# like This paper computed IGM transmission values using # IGMtransmissiona (Harrison, Meiksin & Stock 2011), based on the # transmission curves of Meiksin (2006). aAvailable for download from # http://code.google.com/p/igmtransmission If the LLS distribution # from Inoue & Iwata (2008) is used, a reference to their work should # be added as well. from barak.io import readtxt import numpy as np # z=2.76, Inoue LLS code. Diffuse IGM normalisation 0.07553 T = readtxt("averageTransmission.dat", names="wa,tr") WA = np.arange(3180, 8000, 1.0) TR = np.interp(WA, T.wa, T.tr) TR[WA > 4543.0] = 1 from barak.sed import get_bands u, g = get_bands("sdss", ["u", "g"]) utr = np.interp(WA, u.wa, u.tr) av_utr = (utr * TR).sum() / utr.sum() print "u bandpass-weighted transmission", av_utr print "mag extinct", -2.5 * np.log10(av_utr) gtr = np.interp(WA, g.wa, g.tr) av_gtr = (gtr * TR).sum() / gtr.sum() print "g bandpass-weighted transmission", av_gtr print "mag extinct", -2.5 * np.log10(av_gtr)
from barak.sed import get_bands, get_SEDs import pylab as pl import numpy as np fors_u, fors_g, fors_r = get_bands('FORS','u,g,r',ccd='blue') sdss_u, sdss_g, sdss_r = get_bands('SDSS','u,g,r') pl.figure() for b in fors_u, fors_g, fors_r, sdss_u, sdss_g, sdss_r: b.plot() pickles = get_SEDs('pickles') fig = pl.figure() fig.subplots_adjust(left=0.18) for p in pickles: p.plot(log=1) pl.title('Pickles stellar library') p_umg = [p.calc_colour(sdss_u, sdss_g, 'AB') for p in pickles] p_gmr = [p.calc_colour(sdss_g, sdss_r, 'AB') for p in pickles] tLBG = get_SEDs('LBG', 'lbg_em.dat') tLBGa = get_SEDs('LBG', 'lbg_abs.dat') tLBG_umg, tLBG_gmr = [], [] tLBGa_umg, tLBGa_gmr = [], [] zlabels = [] for z in np.arange(2.2, 3.7, 0.2): zlabels.append(str(z)) tLBG.redshift_to(z) tLBGa.redshift_to(z) tLBG_umg.append(tLBG.calc_colour(sdss_u,sdss_g, 'AB')) tLBG_gmr.append(tLBG.calc_colour(sdss_g,sdss_r, 'AB'))
# like This paper computed IGM transmission values using # IGMtransmissiona (Harrison, Meiksin & Stock 2011), based on the # transmission curves of Meiksin (2006). aAvailable for download from # http://code.google.com/p/igmtransmission If the LLS distribution # from Inoue & Iwata (2008) is used, a reference to their work should # be added as well. from barak.io import readtxt import numpy as np # z=2.76, Inoue LLS code. Diffuse IGM normalisation 0.07553 T = readtxt('averageTransmission.dat', names='wa,tr') WA = np.arange(3180, 8000, 1.) TR = np.interp(WA, T.wa, T.tr) TR[WA > 4543.] = 1 from barak.sed import get_bands u, g = get_bands('sdss', ['u', 'g']) utr = np.interp(WA, u.wa, u.tr) av_utr = (utr * TR).sum() / utr.sum() print 'u bandpass-weighted transmission', av_utr print 'mag extinct', -2.5 * np.log10(av_utr) gtr = np.interp(WA, g.wa, g.tr) av_gtr = (gtr * TR).sum() / gtr.sum() print 'g bandpass-weighted transmission', av_gtr print 'mag extinct', -2.5 * np.log10(av_gtr)