclass,train_set_y)
    
    while (epoch < n_epochs):
        if earlystop and done_looping:
            print 'early-stopping'
            break
    # while (epoch < n_epochs):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):
            use_noise.set_value(1.) # use dropout
            # FIXME: n_train_batches is a fake item
            # get balanced batch indices
            bc_idx = balanced_seg.get_bc_idx(SP,nclass)
            minibatch_avg_cost = train_model(bc_idx)
            # minibatch_avg_cost = train_model(minibatch_index)
            
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                use_noise.set_value(0.) # at validation/testing time, no dropout
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
                training_losses = [train_score(i) for i
                                    in xrange(n_train_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                this_training_loss = numpy.mean(training_losses)
                probs = [pred_probs(i) for i
                                    in xrange(n_train_batches)]
                
                print(
                    'epoch %i, minibatch %i/%i, training error %f %%' %
                    (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_training_loss * 100.
                    )
                )

                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%' %
                    (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if (
                        this_validation_loss < best_validation_loss *
                        improvement_threshold
                    ):
                        patience = max(patience, iter * patience_increase)
                    # save model
                    with open(dumppath, "wb") as f:
                        cPickle.dump(classifier.params, f)
                        
                    best_validation_loss = this_validation_loss
                    best_iter = iter
                    
                    '''
                    # test it on the test set
                    test_losses = [test_model(i) for i
                                   in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))
                    '''

            if patience <= iter:
                done_looping = True
                if earlystop:
                    break

    end_time = timeit.default_timer()
    print(('Optimization complete. Best validation score of %f %% '
           'obtained at iteration %i, with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))